University of California Santa Cruz Characterization Of

Total Page:16

File Type:pdf, Size:1020Kb

University of California Santa Cruz Characterization Of UNIVERSITY OF CALIFORNIA SANTA CRUZ CHARACTERIZATION OF ARCHAEAL SPECIES THROUGH RNASE P AND TRANSFER RNAS A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOINFORMATICS by Patricia Pak Lee Chan December 2010 The Dissertation of Patricia P. L. Chan is approved: ________________________________ Professor Todd M. J. Lowe, Chair ________________________________ Professor David Haussler ________________________________ Professor Karen M. Ottemann ________________________________ Professor Manuel Ares, Jr. _____________________________ Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright © by Patricia Pak Lee Chan 2010 Table of Contents List of Figures...............................................................................................................vi List of Tables................................................................................................................ix Abstract..........................................................................................................................x Acknowledgments ..................................................................................................... xiii Chapter 1 Introduction ............................................................................................1 1.1 Archaea, the third domain of life....................................................................2 1.2 A mix of bacterial and eukaryotic features.....................................................2 1.3 Ribonuclease P, a “nearly” universal ribozyme .............................................4 1.4 Disrupted transfer RNAs – how common are they?.......................................6 1.5 Atypical genes in nature .................................................................................9 Chapter 2 Transcriptional and Translational Signal Detection in Archaea.....17 2.1 Introduction ..................................................................................................18 2.2 Results ..........................................................................................................20 2.2.1 Absence of transcription factor B recognition element.......................21 2.2.2 Low conservation of Shine-Dalgarno motifs in Pyrobaculum, Cenarchaeum, and Nanoarchaeum .....................................................22 2.2.3 A mixture of leadered and leaderless transcripts in Crenarchaeota and Euryarchaeota ...............................................................................23 2.2.4 Highly variable 5′ UTR length in methanogens ..................................26 2.2.5 Evidence of gene coordinate mis-annotations.....................................27 2.2.6 Internal promoters leading to two modes of transcription...................28 2.2.7 Search for Shine-Dalgarno-less 5′ UTRs.............................................30 2.3 Discussion.....................................................................................................32 2.4 Materials and Methods .................................................................................35 Chapter 3 Discovery of a minimal form of RNase P in Pyrobaculum................55 3.1 Abstract.........................................................................................................56 3.2 Introduction ..................................................................................................57 3.3 Results and Discussion .................................................................................58 3.3.1 Pre-tRNAs in Pyrobaculum have 5ʹ leaders........................................58 iii 3.3.2 Pyrobaculum aerophilum cell extract processes 5ʹ leader from pre- tRNA....................................................................................................60 3.3.3 Evidence for three out of four known archaeal RNase P proteins in Pyrobaculum........................................................................................61 3.3.4 Discovery and in vitro activity of the minimized Pyrobaculum RNase P RNA......................................................................................62 3.3.5 Phylogenetic distribution of the minimized form of RNase P RNA ...64 3.3.6 Search for RNase P RNA in Aquifex and Related Species.................66 3.4 Conclusions ..................................................................................................67 3.5 Materials and Methods .................................................................................68 3.6 Author Contributions....................................................................................81 3.7 Acknowledgments ........................................................................................82 Chapter 4 Modeling the Thermoproteaceae RNase P RNA...............................97 4.1 Introduction ..................................................................................................98 4.2 Results and Discussion .................................................................................99 4.2.1 Common features of type T RNase P RNAs .......................................99 4.2.2 Type T RNase P RNA variants .........................................................100 4.2.3 Search with type T RNase P RNA covariance model .......................101 4.2.4 Type M RNase P RNA variants ........................................................102 4.3 Conclusions ................................................................................................103 4.4 Materials and Methods ...............................................................................104 Chapter 5 Discovery of Permuted and Recently Split Transfer RNAs in Archaea ..............................................................................................................111 5.1 Abstract.......................................................................................................112 5.2 Introduction ................................................................................................113 5.3 Results ........................................................................................................116 5.3.1 Split tRNAAsp(GUC) in Aeropyrum and Thermosphaera consist of adjacent halves...................................................................................116 5.3.2 tRNALys(CUU) in Staphylothermus resembles its ortholog in Nanoarchaeum ..................................................................................119 5.3.3 Permuted tRNAs in Thermofilum pendens have the same structure as in red alga......................................................................................121 5.4 Discussion...................................................................................................123 5.5 Materials and Methods ...............................................................................128 5.6 Author Contributions..................................................................................132 5.7 Acknowledgments ......................................................................................132 Chapter 6 GtRNAdb: A database of transfer RNA genes detected in genomic sequence.....................................................................................................148 6.1 Abstract.......................................................................................................149 iv 6.2 Introduction ................................................................................................149 6.3 Database Features.......................................................................................151 6.3.1 tRNA identification information .......................................................151 6.3.2 tRNA secondary structures and alignments ......................................152 6.3.3 tRNA search and BLAST server .......................................................153 6.3.4 Error and request tracking .................................................................154 6.4 Future Directions ........................................................................................155 6.5 Funding.......................................................................................................156 Chapter 7 Chracterization of a crenarchaeal-rich metagenome through RNase P and tRNAs.................................................................................................160 7.1 Introduction ................................................................................................161 7.2 Results and Discussion ...............................................................................163 7.2.1 At least six crenarchaeal species co-exist in Cistern Spring .............163 7.2.2 Search for RNase P RNAs in metagenome .......................................164 7.2.3 Majority of tRNAs in Cistern Spring have introns............................165 7.2.4 Trans-spliced split tRNAs in Caldivirga...........................................167 7.2.5 Novel intron-bearing split tRNA in Thermoproteus .........................169 7.3 Future Directions ........................................................................................170 7.4 Materials and Methods ...............................................................................171 Chapter 8 Conclusions .........................................................................................186 Bibliography.............................................................................................................190
Recommended publications
  • Sequence Analysis and Comparative Study of the Protein Subunits of Archaeal Rnase P
    biomolecules Review Sequence Analysis and Comparative Study of the Protein Subunits of Archaeal RNase P Manoj P. Samanta 1,*,†, Stella M. Lai 2,3,†, Charles J. Daniels 3,4 and Venkat Gopalan 2,3,* 1 Systemix Institute, Redmond, WA 98053, USA 2 Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA; [email protected] 3 Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; [email protected] 4 Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA * Correspondence: [email protected] (M.P.S.); [email protected] (V.G.); Tel.: +1-425-898-8187 (M.P.S.); +1-614-292-1332 (V.G.) † These authors contributed equally to this work. Academic Editor: Denis Drainas Received: 1 March 2016; Accepted: 8 April 2016; Published: 20 April 2016 Abstract: RNase P, a ribozyme-based ribonucleoprotein (RNP) complex that catalyzes tRNA 51-maturation, is ubiquitous in all domains of life, but the evolution of its protein components (RNase P proteins, RPPs) is not well understood. Archaeal RPPs may provide clues on how the complex evolved from an ancient ribozyme to an RNP with multiple archaeal and eukaryotic (homologous) RPPs, which are unrelated to the single bacterial RPP. Here, we analyzed the sequence and structure of archaeal RPPs from over 600 available genomes. All five RPPs are found in eight archaeal phyla, suggesting that these RPPs arose early in archaeal evolutionary history. The putative ancestral genomic loci of archaeal RPPs include genes encoding several members of ribosome, exosome, and proteasome complexes, which may indicate coevolution/coordinate regulation of RNase P with other core cellular machineries.
    [Show full text]
  • Pyrobaculum Igneiluti Sp. Nov., a Novel Anaerobic Hyperthermophilic Archaeon That Reduces Thiosulfate and Ferric Iron
    TAXONOMIC DESCRIPTION Lee et al., Int J Syst Evol Microbiol 2017;67:1714–1719 DOI 10.1099/ijsem.0.001850 Pyrobaculum igneiluti sp. nov., a novel anaerobic hyperthermophilic archaeon that reduces thiosulfate and ferric iron Jerry Y. Lee, Brenda Iglesias, Caleb E. Chu, Daniel J. P. Lawrence and Edward Jerome Crane III* Abstract A novel anaerobic, hyperthermophilic archaeon was isolated from a mud volcano in the Salton Sea geothermal system in southern California, USA. The isolate, named strain 521T, grew optimally at 90 C, at pH 5.5–7.3 and with 0–2.0 % (w/v) NaCl, with a generation time of 10 h under optimal conditions. Cells were rod-shaped and non-motile, ranging from 2 to 7 μm in length. Strain 521T grew only in the presence of thiosulfate and/or Fe(III) (ferrihydrite) as terminal electron acceptors under strictly anaerobic conditions, and preferred protein-rich compounds as energy sources, although the isolate was capable of chemolithoautotrophic growth. 16S rRNA gene sequence analysis places this isolate within the crenarchaeal genus Pyrobaculum. To our knowledge, this is the first Pyrobaculum strain to be isolated from an anaerobic mud volcano and to reduce only either thiosulfate or ferric iron. An in silico genome-to-genome distance calculator reported <25 % DNA–DNA hybridization between strain 521T and eight other Pyrobaculum species. Due to its genotypic and phenotypic differences, we conclude that strain 521T represents a novel species, for which the name Pyrobaculum igneiluti sp. nov. is proposed. The type strain is 521T (=DSM 103086T=ATCC TSD-56T). Anaerobic respiratory processes based on the reduction of recently revealed by the receding of the Salton Sea, ejects sulfur compounds or Fe(III) have been proposed to be fluid of a similar composition at 90–95 C.
    [Show full text]
  • Differences in Lateral Gene Transfer in Hypersaline Versus Thermal Environments Matthew E Rhodes1*, John R Spear2, Aharon Oren3 and Christopher H House1
    Rhodes et al. BMC Evolutionary Biology 2011, 11:199 http://www.biomedcentral.com/1471-2148/11/199 RESEARCH ARTICLE Open Access Differences in lateral gene transfer in hypersaline versus thermal environments Matthew E Rhodes1*, John R Spear2, Aharon Oren3 and Christopher H House1 Abstract Background: The role of lateral gene transfer (LGT) in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon. These distant transfer events offer potentially greater fitness advantages and it is for this reason that these “long distance” LGT events may have significantly impacted the evolution of microbes. One mechanism driving distant LGT events is microbial transformation. Theoretically, transformative events can occur between any two species provided that the DNA of one enters the habitat of the other. Two categories of microorganisms that are well-known for LGT are the thermophiles and halophiles. Results: We identified potential inter-class LGT events into both a thermophilic class of Archaea (Thermoprotei) and a halophilic class of Archaea (Halobacteria). We then categorized these LGT genes as originating in thermophiles and halophiles respectively. While more than 68% of transfer events into Thermoprotei taxa originated in other thermophiles, less than 11% of transfer events into Halobacteria taxa originated in other halophiles. Conclusions: Our results suggest that there is a fundamental difference between LGT in thermophiles and halophiles. We theorize that the difference lies in the different natures of the environments. While DNA degrades rapidly in thermal environments due to temperature-driven denaturization, hypersaline environments are adept at preserving DNA.
    [Show full text]
  • Orthologs of the Small RPB8 Subunit of the Eukaryotic RNA Polymerases
    Biology Direct BioMed Central Discovery notes Open Access Orthologs of the small RPB8 subunit of the eukaryotic RNA polymerases are conserved in hyperthermophilic Crenarchaeota and "Korarchaeota" Eugene V Koonin*1, Kira S Makarova1 and James G Elkins2 Address: 1National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA and 2Microbial Ecology and Physiology Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Email: Eugene V Koonin* - [email protected]; Kira S Makarova - [email protected]; James G Elkins - [email protected] * Corresponding author Published: 14 December 2007 Received: 13 December 2007 Accepted: 14 December 2007 Biology Direct 2007, 2:38 doi:10.1186/1745-6150-2-38 This article is available from: http://www.biology-direct.com/content/2/1/38 © 2007 Koonin et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract : Although most of the key components of the transcription apparatus, and in particular, RNA polymerase (RNAP) subunits, are conserved between archaea and eukaryotes, no archaeal homologs of the small RPB8 subunit of eukaryotic RNAP have been detected. We report that orthologs of RPB8 are encoded in all sequenced genomes of hyperthermophilic Crenarchaeota and a recently sequenced "korarchaeal" genome, but not in Euryarchaeota or the mesophilic crenarchaeon Cenarchaeum symbiosum. These findings suggest that all 12 core subunits of eukaryotic RNAPs were already present in the last common ancestor of the extant archaea.
    [Show full text]
  • Comphy: Prokaryotic Composite Distance Phylogenies Inferred from Whole-Genome Gene Sets Guan Ning Lin1, Zhipeng Cai2, Guohui Lin2, Sounak Chakraborty3 and Dong Xu*1
    BMC Bioinformatics BioMed Central Research Open Access ComPhy: prokaryotic composite distance phylogenies inferred from whole-genome gene sets Guan Ning Lin1, Zhipeng Cai2, Guohui Lin2, Sounak Chakraborty3 and Dong Xu*1 Address: 1Digital Biology Laboratory, Informatics Institute, Computer Science Department and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA, 2Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada and 3Department of Statistics, University of Missouri, Columbia, MO 65211, USA Email: Guan Ning Lin - [email protected]; Zhipeng Cai - [email protected]; Guohui Lin - [email protected]; Sounak Chakraborty - [email protected]; Dong Xu* - [email protected] * Corresponding author from The Seventh Asia Pacific Bioinformatics Conference (APBC 2009) Beijing, China. 13–16 January 2009 Published: 30 January 2009 BMC Bioinformatics 2009, 10(Suppl 1):S5 doi:10.1186/1471-2105-10-S1-S5 <supplement> <title> <p>Selected papers from the Seventh Asia-Pacific Bioinformatics Conference (APBC 2009)</p> </title> <editor>Michael Q Zhang, Michael S Waterman and Xuegong Zhang</editor> <note>Research</note> </supplement> This article is available from: http://www.biomedcentral.com/1471-2105/10/S1/S5 © 2009 Lin et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: With the increasing availability of whole genome sequences, it is becoming more and more important to use complete genome sequences for inferring species phylogenies.
    [Show full text]
  • Occurrence and Expression of Novel Methyl-Coenzyme M Reductase Gene
    www.nature.com/scientificreports OPEN Occurrence and expression of novel methyl-coenzyme M reductase gene (mcrA) variants in hot spring Received: 6 April 2017 Accepted: 27 June 2017 sediments Published: xx xx xxxx Luke J. McKay1,2, Roland Hatzenpichler1,3, William P. Inskeep2 & Matthew W. Fields1,4 Recent discoveries have shown that the marker gene for anaerobic methane cycling (mcrA) is more widespread in the Archaea than previously thought. However, it remains unclear whether novel mcrA genes associated with the Bathyarchaeota and Verstraetearchaeota are distributed across diverse environments. We examined two geochemically divergent but putatively methanogenic regions of Yellowstone National Park to investigate whether deeply-rooted archaea possess and express novel mcrA genes in situ. Small-subunit (SSU) rRNA gene analyses indicated that Bathyarchaeota were predominant in seven of ten sediment layers, while the Verstraetearchaeota and Euryarchaeota occurred in lower relative abundance. Targeted amplifcation of novel mcrA genes suggested that diverse taxa contribute to alkane cycling in geothermal environments. Two deeply-branching mcrA clades related to Bathyarchaeota were identifed, while highly abundant verstraetearchaeotal mcrA sequences were also recovered. In addition, detection of SSU rRNA and mcrA transcripts from one hot spring suggested that predominant Bathyarchaeota were also active, and that methane cycling genes are expressed by the Euryarchaeota, Verstraetearchaeota, and an unknown lineage basal to the Bathyarchaeota. These fndings greatly expand the diversity of the key marker gene for anaerobic alkane cycling and outline the need for greater understanding of the functional capacity and phylogenetic afliation of novel mcrA variants. Archaea are the primary drivers of CH4 cycling on our planet.
    [Show full text]
  • Structure and Function of Archaeal Histones
    REVIEW Structure and function of archaeal histones Bram Henneman1, Clara van Emmerik1¤, Hugo van Ingen1¤, Remus T. Dame1,2* 1 Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands, 2 Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands ¤ Current address: Bijvoet Center for Biomolecular Research, Utrecht University, the Netherlands * [email protected] Abstract The genomes of all organisms throughout the tree of life are compacted and organized in chromatin by association of chromatin proteins. Eukaryotic genomes encode histones, which are assembled on the genome into octamers, yielding nucleosomes. Post-translational modi- fications of the histones, which occur mostly on their N-terminal tails, define the functional a1111111111 state of chromatin. Like eukaryotes, most archaeal genomes encode histones, which are a1111111111 believed to be involved in the compaction and organization of their genomes. Instead of dis- a1111111111 crete multimers, in vivo data suggest assembly of ªnucleosomesº of variable size, consisting a1111111111 of multiples of dimers, which are able to induce repression of transcription. Based on these a1111111111 data and a model derived from X-ray crystallography, it was recently proposed that archaeal histones assemble on DNA into ªendlessº hypernucleosomes. In this review, we discuss the amino acid determinants of hypernucleosome formation and highlight differences with the canonical eukaryotic octamer. We identify archaeal histones differing from the consensus, OPEN ACCESS which are expected to be unable to assemble into hypernucleosomes. Finally, we identify Citation: Henneman B, van Emmerik C, van Ingen atypical archaeal histones with short N- or C-terminal extensions and C-terminal tails similar H, Dame RT (2018) Structure and function of to the tails of eukaryotic histones, which are subject to post-translational modification.
    [Show full text]
  • 4 Metabolic and Taxonomic Diversification in Continental Magmatic Hydrothermal Systems
    Maximiliano J. Amenabar, Matthew R. Urschel, and Eric S. Boyd 4 Metabolic and taxonomic diversification in continental magmatic hydrothermal systems 4.1 Introduction Hydrothermal systems integrate geological processes from the deep crust to the Earth’s surface yielding an extensive array of spring types with an extraordinary diversity of geochemical compositions. Such geochemical diversity selects for unique metabolic properties expressed through novel enzymes and functional characteristics that are tailored to the specific conditions of their local environment. This dynamic interaction between geochemical variation and biology has played out over evolu- tionary time to engender tightly coupled and efficient biogeochemical cycles. The timescales by which these evolutionary events took place, however, are typically in- accessible for direct observation. This inaccessibility impedes experimentation aimed at understanding the causative principles of linked biological and geological change unless alternative approaches are used. A successful approach that is commonly used in geological studies involves comparative analysis of spatial variations to test ideas about temporal changes that occur over inaccessible (i.e. geological) timescales. The same approach can be used to examine the links between biology and environment with the aim of reconstructing the sequence of evolutionary events that resulted in the diversity of organisms that inhabit modern day hydrothermal environments and the mechanisms by which this sequence of events occurred. By combining molecu- lar biological and geochemical analyses with robust phylogenetic frameworks using approaches commonly referred to as phylogenetic ecology [1, 2], it is now possible to take advantage of variation within the present – the distribution of biodiversity and metabolic strategies across geochemical gradients – to recognize the extent of diversity and the reasons that it exists.
    [Show full text]
  • Microbial Taxonomy Ontology for Agriculturally Important Microorganisms (AMO) Coupled with Sequence Alignment Reinforcement Options
    Int.J.Curr.Microbiol.App.Sci (2018) 7(4): 3154-3166 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 04 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.704.358 Microbial Taxonomy Ontology for Agriculturally Important Microorganisms (AMO) Coupled with Sequence Alignment Reinforcement Options Chandan Kumar Deb1*, Saket Kumar Karn1, Madhurima Das2 and Sudeep Marwaha1 1Indian Agricultural Statistics Research Institute, New Delhi-110012, India 2Indian Agricultural Research Institute, New Delhi-110012, India *Corresponding author ABSTRACT Ontology is a knowledge representation technique, devised for the web based systems to provide the capability to deal with the semantics of the concepts in the specific knowledge domain. Alternatively, taxonomy describes the real world concepts in a well-defined K e yw or ds hierarchy and exists in standard form for various domains in science. The present study dealt with the taxonomy of microorganisms. The Three Domain System taxonomy is most Semantic web, widely adopted taxonomy in this domain. It covers Bacteria, Archaea and Eukarya Ontology, Bacteria, domains. In this research work a web based application has been developed using N-tier Archaea, N-tier architecture which extended the previously developed Microbial Ontology covering Architecture Archaea domain up to the species level. Developed application easily identified new Article Info microorganisms by matching their characteristics. Domain experts can insert, delete and edit any new information about the microbial taxonomy. The web interface also provided Accepted: search facility for finding information about the concepts and 16S rRNA sequences of 26 March 2018 various Archaea species.
    [Show full text]
  • Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes
    GBE Different Ways of Doing the Same: Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes Dennifier Costa Brandao~ Cruz1, Lenon Lima Santana1, Alexandre Siqueira Guedes2, Jorge Teodoro de Souza3,*, and Phellippe Arthur Santos Marbach1,* 1CCAAB, Biological Sciences, Recoˆ ncavo da Bahia Federal University, Cruz das Almas, Bahia, Brazil 2Agronomy School, Federal University of Goias, Goiania,^ Goias, Brazil 3 Department of Phytopathology, Federal University of Lavras, Minas Gerais, Brazil Downloaded from https://academic.oup.com/gbe/article/11/4/1235/5345563 by guest on 27 September 2021 *Corresponding authors: E-mails: [email protected]fla.br; [email protected]. Accepted: February 16, 2019 Abstract The last two steps of the purine biosynthetic pathway may be catalyzed by different enzymes in prokaryotes. The genes that encode these enzymes include homologs of purH, purP, purO and those encoding the AICARFT and IMPCH domains of PurH, here named purV and purJ, respectively. In Bacteria, these reactions are mainly catalyzed by the domains AICARFT and IMPCH of PurH. In Archaea, these reactions may be carried out by PurH and also by PurP and PurO, both considered signatures of this domain and analogous to the AICARFT and IMPCH domains of PurH, respectively. These genes were searched for in 1,403 completely sequenced prokaryotic genomes publicly available. Our analyses revealed taxonomic patterns for the distribution of these genes and anticorrelations in their occurrence. The analyses of bacterial genomes revealed the existence of genes coding for PurV, PurJ, and PurO, which may no longer be considered signatures of the domain Archaea. Although highly divergent, the PurOs of Archaea and Bacteria show a high level of conservation in the amino acids of the active sites of the protein, allowing us to infer that these enzymes are analogs.
    [Show full text]
  • Thermogladius Shockii Gen. Nov., Sp. Nov., a Hyperthermophilic Crenarchaeote from Yellowstone National Park, USA
    Arch Microbiol (2011) 193:45–52 DOI 10.1007/s00203-010-0639-8 ORIGINAL PAPER Thermogladius shockii gen. nov., sp. nov., a hyperthermophilic crenarchaeote from Yellowstone National Park, USA Magdalena R. Osburn • Jan P. Amend Received: 23 June 2010 / Revised: 6 October 2010 / Accepted: 7 October 2010 / Published online: 27 October 2010 Ó Springer-Verlag 2010 Abstract A hyperthermophilic heterotrophic archaeon phylogenetic and physiological differences, it is proposed (strain WB1) was isolated from a thermal pool in the that isolate WB1 represents the type strain of a novel Washburn hot spring group of Yellowstone National Park, genus and species within the Desulfurococcaceae, Ther- USA. WB1 is a coccus, 0.6–1.2 lm in diameter, with a mogladius shockii gen. nov., sp. nov. (RIKEN = JCM- tetragonal S-layer, vacuoles, and occasional stalk-like 16579, ATCC = BAA-1607, Genbank 16S rRNA gene = protrusions. Growth is optimal at 84°C (range 64–93°C), EU183120). pH 5–6 (range 3.5–8.5), and \1 g/l NaCl (range 0–4.6 g/l NaCl). Tests of metabolic properties show the isolate to be Keywords Yellowstone national park Á a strict anaerobe that ferments complex organic substrates. Desulfurococcaceae Á Novel species Á Thermophile Phylogenetic analysis of the 16S rRNA gene sequence places WB1 in a clade of previously uncultured Desulf- urococcaceae and shows it to have B96% 16S rRNA Introduction sequence identity to Desulfurococcus mobilis, Staphyloth- ermus marinus, Staphylothermus hellenicus, and Sulfop- Yellowstone National Park (YNP) is the largest area of hobococcus zilligii. The 16S rRNA gene contains a large terrestrial hydrothermal activity on Earth, featuring geo- insertion similar to homing endonuclease introns reported chemically and microbiologically diverse hot springs.
    [Show full text]
  • Enigmatic, Ultrasmall, Uncultivated Archaea
    Enigmatic, ultrasmall, uncultivated Archaea Brett J. Bakera, Luis R. Comollib, Gregory J. Dicka,1, Loren J. Hauserc, Doug Hyattc, Brian D. Dilld, Miriam L. Landc, Nathan C. VerBerkmoesd, Robert L. Hettichd, and Jillian F. Banfielda,e,2 aDepartment of Earth and Planetary Science and eEnvironmental Science, Policy, and Management, University of California, Berkeley, CA 94720; bLawrence Berkeley National Laboratories, Berkeley, CA 94720; and cBiosciences and dChemical Sciences Divisions, Oak Ridge National Laboratory, Oak Ridge, TN 37831 Edited by Norman R. Pace, University of Colorado, Boulder, CO, and approved March 30, 2010 (received for review December 16, 2009) Metagenomics has provided access to genomes of as yet unculti- diversity of microbial life (15), it is likely that other unusual rela- vated microorganisms in natural environments, yet there are gaps tionships critical to survival of organisms and communities remain in our knowledge—particularly for Archaea—that occur at rela- to be discovered. In the present study, we explored the biology of tively low abundance and in extreme environments. Ultrasmall cells three unique, uncultivated lineages of ultrasmall Archaea by com- (<500 nm in diameter) from lineages without cultivated represen- bining metagenomics, community proteomics, and 3D tomographic tatives that branch near the crenarchaeal/euryarchaeal divide have analysis of cells and cell-to-cell interactions in natural biofilms. been detected in a variety of acidic ecosystems. We reconstructed Using these complementary cultivation-independent methods, we composite, near-complete ∼1-Mb genomes for three lineages, re- report several unexpected metabolic features that illustrate unique ferred to as ARMAN (archaeal Richmond Mine acidophilic nanoor- facets of microbial biology and ecology.
    [Show full text]