Biology 2005-2011 Scholarship
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"Philosciidae" (Crustacea: Isopoda: Oniscidea)
Org. Divers. Evol. 1, Electr. Suppl. 4: 1 -85 (2001) © Gesellschaft für Biologische Systematik http://www.senckenberg.uni-frankfurt.de/odes/01-04.htm Phylogeny and Biogeography of South American Crinocheta, traditionally placed in the family "Philosciidae" (Crustacea: Isopoda: Oniscidea) Andreas Leistikow1 Universität Bielefeld, Abteilung für Zoomorphologie und Systematik Received 15 February 2000 . Accepted 9 August 2000. Abstract South America is diverse in climatic and thus vegetational zonation, and even the uniformly looking tropical rain forests are a mosaic of different habitats depending on the soils, the regional climate and also the geological history. An important part of the nutrient webs of the rain forests is formed by the terrestrial Isopoda, or Oniscidea, the only truly terrestrial taxon within the Crustacea. They are important, because they participate in soil formation by breaking up leaf litter when foraging on the fungi and bacteria growing on them. After a century of research on this interesting taxon, a revision of the terrestrial isopod taxa from South America and some of the Antillean Islands, which are traditionally placed in the family Philosciidae, was performed in the last years to establish monophyletic genera. Within this study, the phylogenetic relationships of these genera are elucidated in the light of phylogenetic systematics. Several new taxa are recognized, which are partially neotropical, partially also found on other continents, particularly the old Gondwanian fragments. The monophyla are checked for their distributional patterns which are compared with those patterns from other taxa from South America and some correspondence was found. The distributional patterns are analysed with respect to the evolution of the Oniscidea and also with respect to the geological history of their habitats. -
Role of Arthropods in Maintaining Soil Fertility
Agriculture 2013, 3, 629-659; doi:10.3390/agriculture3040629 OPEN ACCESS agriculture ISSN 2077-0472 www.mdpi.com/journal/agriculture Review Role of Arthropods in Maintaining Soil Fertility Thomas W. Culliney Plant Epidemiology and Risk Analysis Laboratory, Plant Protection and Quarantine, Center for Plant Health Science and Technology, USDA-APHIS, 1730 Varsity Drive, Suite 300, Raleigh, NC 27606, USA; E-Mail: [email protected]; Tel.: +1-919-855-7506; Fax: +1-919-855-7595 Received: 6 August 2013; in revised form: 31 August 2013 / Accepted: 3 September 2013 / Published: 25 September 2013 Abstract: In terms of species richness, arthropods may represent as much as 85% of the soil fauna. They comprise a large proportion of the meso- and macrofauna of the soil. Within the litter/soil system, five groups are chiefly represented: Isopoda, Myriapoda, Insecta, Acari, and Collembola, the latter two being by far the most abundant and diverse. Arthropods function on two of the three broad levels of organization of the soil food web: they are plant litter transformers or ecosystem engineers. Litter transformers fragment, or comminute, and humidify ingested plant debris, which is deposited in feces for further decomposition by micro-organisms, and foster the growth and dispersal of microbial populations. Large quantities of annual litter input may be processed (e.g., up to 60% by termites). The comminuted plant matter in feces presents an increased surface area to attack by micro-organisms, which, through the process of mineralization, convert its organic nutrients into simpler, inorganic compounds available to plants. Ecosystem engineers alter soil structure, mineral and organic matter composition, and hydrology. -
Isopod Distribution and Climate Change 25 Doi: 10.3897/Zookeys.801.23533 REVIEW ARTICLE Launched to Accelerate Biodiversity Research
A peer-reviewed open-access journal ZooKeys 801: 25–61 (2018) Isopod distribution and climate change 25 doi: 10.3897/zookeys.801.23533 REVIEW ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Isopod distribution and climate change Spyros Sfenthourakis1, Elisabeth Hornung2 1 Department of Biological Sciences, University Campus, University of Cyprus, Panepistimiou Ave. 1, 2109 Aglantzia, Nicosia, Cyprus 2 Department of Ecology, University of Veterinary Medicine, 1077 Budapest, Rot- tenbiller str. 50, Hungary Corresponding author: Spyros Sfenthourakis ([email protected]) Academic editor: S. Taiti | Received 10 January 2018 | Accepted 9 May 2018 | Published 3 December 2018 http://zoobank.org/0555FB61-B849-48C3-A06A-29A94D6A141F Citation: Sfenthourakis S, Hornung E (2018) Isopod distribution and climate change. In: Hornung E, Taiti S, Szlavecz K (Eds) Isopods in a Changing World. ZooKeys 801: 25–61. https://doi.org/10.3897/zookeys.801.23533 Abstract The unique properties of terrestrial isopods regarding responses to limiting factors such as drought and temperature have led to interesting distributional patterns along climatic and other environmental gradi- ents at both species and community level. This paper will focus on the exploration of isopod distributions in evaluating climate change effects on biodiversity at different scales, geographical regions, and environ- ments, in view of isopods’ tolerances to environmental factors, mostly humidity and temperature. Isopod distribution is tightly connected to available habitats and habitat features at a fine spatial scale, even though different species may exhibit a variety of responses to environmental heterogeneity, reflecting the large interspecific variation within the group. Furthermore, isopod distributions show some notable deviations from common global patterns, mainly as a result of their ecological features and evolutionary origins. -
Research Araştırma
Anadolu Tarım Bilim. Derg. , 2010,25(S -2):1 31 -136 Research Anadolu J. Agric. Sci., 2010,25(S-2):131-136 Araştırma IMPACT OF SOIL QUALITY O THE DISTRIBUTIO OF TERRESTRIAL ISOPODS I SOME TUISIA WETLADS H. KHEMAISSIA1, * C. SOUTY-GROSSET 2 K. ASRI-AMMAR 1 1Unité de Recherche de Biologie Animale et Systématique Evolutive – Faculté des Sciences de Tunis – Campus Universitaire, 2092 El Manar II – Tunisie 2Laboratoire Écologie, Évolution, Symbiose UMR CRS 6556 - Université de Poitiers – France *e-mail: hajer_kh@yahoo Abstract: No studies in Tunisia have focusing on an analysis of oniscidean diversity in wetlands. To improve our knowledge on the species occupying this type of habitat, field work was conducted during spring 2008 in 18 wetlands (3 dams, 4 hill reservoirs, 7 lagoons, 2 sebkhas and 2 rivers) located in the north of the Tunisian dorsal. Isopods were collected by hand each time with respect to the same sampling effort. At the laboratory, Isopods are identified, counted and sexed. Physico- chemical analyses were performed from soil sampled in each site. The results reveal the presence of 19 terrestrial isopods species belonging to 10 families. Chaetophiloscia cellaria and Porcellio laevis are the most abundant species; their relative abundance is respectively equal to 29.5 and 23.4 %. The species richness varied from 8 in both lagoons of Ghar El Meleh and Bizerte to 1 in some hill reservoirs. Chaetophiloscia cellaria, Leptotrichus panzeri, Porcellio variabilis and Porcellio laevis tolerate changes in salinity up to 35.4 g/kg, whereas others, such as Armadillidium sulcatum and Armadillo officinalis , were collected in stations where soil salinity does not exceed 8.5 g/kg. -
Comparative Studies on the Social Behaviour of the Desert Isopod Hemilepistus Reaumuri and of a Porcel/Io Species
I .. Symp. zool. Soc. Land. (1984) No. 53, 423-453 Comparative Studies on the Social Behaviour of the Desert Isopod Hemilepistus reaumuri and of a Porcel/io Species K. E. L1NSENMAIR Zoologisches Institut, Universitiit Wurzburg, Wurzburg, West Germany SYNOPSIS Behavioural adaptations have made the desert isopod Hemilepistus reaumuri the most successful herbivore and detritivore of the macrofauna of many arid areas in North Africa and Asia Minor. For survival and reproduction Hemilepistus is dependent on burrows. New burrows can only be dug during spring. With the time-consuming digging of a burrow, Hemilepistus has only made the first step towards solving its ecological problems. The burrows are vital and have to be continuously defended against competitors. This requirement is met by co-operation of individuals within the framework of a highly developed social behaviour. In spring adults form monogamous pairs in which partners recognize each other individually and later form, with their progeny, strictly closed family communities. Hemilepistus is compared with a Porcellio' sp. which has developed, convergently, a social behaviour which resembles that of Hemilepistus in many respects, but differs essentially in some aspects, partly reflecting differences in ecological requirements. This and a few other Porcellio species demonstrate some possible steps in the evolution of the social behaviour of Hemilepistus. The female Hemilepistus is-in contrast to Porcellio sp. - semelparous and the selective advantages of monogamy in its environment are not difficult to recognize. This chapter discusses how this mating system could have evolved and especially why monogamous behaviour is also the best method for the Hemilepistus male to maximize its reproductive success. -
The Edge Regions in Tergites of the Desert Isopod Hemilepistus Reaumuri: the Transition from Hard Cuticle to Fexible Arthrodial Membrane
Applied Physics A (2020) 126:793 https://doi.org/10.1007/s00339-020-03961-0 T.C. BIOLOGICAL AND BIOMIMETIC MATERIALS The edge regions in tergites of the desert isopod Hemilepistus reaumuri: the transition from hard cuticle to fexible arthrodial membrane Franziska Ernst1 · Helge‑Otto Fabritius2,3 · Erika Griesshaber4 · Wolfgang W. Schmahl4 · Andreas Ziegler1 Received: 26 June 2020 / Accepted: 29 August 2020 © The Author(s) 2020 Abstract The arthrodial membrane is a thin and fexible type of cuticle that inserts at the edge regions of neighbouring rigid skeletal elements creating a fexible connection. In the present study, we analyzed the structure, mineral composition, calcite organi- zation and local stifness and hardness of edge regions that form transitions to the arthrodial membranes in the tergites of the desert isopod Hemilepistus reaumuri. For the transitions to the arthrodial membrane, the results show an increase in the thickness of the epicuticle at cost of the distal exocuticle and a calcite layer, an increase in the ratio of phosphorus to calcium and a decrease in the local mechanical properties. The posterior edge region contains an unusually large stack of unidirectionally oriented parallel fbrils projecting to the lateral sides. At the edge, it turns down into a long ventral cuticle overlapping an anterior part of the neighbouring tergite. It forms a thin arched gap between the tergites that can help reducing water loss through the arthrodial membrane and protects the arthrodial membrane upon predation. A thick ventral ridge near the transition to the arthrodial membrane carrying bristles can prevent sand grains from access to the arthrodial membrane. -
The Terrestrial Isopod Microbiome: an All-In-One Toolbox for Animal–Microbe Interactions of Ecological Relevance
The Terrestrial Isopod Microbiome: An All-in-One Toolbox for Animal–Microbe Interactions of Ecological Relevance The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Bouchon, Didier, Martin Zimmer, and Jessica Dittmer. 2016. “The Terrestrial Isopod Microbiome: An All-in-One Toolbox for Animal–Microbe Interactions of Ecological Relevance.” Frontiers in Microbiology 7 (1): 1472. doi:10.3389/fmicb.2016.01472. http:// dx.doi.org/10.3389/fmicb.2016.01472. Published Version doi:10.3389/fmicb.2016.01472 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:29408382 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA fmicb-07-01472 September 21, 2016 Time: 14:13 # 1 REVIEW published: 23 September 2016 doi: 10.3389/fmicb.2016.01472 The Terrestrial Isopod Microbiome: An All-in-One Toolbox for Animal–Microbe Interactions of Ecological Relevance Didier Bouchon1*, Martin Zimmer2 and Jessica Dittmer3 1 UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France, 2 Leibniz Center for Tropical Marine Ecology, Bremen, Germany, 3 Rowland Institute at Harvard, Harvard University, Cambridge, MA, USA Bacterial symbionts represent essential drivers of arthropod ecology and evolution, influencing host traits such as nutrition, reproduction, immunity, and speciation. However, the majority of work on arthropod microbiota has been conducted in insects and more studies in non-model species across different ecological niches will be needed to complete our understanding of host–microbiota interactions. -
Duffy 2010 Encyclopedia of Animal Behavior-1.Pdf
This article was originally published in the Encyclopedia of Animal Behavior published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Duffy J.E. (2010) Crustacean Social Evolution. In: Breed M.D. and Moore J., (eds.) Encyclopedia of Animal Behavior, volume 1, pp. 421-429 Oxford: Academic Press. © 2010 Elsevier Ltd. All rights reserved. Author's personal copy Crustacean Social Evolution J. E. Duffy, Virginia Institute of Marine Science, Gloucester Point, VA, USA ã 2010 Elsevier Ltd. All rights reserved. Introduction shed periodically during growth. Each of the segments in the primitive ancestral crustacean body bore a pair of The Crustacea represent one of the most spectacular appendages, which have been modified during the evolu- evolutionary radiations in the animal kingdom, whether tion of the various crustacean groups into a wide range of measured by species richness or diversity in morphology structures used in feeding, locomotion, sensation, and or lifestyles. Its members range from microscopic mites of communication. -
Behavioral and Reproductive Strategies of Porcellio Species (Oniscidea) in Tunisian Pre-Desert Ecosystems
DOI: 10.5772/intechopen.76191 ProvisionalChapter chapter 3 Behavioral and Reproductive Strategies of Porcellio Species (Oniscidea) in Tunisian Pre-Desert Ecosystems LamiaLamia Medini-Bouaziz Medini-Bouaziz Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.76191 Abstract Oniscids inhabiting xeric habitats are of particular interest because these habitats may be one of the important agents for desert soil fertility. Although numerous studies have examined the relationship between the environment and population ecology in wood- lice that live in mesic habitats, very little is known about these desert species. Tunisia is known for its arid regions south of the Tunisian Dorsal, habitats in which several species of terrestrial isopods are well adapted. Porcellio is the most widely represented within these habitats: their species richness reaches eight in arid bioclimatic stage. The most widespread of the Porcellio is P. buddelundi, and the least widespread is P. albicornis. Behavioral and reproductive studies carried out in Zarat and Matmata on the two spe- cies P. albinus and P. buddelundi showed that the xeric Porcellio species are mainly active at night and they shelter from the extreme heat and dryness of their habitats either in burrows they dig or by vertical migration. The reproductive pattern is seasonal with two breeding seasons. Life history traits allow P. buddelundi to be an r-strategist and P. albinus a k-strategist. The latter displays a fairly developed social behavior, which allowed him to be the most evolved of Porcellio. Keywords: terrestrial isopods, xeric species, arid environment, reproductive traits, behavior, abiotic factors 1. -
Amphibious Shelter-Builder Oniscidea Species from the New World With
RESEARCH ARTICLE Amphibious Shelter-Builder Oniscidea Species from the New World with Description of a New Subfamily, a New Genus and a New Species from Brazilian Cave (Isopoda, Synocheta, Styloniscidae) Leila A. Souza1☯*, Rodrigo L. Ferreira2☯, André R. Senna3☯ 1 Universidade Estadual do Ceará (UECE), Campus do Itaperi, Instituto Superior de Ciências Biomédicas, Laboratório de Carcinicultura/LACAR, Fortaleza, CE, Brasil, 2 Universidade Federal de Lavras (UFLA), Departamento de Biologia, Setor de Zoologia, Laboratório de Ecologia Subterrânea, Lavras, MG, Brasil, 3 Universidade Federal da Bahia (UFBA), Instituto de Biologia, Laboratório de Invertebrados Marinhos: Crustacea, Cnidaria & Fauna Associada (LABIMAR), Salvador, BA, Brasil ☯ These authors contributed equally to this work. OPEN ACCESS * [email protected] Citation: Souza LA, Ferreira RL, Senna AR (2015) Amphibious Shelter-Builder Oniscidea Species from the New World with Description of a New Subfamily, a Abstract New Genus and a New Species from Brazilian Cave (Isopoda, Synocheta, Styloniscidae). PLoS ONE 10 The new subfamily Iuiuniscinae, Styloniscidae, is erected for the new genus Iuiuniscus and (5): e0115021. doi:10.1371/journal.pone.0115021 the new species I. iuiuensis, which is described from cave of the State of Bahia, Northeast- Academic Editor: Sebastien Duperron, Université ern Brazil. A special ecological character is shown here for the first time for a New World Pierre et Marie Curie, FRANCE Oniscidea: the construction of mud shelters. An introduction addressing the systematics of Received: May 22, 2014 Synocheta with emphasis on Styloniscidae Vandel, 1952 is provided, as well as general Accepted: November 17, 2014 comments about the dependence of water in some Oniscidea and ecological traits of am- phibious Synocheta. -
Fine-Scale Population Structure Analysis in Armadillidium Vulgare (Isopoda: Oniscidea) Reveals Strong Female Philopatry
Fine-scale population structure analysis in Armadillidium vulgare (Isopoda: Oniscidea) reveals strong female philopatry Sylvine Durand, Frédéric Grandjean, Isabelle Giraud, Richard Cordaux, Sophie Beltran- Bech*, Nicolas Bech* UMR CNRS 7267 ; Laboratoire Écologie and Biologie des Interactions ; équipe Écologie, Évolution, Symbiose ; Bâtiment B8-B35. 5 rue Albert Turpain TSA 51106, 86073 POITIERS CEDEX 9, France. * co-last authors. These authors have contributed equally to this study. Corresponding author: Sylvine Durand ([email protected]) Abstract In the last decades, dispersal studies have benefited from the use of molecular markers for detecting patterns differing between categories of individuals and have highlighted sex-biased dispersal in several species. To explain this phenomenon, several hypotheses implying mating systems, intrasexual competition or sex-related handicaps have been proposed. In this context, we investigated sex-biased dispersal in Armadillidium vulgare, a terrestrial isopod with a promiscuous mating system. As a proxy for effective dispersal, we performed a fine-scale investigation of the spatial genetic structure in males and females, using individuals originating from five sampling points located within 70 meters of each other. Based on microsatellite markers and spatial autocorrelation analyses, our results revealed that while 1 males did not present a significant genetic structure at this geographic scale, females were significantly and genetically more similar to each other when they were collected in the same sampling point. As females invest more parental care than males in A. vulgare, but also because this species is promiscuous and males experience a high intrasexual competition, our results meet the predictions of most classical hypotheses for sex-biased dispersal. -
Chemosensory Physiology and Behavior of the Desert Sand Scorpion
AN ABSTRACT OF THE THESIS OF Douglas Dean Gaffin for the degree of Doctor of Philosophy in Zoology presented on September 23. 1993. Title: Chemosensory Physiology and Behavior of the Desert Sand Scorpion, Paruroctonus mesaensis. Redacted for Privacy Abstract approved: Philip H. Brownell This is a neuroethological study of two major chemosensory systems found in all scorpions - the large, ventral appendages, called pectines, found uniquely in this taxon, and setaform chemoreceptors of the tarsal leg segments. These sensory organs are closely associated with the substrate and their microstructure suggests specialized function in gustation or near- field olfaction of chemical substances on dry surfaces. In this study I present behavioral and electrophysiological evidence that the numerous peg sensilla on the pectines are important chemosensory channels in scorpions and probably fill similar functional roles to antenna' sensilla of rnandibulate arthropods. The subject of these investigations was the desert sand scorpion Paruroctonus mesaensis. Sand scorpions displayed vigorous, stereotyped behavior in response to substrates treated with water and chemicals derived from conspecific scorpions. Ablation studies showed the pectines are important in the detection of substrate-borne pheromonal signals while the tarsal chemosensory hairs are important detectors of substrate water. Electrophysiological investigation of individual peg sensilla on the pectines showed these structures are sensitive to chemostimulants applied directly to the sensillar tip or blown across its pore. Neurons within each peg gave characteristic patterns of response to organic stimuli of various classification (alkanes, alcohols, aldehydes, ketones, esters) that were generally independent of carbon chain length (C2 to C12). Tarsal hair sensilla were responsive to water applied directly to the hair tips.