Schroder UK Real Estate Fund Prospectus

Total Page:16

File Type:pdf, Size:1020Kb

Schroder UK Real Estate Fund Prospectus Schroder UK Real Estate Fund Prospectus 30 June 2021 http://www.schroders.com/sref For professional investors only. Not suitable for retail clients. IMPORTANT: IF YOU ARE IN ANY DOUBT ABOUT THE CONTENTS OF THIS PROSPECTUS YOU SHOULD CONSULT YOUR FINANCIAL ADVISER Schroder Unit Trusts Limited, the authorised corporate director of the Company, is the person responsible for the information contained in this Prospectus. To the best of its knowledge and belief (having taken all reasonable care to ensure that it is the case) the information in this Prospectus does not contain any untrue or misleading statement or omit any matters required by the Sourcebook to be included in it. Schroder Unit Trusts Limited accepts responsibility accordingly. Prospectus of the Schroder UK Real Estate Fund 30 June 2021 (An open-ended investment company with variable capital incorporated with limited liability and registered in England and Wales under registered number IC000945) This document constitutes the Prospectus for Schroder UK Real Estate Fund which has been prepared in accordance with the Sourcebook. This Prospectus is dated and is valid as at 30 June 2021. The Company may only be invested in by investors who fall within the category of Eligible Investors (as defined in this Prospectus). 30 June 2021 Prospectus of the Schroder UK Real Estate Fund 2 Contents Important Information ..................................................................................................................... 8 Definitions ........................................................................................................................................ 11 1.1 Investment objective ................................................................................................................. 15 1.2 Investment policy ....................................................................................................................... 15 1.3 Investment and borrowing guidelines .................................................................................... 15 1.4 Integration of Sustainability Risks ............................................................................................ 16 1.5 Summary details for each Class of Shares .............................................................................. 17 2.1 How to buy Shares ..................................................................................................................... 18 2.2 The documents buyers receive ................................................................................................. 18 2.3 Minimum investment levels ...................................................................................................... 19 2.4 Bodies Corporate and nominees acquiring Shares ................................................................ 19 2.5 How to sell Shares ...................................................................................................................... 20 2.6 The documents that sellers receive ......................................................................................... 20 2.7 Limits on partial redemptions .................................................................................................. 20 2.8 Deferral of redemptions by the ACD ........................................................................................ 21 2.9 Transfer of Shares that are subject to a redemption request on the secondary market ... 21 2.10 Extended redemption payment facility ................................................................................... 22 2.11 How to convert Shares of one Class for Shares of another Class and the implications of converting .............................................................................................................................................. 22 2.12 Transfers of Shares on the secondary market ........................................................................ 22 2.13 Trade requirements ................................................................................................................... 23 2.14 Share matching .......................................................................................................................... 23 2.15 Withdrawal of a secondary market request form................................................................... 23 2.16 Transfer requirements, settlement and re-registration ........................................................ 23 2.17 Secondary market arrangements conducted directly between Shareholders .................... 24 2.18 Restrictions and compulsory transfer and redemption ......................................................... 24 2.19 In specie redemptions ............................................................................................................... 25 2.20 Issue of Shares in exchange for in specie assets .................................................................... 25 2.21 When the suspension of dealings in Shares might occur ...................................................... 25 2.22 The charges that may be imposed on dealing ........................................................................ 26 2.23 Initial charge ............................................................................................................................... 26 2.24 Redemption charge ................................................................................................................... 26 2.25 Conversion fee ........................................................................................................................... 26 30 June 2021 Prospectus of the Schroder UK Real Estate Fund 3 2.26 Stamp duty reserve tax (SDRT) ................................................................................................. 27 2.27 Money laundering ...................................................................................................................... 27 2.28 Bodies Corporate holding Shares ............................................................................................ 27 2.29 Governing law ............................................................................................................................ 27 3.1 General ........................................................................................................................................ 28 3.2 The Structure of the Company ................................................................................................. 28 3.3 Changes to the Company .......................................................................................................... 29 3.4 Shares ......................................................................................................................................... 29 3.5 Documents of the Company ..................................................................................................... 30 3.6 Indemnity ................................................................................................................................... 30 3.7 Genuine diversity of ownership ................................................................................................ 30 4.1 Management and administration ............................................................................................ 31 4.2 Authorised Corporate Director ................................................................................................. 31 4.3 The Depositary ........................................................................................................................... 32 4.4 The Investment Manager .......................................................................................................... 33 4.5 Registrar ..................................................................................................................................... 34 4.6 The Standing Independent Valuers ......................................................................................... 34 4.7 The Auditor ................................................................................................................................. 34 4.8 Legal adviser ............................................................................................................................... 34 4.9 Provision of investment advice ................................................................................................. 35 4.10 Telephone recordings................................................................................................................ 35 4.11 Complaints .................................................................................................................................. 35 4.12 Reporting .................................................................................................................................... 35 5.1 General ........................................................................................................................................ 37 5.2 Charges payable to the ACD ..................................................................................................... 39 5.3 Investment Manager’s fee ........................................................................................................ 40 5.4 Depositary's fee .......................................................................................................................... 41 5.5 Standing
Recommended publications
  • Forward Contracts and Futures a Forward Is an Agreement Between Two Parties to Buy Or Sell an Asset at a Pre-Determined Future Time for a Certain Price
    Forward contracts and futures A forward is an agreement between two parties to buy or sell an asset at a pre-determined future time for a certain price. Goal To hedge against the price fluctuation of commodity. • Intension of purchase decided earlier, actual transaction done later. • The forward contract needs to specify the delivery price, amount, quality, delivery date, means of delivery, etc. Potential default of either party: writer or holder. Terminal payoff from forward contract payoff payoff K − ST ST − K K ST ST K long position short position K = delivery price, ST = asset price at maturity Zero-sum game between the writer (short position) and owner (long position). Since it costs nothing to enter into a forward contract, the terminal payoff is the investor’s total gain or loss from the contract. Forward price for a forward contract is defined as the delivery price which make the value of the contract at initiation be zero. Question Does it relate to the expected value of the commodity on the delivery date? Forward price = spot price + cost of fund + storage cost cost of carry Example • Spot price of one ton of wood is $10,000 • 6-month interest income from $10,000 is $400 • storage cost of one ton of wood is $300 6-month forward price of one ton of wood = $10,000 + 400 + $300 = $10,700. Explanation Suppose the forward price deviates too much from $10,700, the construction firm would prefer to buy the wood now and store that for 6 months (though the cost of storage may be higher).
    [Show full text]
  • Real Rainbow Options in Commodity Applications Valuing Multi-Factor Output Options Under Uncertainty
    Real Rainbow Options in Commodity Applications Valuing Multi-Factor Output Options under Uncertainty A Thesis submitted to the University of Manchester for the Degree of Doctor of Business Administration in the Faculty of Humanities 2010 Jörg Dockendorf Manchester Business School Contents LIST OF TABLES ....................................................................................................... 4 LIST OF FIGURES ..................................................................................................... 4 ABSTRACT .................................................................................................................. 5 DECLARATION .......................................................................................................... 6 COPYRIGHT STATEMENT ..................................................................................... 7 ACKNOWLEDGEMENTS ......................................................................................... 8 1 INTRODUCTION ................................................................................................ 9 1.1 Research Objectives and Questions ............................................................. 11 1.2 Contributions to Knowledge ........................................................................ 12 1.3 Thesis Overview........................................................................................... 13 2 REVIEW OF RAINBOW OPTIONS AND THE COMMODITY CONTEXT .................................................................................................................
    [Show full text]
  • The Promise and Peril of Real Options
    1 The Promise and Peril of Real Options Aswath Damodaran Stern School of Business 44 West Fourth Street New York, NY 10012 [email protected] 2 Abstract In recent years, practitioners and academics have made the argument that traditional discounted cash flow models do a poor job of capturing the value of the options embedded in many corporate actions. They have noted that these options need to be not only considered explicitly and valued, but also that the value of these options can be substantial. In fact, many investments and acquisitions that would not be justifiable otherwise will be value enhancing, if the options embedded in them are considered. In this paper, we examine the merits of this argument. While it is certainly true that there are options embedded in many actions, we consider the conditions that have to be met for these options to have value. We also develop a series of applied examples, where we attempt to value these options and consider the effect on investment, financing and valuation decisions. 3 In finance, the discounted cash flow model operates as the basic framework for most analysis. In investment analysis, for instance, the conventional view is that the net present value of a project is the measure of the value that it will add to the firm taking it. Thus, investing in a positive (negative) net present value project will increase (decrease) value. In capital structure decisions, a financing mix that minimizes the cost of capital, without impairing operating cash flows, increases firm value and is therefore viewed as the optimal mix.
    [Show full text]
  • Pricing of Index Options Using Black's Model
    Global Journal of Management and Business Research Volume 12 Issue 3 Version 1.0 March 2012 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4588 & Print ISSN: 0975-5853 Pricing of Index Options Using Black’s Model By Dr. S. K. Mitra Institute of Management Technology Nagpur Abstract - Stock index futures sometimes suffer from ‘a negative cost-of-carry’ bias, as future prices of stock index frequently trade less than their theoretical value that include carrying costs. Since commencement of Nifty future trading in India, Nifty future always traded below the theoretical prices. This distortion of future prices also spills over to option pricing and increase difference between actual price of Nifty options and the prices calculated using the famous Black-Scholes formula. Fisher Black tried to address the negative cost of carry effect by using forward prices in the option pricing model instead of spot prices. Black’s model is found useful for valuing options on physical commodities where discounted value of future price was found to be a better substitute of spot prices as an input to value options. In this study the theoretical prices of Nifty options using both Black Formula and Black-Scholes Formula were compared with actual prices in the market. It was observed that for valuing Nifty Options, Black Formula had given better result compared to Black-Scholes. Keywords : Options Pricing, Cost of carry, Black-Scholes model, Black’s model. GJMBR - B Classification : FOR Code:150507, 150504, JEL Code: G12 , G13, M31 PricingofIndexOptionsUsingBlacksModel Strictly as per the compliance and regulations of: © 2012.
    [Show full text]
  • Options Trading Strategies: Complete Guide to Getting Started and Making Money with Stock Options
    Options Trading Strategies Complete Guide to Getting Started and Making Money with Stock Options Scott J. Danes Dylanna Publishing Copyright © 2014 by Scott J. Danes All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the publisher except for the use of brief quotations in a book review. Dylanna Publishing First edition: 2014 Disclaimer This book is for informational purposes only. The views expressed are those of the author alone, and should not be taken as expert, legal, or medical advice. The reader is responsible for his or her own actions. Every attempt has been made to verify the accuracy of the information in this publication. However, neither the author nor the publisher assumes any responsibility for errors, omissions, or contrary interpretation of the material contained herein. Neither the author or the publisher assumes any responsibility or liability whatsoever on the behalf of the reader or purchaser of this material. Contents Introduction Options 101 What Are Options? Buying and Selling Options Advantages of Options Trading Leverage Risk Limitation—Hedging Disadvantages of Options Trading Levels of Risk Intrinsic Value Time Decay Taxes Types and Styles of Options Call Options Put Options Using Call and Put Options to Make a Profit Styles of Options American Options European Options Exotic Options LEAPS Index Options Option Prices and Valuation In-The-Money (ITM) At-The-Money (ATM) Out-of-The-Money (OTM) Intrinsic Value versus
    [Show full text]
  • Monte Carlo Strategies in Option Pricing for Sabr Model
    MONTE CARLO STRATEGIES IN OPTION PRICING FOR SABR MODEL Leicheng Yin A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Statistics and Operations Research. Chapel Hill 2015 Approved by: Chuanshu Ji Vidyadhar Kulkarni Nilay Argon Kai Zhang Serhan Ziya c 2015 Leicheng Yin ALL RIGHTS RESERVED ii ABSTRACT LEICHENG YIN: MONTE CARLO STRATEGIES IN OPTION PRICING FOR SABR MODEL (Under the direction of Chuanshu Ji) Option pricing problems have always been a hot topic in mathematical finance. The SABR model is a stochastic volatility model, which attempts to capture the volatility smile in derivatives markets. To price options under SABR model, there are analytical and probability approaches. The probability approach i.e. the Monte Carlo method suffers from computation inefficiency due to high dimensional state spaces. In this work, we adopt the probability approach for pricing options under the SABR model. The novelty of our contribution lies in reducing the dimensionality of Monte Carlo simulation from the high dimensional state space (time series of the underlying asset) to the 2-D or 3-D random vectors (certain summary statistics of the volatility path). iii To Mom and Dad iv ACKNOWLEDGEMENTS First, I would like to thank my advisor, Professor Chuanshu Ji, who gave me great instruction and advice on my research. As my mentor and friend, Chuanshu also offered me generous help to my career and provided me with great advice about life. Studying from and working with him was a precious experience to me.
    [Show full text]
  • Forward and Futures Contracts
    FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Forward and Futures Contracts These notes explore forward and futures contracts, what they are and how they are used. We will learn how to price forward contracts by using arbitrage and replication arguments that are fundamental to derivative pricing. We shall also learn about the similarities and differences between forward and futures markets and the differences between forward and futures markets and prices. We shall also consider how forward and future prices are related to spot market prices. Keywords: Arbitrage, Replication, Hedging, Synthetic, Speculator, Forward Value, Maintainable Margin, Limit Order, Market Order, Stop Order, Back- wardation, Contango, Underlying, Derivative. Reading: You should read Hull chapters 1 (which covers option payoffs as well) and chapters 2 and 5. 1 Background From the 1970s financial markets became riskier with larger swings in interest rates and equity and commodity prices. In response to this increase in risk, financial institutions looked for new ways to reduce the risks they faced. The way found was the development of exchange traded derivative securities. Derivative securities are assets linked to the payments on some underlying security or index of securities. Many derivative securities had been traded over the counter for a long time but it was from this time that volume of trading activity in derivatives grew most rapidly. The most important types of derivatives are futures, options and swaps. An option gives the holder the right to buy or sell the underlying asset at a specified date for a pre-specified price. A future gives the holder the 1 2 FIN-40008 FINANCIAL INSTRUMENTS obligation to buy or sell the underlying asset at a specified date for a pre- specified price.
    [Show full text]
  • What's Price Got to Do with Term Structure?
    What’s Price Got To Do With Term Structure? An Introduction to the Change in Realized Roll Yields: Redefining How Forward Curves Are Measured Contributors: Historically, investors have been drawn to the systematic return opportunities, or beta, of commodities due to their potentially inflation-hedging and Jodie Gunzberg, CFA diversifying properties. However, because contango was a persistent market Vice President, Commodities condition from 2005 to 2011, occurring in 93% of the months during that time, [email protected] roll yield had a negative impact on returns. As a result, it may have seemed to some that the liquidity risk premium had disappeared. Marya Alsati-Morad Associate Director, Commodities However, as discussed in our paper published in September 2013, entitled [email protected] “Identifying Return Opportunities in A Demand-Driven World Economy,” the environment may be changing. Specifically, the world economy may be Peter Tsui shifting from one driven by expansion of supply to one driven by expansion of Director, Index Research & Design demand, which could have a significant impact on commodity performance. [email protected] This impact would be directly related to two hallmarks of a world economy driven by expansion of demand: the increasing persistence of backwardation and the more frequent flipping of term structures. In order to benefit in this changing economic environment, the key is to implement flexibility to keep pace with the quickly changing term structures. To achieve flexibility, there are two primary ways to modify the first-generation ® flagship index, the S&P GSCI . The first method allows an index to select contracts with expirations that are either near- or longer-dated based on the commodity futures’ term structure.
    [Show full text]
  • Term Structure Lattice Models
    Term Structure Models: IEOR E4710 Spring 2005 °c 2005 by Martin Haugh Term Structure Lattice Models 1 The Term-Structure of Interest Rates If a bank lends you money for one year and lends money to someone else for ten years, it is very likely that the rate of interest charged for the one-year loan will di®er from that charged for the ten-year loan. Term-structure theory has as its basis the idea that loans of di®erent maturities should incur di®erent rates of interest. This basis is grounded in reality and allows for a much richer and more realistic theory than that provided by the yield-to-maturity (YTM) framework1. We ¯rst describe some of the basic concepts and notation that we need for studying term-structure models. In these notes we will often assume that there are m compounding periods per year, but it should be clear what changes need to be made for continuous-time models and di®erent compounding conventions. Time can be measured in periods or years, but it should be clear from the context what convention we are using. Spot Rates: Spot rates are the basic interest rates that de¯ne the term structure. De¯ned on an annual basis, the spot rate, st, is the rate of interest charged for lending money from today (t = 0) until time t. In particular, 2 mt this implies that if you lend A dollars for t years today, you will receive A(1 + st=m) dollars when the t years have elapsed.
    [Show full text]
  • Analytical Finance Volume I
    The Mathematics of Equity Derivatives, Markets, Risk and Valuation ANALYTICAL FINANCE VOLUME I JAN R. M. RÖMAN Analytical Finance: Volume I Jan R. M. Röman Analytical Finance: Volume I The Mathematics of Equity Derivatives, Markets, Risk and Valuation Jan R. M. Röman Västerås, Sweden ISBN 978-3-319-34026-5 ISBN 978-3-319-34027-2 (eBook) DOI 10.1007/978-3-319-34027-2 Library of Congress Control Number: 2016956452 © The Editor(s) (if applicable) and The Author(s) 2017 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Cover image © David Tipling Photo Library / Alamy Printed on acid-free paper This Palgrave Macmillan imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland To my soulmate, supporter and love – Jing Fang Preface This book is based upon lecture notes, used and developed for the course Analytical Finance I at Mälardalen University in Sweden.
    [Show full text]
  • Radial Basis Function Methods for Pricing Multi-Asset Options
    IT Licentiate theses 2016-001 Radial Basis Function Methods for Pricing Multi-Asset Options VICTOR SHCHERBAKOV UPPSALA UNIVERSITY Department of Information Technology Radial Basis Function Methods for Pricing Multi-Asset Options Victor Shcherbakov [email protected] January 2016 Division of Scientific Computing Department of Information Technology Uppsala University Box 337 SE-751 05 Uppsala Sweden http://www.it.uu.se/ Dissertation for the degree of Licentiate of Philosophy in Scientific Computing with specialization in Numerical Analysis c Victor Shcherbakov 2016 ISSN 1404-5117 Printed by the Department of Information Technology, Uppsala University, Sweden Abstract The price of an option can under some assumptions be determ- ined by the solution of the Black{Scholes partial differential equation. Often options are issued on more than one asset. In this case it turns out that the option price is governed by the multi-dimensional version of the Black{Scholes equation. Op- tions issued on a large number of underlying assets, such as in- dex options, are of particular interest, but pricing such options is a challenge due to the \curse of dimensionality". The multi- dimensional PDE turn out to be computationally expensive to solve accurately even in quite a low number of dimensions. In this thesis we develop a radial basis function partition of unity method for pricing multi-asset options up to moderately high dimensions. Our approach requires the use of a lower number of node points per dimension than other standard PDE methods, such as finite differences or finite elements, thanks to a high or- der convergence rate. Our method shows good results for both European style options and American style options, which allow early exercise.
    [Show full text]
  • Making the Best of Best-Of Tristan Guillaume
    Making the best of best-of Tristan Guillaume To cite this version: Tristan Guillaume. Making the best of best-of. Review of Derivatives Research, Springer Verlag, 2008, 11, pp.1-39. hal-00924256 HAL Id: hal-00924256 https://hal.archives-ouvertes.fr/hal-00924256 Submitted on 6 Jan 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MAKING THE BEST OF BEST-OF published in Review of Derivatives Research, 2008, (11):1-39 Tristan Guillaume Université de Cergy-Pontoise, Laboratoire Thema 33 boulevard du port, 95011 Cergy-Pontoise Cedex, France [email protected] Tel. : + 33 6 12 22 45 88 Fax:+33134256233 1 Abstract This paper extends the analytical valuation of options on the maximum or the minimum of several risky assets in several directions. The first extension consists in including more assets in the payoff and making the latter more flexible by adding knock-in and knock-out provisions. The second extension consists in pricing these contracts in a multivariate jump-diffusion framework allowing for a stochastic two-factor term structure of interest rates. In both cases, explicit formulae are provided which yield prices quasi instantaneously and with utmost precision.
    [Show full text]