TRENDS in the DEVELOPMENT of CHEMOTHERAPY for PARASITIC DISEASES ~ I I KEITH ARNOLD I Roche Far East Research Foundation, Hong Kong

Total Page:16

File Type:pdf, Size:1020Kb

TRENDS in the DEVELOPMENT of CHEMOTHERAPY for PARASITIC DISEASES ~ I I KEITH ARNOLD I Roche Far East Research Foundation, Hong Kong TRENDS IN THE DEVELOPMENT OF CHEMOTHERAPY FOR PARASITIC DISEASES ~ I I KEITH ARNOLD I Roche Far East Research Foundation, Hong Kong. I INTRODUCTION progress has been made in some areas, the disease has not yet been controlled, let alone The predominant trend in the chemotherapy eradicated in malarious regions of Africa, of parasitic diseases is a re-emphasis of the South America and Southeast Asia. In fact, need to continue to search for and develop malaria is returning in India where it had new drugs. The importance of chemotherapy almost been eliminated several years ago in the management of parasitic diseases is (Bruce-Chwatt, 1974). The World Health obvious. The need to continue to look for Organization (WHO), although continuing more effective and less toxic drugs is accepted to emphasize the absolute necessity for mos­ even by those who correctly maintain that quito control, also insists that antimalarial control or eradication of these diseases will drugs will be of great importance in the ma­ only result from measures such as vector nagement of this disease in the near and even control, immunization and improvement in distant future (W.H.O., 1976). public health and sanitation practices. The overall trend is therefore to support There are a large number of parasitic di­ research that is directed to the finding of new seases and it is not possible to mention them chemotherapeutic agents, which is made all individually nor is it appropriate to dis­ even more necessary by the emerging resist­ cuss them under the all embracing term ance throughout the world of P. Jalciparum "parasitoses". Therefore, attention will be to chloroquine. This problem of chloroquine directed first to malaria since this disease resistance has increased the intensity of the still represents the greatest problem among search for more effective and less toxic agents .. the tropical illnesses and is a significant pro­ since quinine is the only drug presently avai­ blem in Southeast Asia. Reference will then lable for serious and complicated cases of be made to amoebiasis which has been esti­ chloroquine resistant faIciparum malaria. mated to affect up to 10 %ofthe world's popu­ It is also the only parenteral drug readily lation; to schistosomiasis and filariasis which available in this situation. affect over 400 million people; and to the The trend in chemotherapy of malaria was intestinal helminths such as Ascaris lumbri­ therefore away from the use of chloroquine coides, Trichuris trichiura and hookworm (except in Africa), and instead a complex and which together affect probably more than often toxic regimen was used. This consisted 1,400 million people throughout the world. of quinine three times daily for 10-14 days with pyrimethamine daily for 3 days plus MALARIA dapsone daily for as long as one month It is now apparent that the hope firmly (Sheehy et al., 1967). A much more simple held for many years that malaria would be and less toxic regimen of four doses of qui­ eradicated by programmes involving the nine and a single dose of either a single drug elimination of the anopheline mosquito vec­ (mefloquine) or a combination product, tor has not been realized. Although obvious pyrimethamine with sulfadoxine (Fansidar) Vol. 9 No.2 June 1978 177 SOUTHEAST AsIAN J. TROP. MED. PuB. HLTH. has recently been mentioned as the treatment which included the screening of all available of choice (Hall, 1976). This regimen has chemicals from various sources as well as the resulted from basic research and clinical synthesis of new compounds. With the emer­ studies performed under the direction of the gence of chloroquine resistance in Southeast U.S. Army Antimalarial Drug Development Asia, more specifically in Vietnam, the U.S. Programme. Army faced a serious military problem and Other studies have shown that combining the Drug Programme received an added an antibiotic, such as tetracycline or clin­ impetus. Well over 200,000 compounds have damycin, with quinine is also effective in been tested. About 3 %were active in primary treating chloroquine resistant falciparum ma­ screening tests and 170 of the most active laria, but the response is slow and recrudes­ compounds went on for advanced testing in cence occurs (Hall, 1975b). monkeys. Pre-clinical pharmacological and toxicological studies were performed on 36 Several institutes are involved in the syn­ selected compounds. Investigational new thesis and testing of new anti-malarial com­ drug applications were submitted to the U.S. pounds, such as the WHO Collaborating Food and Drug Administration for 27 ofthese. Centre in Liverpool, England; a few phar­ Thirteen compounds have been or are being maceutical companies and the U.S. Army studied in clinical trials and several have also Antimalarial Drug Development Programme undergone field evaluation (Canfield and at the Walter Reed Army Institute of Re­ Rozman, 1974). search in Washington D.C. The testing of new drugs will be carried out at the clinical The most promising of all these compounds facilities of WHO Tropical Diseases Re­ was WR 142,490 or, as it is now called, me­ search Centre at Ndola, Zambia, within the floquine. The history of this drug is interest­ framework of the Special Programme for ing. Over 30 years ago a large number of Research and Training in Tropical Diseases; 4-quinolinemethanols were investigated for and in many other centres in countries through their antimalarial activity. The agent with -out the world. One of the most important the greatest activity, SN 10,275, was tested and productive field trial centres is in Thai­ in volunteers. Phototoxic side-effects pre­ land, namely, the U.S. Army Medical Com­ vented its general use although it was an ponent of the Armed Forces Research In­ effective blood schizonticidal agent with a stitute of Medical Sciences (formerly the long duration of activity. A derivative of medical research laboratory of the South this compound, WR 30,090, was recently East Asia Treaty Organization). found to be highly effective in man against both chloroquine-sensitive and chloroquine­ Since the U.S. Army effort is the most resistant strains of P. Jalciparum. This 4­ ambitious and productive and many of the quinolinemethanol showed only slight evi­ actual field studies are done in Thailand it dence of phototoxicity but demonstrated a is appropriate to describe their programme short duration of action. Mefloquine hy­ in more detail. drochloride (WR 142,490) is an analogue of The U.S. Army Antimalarial Drug Deve­ SN 10,275 and WR 30,090. Preclinical studies lopment Programme was organized in 1963 revealed that this drug was more effective with the aim of developing drugs for the than WR 30,090, had the long duration of prevention and treatment of malaria due to action characteristic ofSN 10,275 and showed chloroquine resistant strains of P. Jalciparum. no evidence of phototoxicity (Trenholme et The approach was a comprehensive one al., 1975). 178 Vol. 9 No.2 June 1978 CHEMOTHERAPY FOR PARASITIC DISEASES Extensive clinical testing of the drug under to single agents (Peters, 1975). Hence there I r field conditions has been done and it has been was the initial concurrent use of three drugs, concluded by Hall (1977) that mefioquine in quinine, pyrimethamine and dapsone or a association with quinine is the most effective sulphonamide (Sheehy et al., 1967). This I treatment for patients with chloroquine­ combination was also used because it was resistant falciparum malaria, including those more effective than any of the drugs used with severe or complicated disease. Mefio­ alone in preventing recrudescence. This com­ It I quine has also been shown to be effective plex approach has been much simplified by I when used alone as a single-dose treatment the sequential use of quinine with the fixed of mild falciparum malaria; moreover, it has drug combination of pyrimethamine and sul­ a prophylactic suppressant action against fadoxine. P. vivax and P. jalciparum, but relapse occurs The combination of pyrimethamine with with P. vivax several weeks after cessation the long acting sulphonamide, sulfadoxine, of treatment (Clyde et al., 1976). Unfortu­ is effective when given alone as a single-dose nately, the drug is not commercially avai­ treatment,especially in mild cases, but because lable. A parenteral form of mefioquine would there are some cases of recrudescence and be a very useful alternative to quinine but concern about resistance developing, it is local intolerance to the injection is delaying recommended that quinine be given as well. development of this formulation at the mo­ ment. There is a parenteral form of the pyrimetha­ A few pharmaceutical companies have mine sulfadoxine combination available and been involved in the search for new antima­ studies have shown this to be of value in se­ larials and the combination of pyrimethamine vere malaria, including the cerebral form, with sulfadoxine (Fansidar) is now widely but comparative studies with quinine have accepted and used for the treatment and pro­ not been done. However, Fansidar, is clearly phylaxis of falciparum malaria. In fact, the an important and useful alternative to paren­ combination of this product with quinine teral quinine. maybe the best available treatment for mo­ Although the major emphasis and trend derate and severe chloroquine resistant fal­ has been to develop drugs against P. jalci­ ciparum malaria presently available (Hall et parumthere has been a recent shift ofemphasis al., 1975 a). Fansidar is also recommended to the development of drugs with exoery­ for prophylaxis (WHO, 1976) and is an advan­ throcytic activity, since the only one available tage over presently available drugs since it at present is primaquine. A compound, WR can be given either weekly, every two weeks 171,952, from the U.S. Army Antimalarial or even monthly. Drug Programme, found to be effective in WHO (1976) has recommended that parti­ animal studies, was not successful in human cualr attention should be given to the deve­ volunteers infected with P.
Recommended publications
  • Bulletin Leading the Fight Against Heartworm Disease
    BULLETIN LEADING THE FIGHT AGAINST HEARTWORM DISEASE SEPTEMBER HEARTWORM 2017 Q&A VOLUME 44 No. 3 Heartworm History: In What Year Was Heartworm First INSIDE THIS ISSUE Treated? Page 4 From the President Page 8 Research Update Abstracts from the Literature Page 14 Heartworm Hotline: Role of Heat Treatment in Diagnostics Page 19 NEW! Best Practices: Minimizing Heartworm Transmission in Relocated Dogs uestions from members, prac- published in the 1998 AHS Symposium 1 titioners, technicians, and the Proceedings. Dr. Roncalli wrote, “The Page 21 Qgeneral public are often submit- first trial to assess the efficacy of a Welcome Our New AHS ted to the American Heartworm Society microfilaricide (natrium antimonyl tar- Student Liaisons (AHS) via our website. Two of our AHS trate) was conducted some 70 years Board members, Dr. John W.McCall and ago (1927) in Japan by S. Itagaki and R. Page 25 Dr. Tom Nelson, provided the resources Makino.2 Fuadin (stibophen), a trivalent In the News: Surgeons to answer this question: In What Year antimony compound, was tested, intra- Remove a Heartworm from Was Heartworm First Treated? venously, as a microfilaricide by Popescu the Femoral Artery of a Cat The first efforts to treat canine heart- in 1933 in Romania and by W.H. Wright worm disease date back to the 1920s. Dr. and P.C. Underwood in 1934 in the USA. Page 26 Nelson referenced a review article by Dr. In 1949, I.C. Mark evaluated its use Quarterly Update Raffaele Roncalli, “Tracing the History of intraperitoneally.” What’s New From AHS? Heartworms: A 400 Year Perspective,” Continues on page 7 American Heartworm Society / PO Box 8266, Wilmington, DE 19803-8266 Become an American Heartworm Society www.heartwormsociety.org / [email protected] fan on Facebook! Follow us on Twitter! OUR GENEROUS SPONSORS PLATINUM LEVEL PO Box 8266 Wilmington, DE 19803-8266 [email protected] www.heartwormsociety.org Mission Statement The mission of the American Heartworm Society is to lead the vet- erinary profession and the public in the understanding of heartworm disease.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • Title 16. Crimes and Offenses Chapter 13. Controlled Substances Article 1
    TITLE 16. CRIMES AND OFFENSES CHAPTER 13. CONTROLLED SUBSTANCES ARTICLE 1. GENERAL PROVISIONS § 16-13-1. Drug related objects (a) As used in this Code section, the term: (1) "Controlled substance" shall have the same meaning as defined in Article 2 of this chapter, relating to controlled substances. For the purposes of this Code section, the term "controlled substance" shall include marijuana as defined by paragraph (16) of Code Section 16-13-21. (2) "Dangerous drug" shall have the same meaning as defined in Article 3 of this chapter, relating to dangerous drugs. (3) "Drug related object" means any machine, instrument, tool, equipment, contrivance, or device which an average person would reasonably conclude is intended to be used for one or more of the following purposes: (A) To introduce into the human body any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (B) To enhance the effect on the human body of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (C) To conceal any quantity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; or (D) To test the strength, effectiveness, or purity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state. (4) "Knowingly" means having general knowledge that a machine, instrument, tool, item of equipment, contrivance, or device is a drug related object or having reasonable grounds to believe that any such object is or may, to an average person, appear to be a drug related object.
    [Show full text]
  • WO 2012/148799 Al 1 November 2012 (01.11.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/148799 Al 1 November 2012 (01.11.2012) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 9/107 (2006.01) A61K 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A 61 47/10 (2006.0V) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/US2012/034361 HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 20 April 2012 (20.04.2012) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/480,259 28 April 201 1 (28.04.201 1) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (71) Applicant (for all designated States except US): BOARD UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, OF REGENTS, THE UNIVERSITY OF TEXAS SYS¬ TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, TEM [US/US]; 201 West 7th St., Austin, TX 78701 (US).
    [Show full text]
  • Comparative Genomics of the Major Parasitic Worms
    Comparative genomics of the major parasitic worms International Helminth Genomes Consortium Supplementary Information Introduction ............................................................................................................................... 4 Contributions from Consortium members ..................................................................................... 5 Methods .................................................................................................................................... 6 1 Sample collection and preparation ................................................................................................................. 6 2.1 Data production, Wellcome Trust Sanger Institute (WTSI) ........................................................................ 12 DNA template preparation and sequencing................................................................................................. 12 Genome assembly ........................................................................................................................................ 13 Assembly QC ................................................................................................................................................. 14 Gene prediction ............................................................................................................................................ 15 Contamination screening ............................................................................................................................
    [Show full text]
  • Drug-N-Therapeutics-Committee.Pdf
    Irrational use of medicines is a widespread problem at all levels of health care, but especially GUIDE DRUG AND THERAPEUTICS COMMITTEES: A PRATICAL in hospitals. This is particularly worrying as resources are generally scarce and prescribers in communities often copy hospital prescribing practices. Use of medicines can be greatly improved and wastage reduced if some simple principles of drug management are followed. But it is difficult to implement these principles because staff from many different disciplines are involved, often with no forum for bringing them together to develop and implement appropriate medicines policies. A drug and therapeutics committee (DTC) provides such a forum, allowing all the relevant people to work together to improve health care delivery, whether in hospitals or other health facilities. In many developed countries a well functioning DTC has been shown to be very effective in addressing drug use problems. However, in many developing countries DTCs do not exist and in others they do not function optimally, often due to lack of local expertise or a lack of incentives. Drug and Therapeutics Committees: A Practical Guide provides guidance to doctors, pharmacists, hospital managers and other professionals who may be serving on DTCs and/or who are concerned with how to improve the quality and cost efficiency of therapeutic care. It is relevant for all kinds of DTCs - whether in public or private hospitals and whether at district or tertiary referral level. This comprehensive manual covers a committee’s functions and structure, the medicines formulary process, and how to assess new medicines. The chapters on tools to investigate drug use and strategies to promote rational use are followed by a discussion of antimicrobial resistance and infection control.
    [Show full text]
  • Anthelmintics Are Drugs Used to Treat Parasitic Infections Due to Worms
    “ANTHEMINTICS" Presented By Mr.Ghule A.V. Assistant Professor, MES’S,College Of Pharmacy,Sonai. INTRODUCTION Helminth means worms. Helminthiasis is an infections caused by parasitic worms. Anthelmintics are drugs used to treat parasitic infections due to worms. Anthelmintics act through two mechanism . Vermicide (kill) used to kill parasitic intestinal worms. Vermifuge (expel) used to destroy or expel worms in the intestine. Helminths are 3 types Nematodes (round worms) - ascarids (Ascaris), filarias, hookworms, pinworms (Enterobius), and whipworms (Trichuris trichiura) Cestodes (tape worms) - multiple species of flat worms, Taenia saginatum, Taenia solium(cysticercosis, hydatid(echinococcus), Trematodes (flukes) – liver flukes, lung flukes, schistosoma BASED ON CHEMICAL STRUCTURES Benzimidazoles : Albendazole , Mebendazole ,Flubendazole, Cyclobendazole Thiabendazole, Fenbendazole, Oxibendazole, Parbendazole Quinolines and isoquinolines [Heterocyclics]: Oxamniquine, Praziquantel Piperazine derivatives: Piperazine citrate, Diethyl carbamazine Vinyl pyrimidines: Pyrantel pamoate, Oxantel Amides : Niclosamide Natural products: Ivermectin Organo phosphorus: Metrifonate Imidazothiazoles: Levamisole Nitro derivatives: Niridazol BENZIMIDAZOLES Benzimidazole is a heterocyclic aromatic organic compound. This bicyclic compound consists of the fusion of benzene and imidazole. Many anthelmintic drugs(albendazole, mebendazole, etc.) belong to the benzimidazole class of compounds. ALBENDAZOLE It selectively bind to nematode ß-tubulin
    [Show full text]
  • EFFECTS of DRUGS UPON SCOLICES and DAUGHTER CYSTS of Title ECHINOCOCCUS MULTILOCULARIS in VITRO
    STUDIES ON ECHINOCOCCOSIS XVI : EFFECTS OF DRUGS UPON SCOLICES AND DAUGHTER CYSTS OF Title ECHINOCOCCUS MULTILOCULARIS IN VITRO Author(s) SAKAMOTO, Tsukasa; YAMASHITA, Jiro; OHBAYASHI, Masashi; ORIHARA, Miyoji Citation Japanese Journal of Veterinary Research, 13(4), 127-136 Issue Date 1965-12 DOI 10.14943/jjvr.13.4.127 Doc URL http://hdl.handle.net/2115/1830 Type bulletin (article) File Information KJ00003418286.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP STUDIES ON ECHINOCOCCOSIS XVI EFFECTS OF DRUGS UPON SCOLICES AND DAUGHTER CYSTS OF ECHINOCOCCUS MULTILOCULARIS IN VITRO Tsukasa SAKA:"I0TO, liro YA:VIASHITA Masashi OHBA YASHI and Miyoji ORIHARA Dej)artment of Parasitology Faculty of Veterinary i\fedicine Hokkaido Unil1ersity, Sapporo, Japan (Received for publication, October 30, 1965) INTRODUCTION Many investigators have conducted experiments to treat human cases of echinococcosis with drugs which were known to be effective against other parasites. They, however, have failed to establish the efficacy of any drugs against the disease. The authors also have studied the potential of various anthelmintic drugs using mice infected artificially with Echinococcus multilocularis, but to date no drug effective against the disease has been found. nEVE (1926, '28) and COUTELEN (1927, '27) observed the vesicular development of the scolex of E. granulosus using media consisting mainly of hydatid fluid, and S:V1YTH (1962), WEBSTER & CAMERON (196:3) and SCHWABE et al. (1963) observed recently the vesicular development using media composed of both natural and synthetic substances. On the other hand, RAUSCH & lENTOFT (1957) observed in vitro the propagation of the larval E. multilocularis through the exogeneous budding of new vesicles.
    [Show full text]
  • World Health Organization Model List of Essential Medicines, 21St List, 2019
    World Health Organizatio n Model List of Essential Medicines 21st List 2019 World Health Organizatio n Model List of Essential Medicines 21st List 2019 WHO/MVP/EMP/IAU/2019.06 © World Health Organization 2019 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. World Health Organization Model List of Essential Medicines, 21st List, 2019. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris.
    [Show full text]
  • View PDF Version
    RSC Advances View Article Online REVIEW View Journal | View Issue Two decades of antifilarial drug discovery: a review a b a Cite this: RSC Adv.,2017,7,20628 Jaiprakash N. Sangshetti, * Devanand B. Shinde, Abhishek Kulkarni and Rohidas Arotec Filariasis is one of the oldest, most debilitating, disabling, and disfiguring neglected tropical diseases with various clinical manifestations and a low rate of mortality, but has a high morbidity rate, which results in social stigma. According to the WHO estimation, about 120 million people from 81 countries are Received 14th February 2017 infected at present and an estimated 1.34 billion people live in areas endemic to filariasis and are at risk Accepted 31st March 2017 of infection. In this review, we focus on Lymphatic Filariasis (LF) and provide brief insights on some other DOI: 10.1039/c7ra01857f filarial conditions. Current drug treatments have beneficial effects in the elimination of only the larval rsc.li/rsc-advances stage of the worms. Very few drugs are available for treatment of filariasis but their repetitive use may aY. B. Chavan College of Pharmacy, Dr. Raq Zakaria Campus, Rauza Baugh, cDepartment of Molecular Genetics, School of Dentistry, Seoul National University, Aurangabad-(MS), India. E-mail: jnsangshetti@rediffmail.com Seoul, Republic of Korea Creative Commons Attribution 3.0 Unported Licence. bShivaji University, Kolhapur (MS), India Dr Jaiprakash N. Sangshetti Dr Devanand B. Shinde is pres- graduated from Y.B. Chavan ently working as a vice chan- College of Pharmacy, Aur- cellor of Shivaji University, angabad (MS), INDIA in 1999. Kolhapur (MS) India. He is He has completed M.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0078604 A1 Kanios Et Al
    US 20060078604A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0078604 A1 Kanios et al. (43) Pub. Date: Apr. 13, 2006 (54) TRANSDERMAL DRUG DELIVERY DEVICE Related U.S. Application Data INCLUDING AN OCCLUSIVE BACKING (60) Provisional application No. 60/616,861, filed on Oct. 8, 2004. (75) Inventors: David Kanios, Miami, FL (US); Juan A. Mantelle, Miami, FL (US); Viet Publication Classification Nguyen, Miami, FL (US) (51) Int. Cl. Correspondence Address: A 6LX 9/70 (2006.01) DCKSTEIN SHAPRO MORN & OSHINSKY (52) U.S. Cl. .............................................................. 424/449 LLP (57) ABSTRACT 2101 L Street, NW Washington, DC 20037 (US) A transdermal drug delivery system for the topical applica tion of one or more active agents contained in one or more (73) Assignee: Noven Pharmaceuticals, Inc. polymeric and/or adhesive carrier layers, proximate to a non-drug containing polymeric backing layer which can (21) Appl. No.: 11/245,180 control the delivery rate and profile of the transdermal drug delivery system by adjusting the moisture vapor transmis (22) Filed: Oct. 7, 2005 sion rate of the polymeric backing layer. Patent Application Publication Apr. 13, 2006 Sheet 1 of 2 US 2006/0078604 A1 Fis ZZZZZZZZZZZZZZZZZZZ :::::::::::::::::::::::::::::::: Patent Application Publication Apr. 13, 2006 Sheet 2 of 2 US 2006/0078604 A1 3. s s 3. a 3 : 8 g US 2006/0078604 A1 Apr. 13, 2006 TRANSIDERMAL DRUG DELVERY DEVICE 0008. In the “classic' reservoir-type device, the active INCLUDING AN OCCLUSIVE BACKING agent is typically dissolved or dispersed in a carrier to yield a non-finite carrier form, Such as, for example, a fluid or gel.
    [Show full text]
  • Coating for Medical Devices
    Europäisches Patentamt *EP001247537A1* (19) European Patent Office Office européen des brevets (11) EP 1 247 537 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: A61L 27/34, A61L 29/08, 09.10.2002 Bulletin 2002/41 A61L 31/10 (21) Application number: 01201259.7 (22) Date of filing: 04.04.2001 (84) Designated Contracting States: (72) Inventor: The designation of the inventor has not AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU yet been filed MC NL PT SE TR Designated Extension States: (74) Representative: Prins, Adrianus Willem et al AL LT LV MK RO SI Vereenigde, Nieuwe Parklaan 97 (71) Applicant: IsoTis B.V. 2587 BN Den Haag (NL) 3723 MB Bilthoven (NL) (54) Coating for medical devices (57) The invention relates to a coating for medical leased in vivo in a controlled manner, as the degrada- devices. The coating comprises a copolymer of a poly- bility of the coating may also be adjusted to a predeter- alkylene glycol terephtalate and an aromatic polyester mined rate. The invention further relates to a process of which the composition may be adjusted such as to for applying the coating to a surface and to a medical achieve an excellent adhesion to a wide range of sur- device comprising the coating. faces. The coating may further comprise an additive, such as a biologically active agent, which may be re- EP 1 247 537 A1 Printed by Jouve, 75001 PARIS (FR) 1 EP 1 247 537 A1 2 Description tude of variations that can be used to achieve an opti- mum property profile of a coating.
    [Show full text]