Alexander–Beck Modules Detect the Unknot
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Homotopy Types of Free Racks and Quandles
The homotopy types of free racks and quandles Tyler Lawson and Markus Szymik June 2021 Abstract. We initiate the homotopical study of racks and quandles, two algebraic structures that govern knot theory and related braided structures in algebra and geometry. We prove analogs of Milnor’s theorem on free groups for these theories and their pointed variants, identifying the homotopy types of the free racks and free quandles on spaces of generators. These results allow us to complete the stable classification of racks and quandles by identifying the ring spectra that model their stable homotopy theories. As an application, we show that the stable homotopy of a knot quandle is, in general, more complicated than what any Wirtinger presentation coming from a diagram predicts. 1 Introduction Racks and quandles form two algebraic theories that are closely related to groups and symmetry. A rack R has a binary operation B such that the left-multiplications s 7! r Bs are automorphism of R for all elements r in R. This means that racks bring their own symmetries. All natural sym- metries, however, are generated by the canonical automorphism r 7! r B r (see [45, Thm. 5.4]). A quandle is a rack for which the canonical automorphism is the identity. Every group defines −1 a quandle via conjugation g B h = ghg , and so does every subset closed under conjugation. The most prominent applications of these algebraic concepts so far are to the classification of knots, first phrased in terms of quandles by Joyce [28, Cor. 16.3] and Matveev [35, Thm. -
An Introduction to Knot Theory and the Knot Group
AN INTRODUCTION TO KNOT THEORY AND THE KNOT GROUP LARSEN LINOV Abstract. This paper for the University of Chicago Math REU is an expos- itory introduction to knot theory. In the first section, definitions are given for knots and for fundamental concepts and examples in knot theory, and motivation is given for the second section. The second section applies the fun- damental group from algebraic topology to knots as a means to approach the basic problem of knot theory, and several important examples are given as well as a general method of computation for knot diagrams. This paper assumes knowledge in basic algebraic and general topology as well as group theory. Contents 1. Knots and Links 1 1.1. Examples of Knots 2 1.2. Links 3 1.3. Knot Invariants 4 2. Knot Groups and the Wirtinger Presentation 5 2.1. Preliminary Examples 5 2.2. The Wirtinger Presentation 6 2.3. Knot Groups for Torus Knots 9 Acknowledgements 10 References 10 1. Knots and Links We open with a definition: Definition 1.1. A knot is an embedding of the circle S1 in R3. The intuitive meaning behind a knot can be directly discerned from its name, as can the motivation for the concept. A mathematical knot is just like a knot of string in the real world, except that it has no thickness, is fixed in space, and most importantly forms a closed loop, without any loose ends. For mathematical con- venience, R3 in the definition is often replaced with its one-point compactification S3. Of course, knots in the real world are not fixed in space, and there is no interesting difference between, say, two knots that differ only by a translation. -
Categorical Models of Type Theory
Categorical models of type theory Michael Shulman February 28, 2012 1 / 43 Theories and models Example The theory of a group asserts an identity e, products x · y and inverses x−1 for any x; y, and equalities x · (y · z) = (x · y) · z and x · e = x = e · x and x · x−1 = e. I A model of this theory (in sets) is a particularparticular group, like Z or S3. I A model in spaces is a topological group. I A model in manifolds is a Lie group. I ... 3 / 43 Group objects in categories Definition A group object in a category with finite products is an object G with morphisms e : 1 ! G, m : G × G ! G, and i : G ! G, such that the following diagrams commute. m×1 (e;1) (1;e) G × G × G / G × G / G × G o G F G FF xx 1×m m FF xx FF m xx 1 F x 1 / F# x{ x G × G m G G ! / e / G 1 GO ∆ m G × G / G × G 1×i 4 / 43 Categorical semantics Categorical semantics is a general procedure to go from 1. the theory of a group to 2. the notion of group object in a category. A group object in a category is a model of the theory of a group. Then, anything we can prove formally in the theory of a group will be valid for group objects in any category. 5 / 43 Doctrines For each kind of type theory there is a corresponding kind of structured category in which we consider models. -
Universality of Multiplicative Infinite Loop Space Machines
UNIVERSALITY OF MULTIPLICATIVE INFINITE LOOP SPACE MACHINES DAVID GEPNER, MORITZ GROTH AND THOMAS NIKOLAUS Abstract. We establish a canonical and unique tensor product for commutative monoids and groups in an ∞-category C which generalizes the ordinary tensor product of abelian groups. Using this tensor product we show that En-(semi)ring objects in C give rise to En-ring spectrum objects in C. In the case that C is the ∞-category of spaces this produces a multiplicative infinite loop space machine which can be applied to the algebraic K-theory of rings and ring spectra. The main tool we use to establish these results is the theory of smashing localizations of presentable ∞-categories. In particular, we identify preadditive and additive ∞-categories as the local objects for certain smashing localizations. A central theme is the stability of algebraic structures under basechange; for example, we show Ring(D ⊗ C) ≃ Ring(D) ⊗ C. Lastly, we also consider these algebraic structures from the perspective of Lawvere algebraic theories in ∞-categories. Contents 0. Introduction 1 1. ∞-categories of commutative monoids and groups 4 2. Preadditive and additive ∞-categories 6 3. Smashing localizations 8 4. Commutative monoids and groups as smashing localizations 11 5. Canonical symmetric monoidal structures 13 6. More functoriality 15 7. ∞-categories of semirings and rings 17 8. Multiplicative infinite loop space theory 19 Appendix A. Comonoids 23 Appendix B. Algebraic theories and monadic functors 23 References 26 0. Introduction The Grothendieck group K0(M) of a commutative monoid M, also known as the group completion, is the universal abelian group which receives a monoid map from M. -
Seminar on Homogeneous and Symmetric Spaces
PROGRAMME SEMINAR ON HOMOGENEOUS AND SYMMETRIC SPACES GK1821 Programme Introduction1 Basic Definitions2 Talks5 1. Lie Groups6 2. Quotients6 3. Grassmannians6 4. Riemannian Symmetric Spaces7 5. The Adjoint Action8 6. Algebraic Groups9 7. Reductive Linear Algebraic Groups9 8. Quotients by Algebraic Groups9 9. Compactifications 10 10. Uniformization 11 11. Dirac Operators on Homogeneous Spaces 11 12. Period Domains 12 13. Hermitian Symmetric Spaces 12 14. Shimura Varieties 12 15. Affine Grassmannians 12 References 13 Introduction Groups arise as symmetries of objects and we study groups by studying their action as symmetries on geometric objects, such as vector spaces, manifolds and more general topological spaces. One particularly nice type of such geometric objects are homogeneous spaces. For example, the general linear group GLn and the symmetric group Sn arise naturally in many contexts and can be understood from their actions on many different spaces. Already for GLn there are several incarnations: as finite group GLn(Fq), as Lie group GLn(R) or GLn(C), as algebraic group R 7! GLn(R). As first approximation, we should think of homogeneous spaces as topological coset spaces G=H where H is a subgroup of G. A symmetric space is then a homogeneous space with the property that H is the fixed set of an involution on G. There are other, better and more precise characterizations that we’ll use. For example, a Riemannian manifold which is a symmetric space can also be characterized by a local symmetry condition. Any space with symmetries, i.e. a G-action, decomposes into its orbits, which are each homogeneous spaces. -
Math 395: Category Theory Northwestern University, Lecture Notes
Math 395: Category Theory Northwestern University, Lecture Notes Written by Santiago Can˜ez These are lecture notes for an undergraduate seminar covering Category Theory, taught by the author at Northwestern University. The book we roughly follow is “Category Theory in Context” by Emily Riehl. These notes outline the specific approach we’re taking in terms the order in which topics are presented and what from the book we actually emphasize. We also include things we look at in class which aren’t in the book, but otherwise various standard definitions and examples are left to the book. Watch out for typos! Comments and suggestions are welcome. Contents Introduction to Categories 1 Special Morphisms, Products 3 Coproducts, Opposite Categories 7 Functors, Fullness and Faithfulness 9 Coproduct Examples, Concreteness 12 Natural Isomorphisms, Representability 14 More Representable Examples 17 Equivalences between Categories 19 Yoneda Lemma, Functors as Objects 21 Equalizers and Coequalizers 25 Some Functor Properties, An Equivalence Example 28 Segal’s Category, Coequalizer Examples 29 Limits and Colimits 29 More on Limits/Colimits 29 More Limit/Colimit Examples 30 Continuous Functors, Adjoints 30 Limits as Equalizers, Sheaves 30 Fun with Squares, Pullback Examples 30 More Adjoint Examples 30 Stone-Cech 30 Group and Monoid Objects 30 Monads 30 Algebras 30 Ultrafilters 30 Introduction to Categories Category theory provides a framework through which we can relate a construction/fact in one area of mathematics to a construction/fact in another. The goal is an ultimate form of abstraction, where we can truly single out what about a given problem is specific to that problem, and what is a reflection of a more general phenomenom which appears elsewhere. -
CHAPTER IV.3. FORMAL GROUPS and LIE ALGEBRAS Contents
CHAPTER IV.3. FORMAL GROUPS AND LIE ALGEBRAS Contents Introduction 2 0.1. Why does the tangent space of a Lie group have the structure of a Lie algebra? 2 0.2. Formal moduli problems and Lie algebras 3 0.3. Inf-affineness 4 0.4. The functor of inf-spectrum and the exponential construction 5 0.5. What else is done in this chapter? 6 1. Formal moduli problems and co-algebras 7 1.1. Co-algebras associated to formal moduli problems 7 1.2. The monoidal structure 10 1.3. The functor of inf-spectrum 11 1.4. An example: vector prestacks 13 2. Inf-affineness 16 2.1. The notion of inf-affineness 16 2.2. Inf-affineness and inf-spectrum 17 2.3. A criterion for being inf-affine 18 3. From formal groups to Lie algebras 20 3.1. The exponential construction 20 3.2. Corollaries of Theorem 3.1.4 20 3.3. Lie algebras and formal moduli problems 22 3.4. The ind-nilpotent version 24 3.5. Base change 24 3.6. Extension to prestacks 25 3.7. An example: split square-zero extensions 27 4. Proof of Theorem 3.1.4 30 4.1. Step 1 30 4.2. Step 2 30 4.3. Step 3 32 5. Modules over formal groups and Lie algebras 33 5.1. Modules over formal groups 33 5.2. Relation to nil-isomorphisms 35 5.3. Compatibility with colimits 36 6. Actions of formal groups on prestacks 37 6.1. Action of groups vs. Lie algebras 37 6.2. -
Altering the Trefoil Knot
Altering the Trefoil Knot Spencer Shortt Georgia College December 19, 2018 Abstract A mathematical knot K is defined to be a topological imbedding of the circle into the 3-dimensional Euclidean space. Conceptually, a knot can be pictured as knotted shoe lace with both ends glued together. Two knots are said to be equivalent if they can be continuously deformed into each other. Different knots have been tabulated throughout history, and there are many techniques used to show if two knots are equivalent or not. The knot group is defined to be the fundamental group of the knot complement in the 3-dimensional Euclidean space. It is known that equivalent knots have isomorphic knot groups, although the converse is not necessarily true. This research investigates how piercing the space with a line changes the trefoil knot group based on different positions of the line with respect to the knot. This study draws comparisons between the fundamental groups of the altered knot complement space and the complement of the trefoil knot linked with the unknot. 1 Contents 1 Introduction to Concepts in Knot Theory 3 1.1 What is a Knot? . .3 1.2 Rolfsen Knot Tables . .4 1.3 Links . .5 1.4 Knot Composition . .6 1.5 Unknotting Number . .6 2 Relevant Mathematics 7 2.1 Continuity, Homeomorphisms, and Topological Imbeddings . .7 2.2 Paths and Path Homotopy . .7 2.3 Product Operation . .8 2.4 Fundamental Groups . .9 2.5 Induced Homomorphisms . .9 2.6 Deformation Retracts . 10 2.7 Generators . 10 2.8 The Seifert-van Kampen Theorem . -
THE 2-GENERALIZED KNOT GROUP DETERMINES the KNOT 1. the 2
THE 2-GENERALIZED KNOT GROUP DETERMINES THE KNOT SAM NELSON AND WALTER D. NEUMANN To the memory of Xiao-Song Lin Abstract. Generalized knot groups Gn(K) were introduced independently by Kelly (1991) and Wada (1992). We prove that G2(K) determines the unoriented knot type and sketch a proof of the same for Gn(K) for n > 2. 1. The 2{generalized knot group Generalized knot groups were introduced independently by Kelly [5] and Wada [10]. Wada arrived at these group invariants of knots by searching for homomor- phisms of the braid group Bn into Aut(Fn), while Kelly's work was related to knot racks or quandles [1, 4] and Wirtinger-type presentations. The Wirtinger presentation of a knot group expresses the group by generators x1; : : : ; xk and relators r1; : : : ; rk−1, in which each ri has the form ±1 ∓1 −1 xj xixj xi+1 for some map i 7! j of f1; : : : ; kg to itself and map f1; : : : ; kg ! {±1g. The group Gn(K) is defined by replacing each ri by ±n ∓n −1 xj xixj xi+1 : In particular, G1(K) is the usual knot group. In [9], responding to a preprint of Xiao-Song Lin and the first author [6], Tuffley showed that Gn(K) distinguishes the square and granny knots. Gn(K) cannot dis- tinguish a knot from its mirror image. But G2(K) is, in fact, a complete unoriented knot invariant. Theorem 1.1. The 2{generalized knot group G2(K) determines the knot K up to reflection. We will assume K is a non-trivial knot in the following proof, although it is not essential. -
Knot Colouring Polynomials
Pacific Journal of Mathematics KNOT COLOURING POLYNOMIALS MICHAEL EISERMANN Volume 231 No. 2 June 2007 PACIFIC JOURNAL OF MATHEMATICS Vol. 231, No. 2, 2007 dx.doi.org/10.2140/pjm.2007.231.305 KNOT COLOURING POLYNOMIALS MICHAEL EISERMANN We introduce a natural extension of the colouring numbers of knots, called colouring polynomials, and study their relationship to Yang–Baxter invari- ants and quandle 2-cocycle invariants. For a knot K in the 3-sphere, let πK be the fundamental group of the 3 knot complement S r K, and let mK ; lK 2 πK be a meridian-longitude pair. Given a finite group G and an element x 2 G we consider the set of representations ρ V πK ! G with ρ.mK / D x and define the colouring poly- P nomial as ρ ρ.lK /. The resulting invariant maps knots to the group ring ZG. It is multiplicative with respect to connected sum and equivariant with respect to symmetry operations of knots. Examples are given to show that colouring polynomials distinguish knots for which other invariants fail, in particular they can distinguish knots from their mutants, obverses, inverses, or reverses. We prove that every quandle 2-cocycle state-sum invariant of knots is a specialization of some knot colouring polynomial. This provides a complete topological interpretation of these invariants in terms of the knot group and its peripheral system. Furthermore, we show that the colouring polynomial can be presented as a Yang–Baxter invariant, i.e. as the trace of some linear braid group representation. This entails that Yang–Baxter invariants can detect noninversible and nonreversible knots. -
Lectures Notes on Knot Theory
Lectures notes on knot theory Andrew Berger (instructor Chris Gerig) Spring 2016 1 Contents 1 Disclaimer 4 2 1/19/16: Introduction + Motivation 5 3 1/21/16: 2nd class 6 3.1 Logistical things . 6 3.2 Minimal introduction to point-set topology . 6 3.3 Equivalence of knots . 7 3.4 Reidemeister moves . 7 4 1/26/16: recap of the last lecture 10 4.1 Recap of last lecture . 10 4.2 Intro to knot complement . 10 4.3 Hard Unknots . 10 5 1/28/16 12 5.1 Logistical things . 12 5.2 Question from last time . 12 5.3 Connect sum operation, knot cancelling, prime knots . 12 6 2/2/16 14 6.1 Orientations . 14 6.2 Linking number . 14 7 2/4/16 15 7.1 Logistical things . 15 7.2 Seifert Surfaces . 15 7.3 Intro to research . 16 8 2/9/16 { The trefoil is knotted 17 8.1 The trefoil is not the unknot . 17 8.2 Braids . 17 8.2.1 The braid group . 17 9 2/11: Coloring 18 9.1 Logistical happenings . 18 9.2 (Tri)Colorings . 18 10 2/16: π1 19 10.1 Logistical things . 19 10.2 Crash course on the fundamental group . 19 11 2/18: Wirtinger presentation 21 2 12 2/23: POLYNOMIALS 22 12.1 Kauffman bracket polynomial . 22 12.2 Provoked questions . 23 13 2/25 24 13.1 Axioms of the Jones polynomial . 24 13.2 Uniqueness of Jones polynomial . 24 13.3 Just how sensitive is the Jones polynomial . -
Category Theory Course
Category Theory Course John Baez September 3, 2019 1 Contents 1 Category Theory: 4 1.1 Definition of a Category....................... 5 1.1.1 Categories of mathematical objects............. 5 1.1.2 Categories as mathematical objects............ 6 1.2 Doing Mathematics inside a Category............... 10 1.3 Limits and Colimits.......................... 11 1.3.1 Products............................ 11 1.3.2 Coproducts.......................... 14 1.4 General Limits and Colimits..................... 15 2 Equalizers, Coequalizers, Pullbacks, and Pushouts (Week 3) 16 2.1 Equalizers............................... 16 2.2 Coequalizers.............................. 18 2.3 Pullbacks................................ 19 2.4 Pullbacks and Pushouts....................... 20 2.5 Limits for all finite diagrams.................... 21 3 Week 4 22 3.1 Mathematics Between Categories.................. 22 3.2 Natural Transformations....................... 25 4 Maps Between Categories 28 4.1 Natural Transformations....................... 28 4.1.1 Examples of natural transformations........... 28 4.2 Equivalence of Categories...................... 28 4.3 Adjunctions.............................. 29 4.3.1 What are adjunctions?.................... 29 4.3.2 Examples of Adjunctions.................. 30 4.3.3 Diagonal Functor....................... 31 5 Diagrams in a Category as Functors 33 5.1 Units and Counits of Adjunctions................. 39 6 Cartesian Closed Categories 40 6.1 Evaluation and Coevaluation in Cartesian Closed Categories. 41 6.1.1 Internalizing Composition................. 42 6.2 Elements................................ 43 7 Week 9 43 7.1 Subobjects............................... 46 8 Symmetric Monoidal Categories 50 8.1 Guest lecture by Christina Osborne................ 50 8.1.1 What is a Monoidal Category?............... 50 8.1.2 Going back to the definition of a symmetric monoidal category.............................. 53 2 9 Week 10 54 9.1 The subobject classifier in Graph.................