*Nited States Patent C ’ Patented Aug.- 12, 1969

Total Page:16

File Type:pdf, Size:1020Kb

*Nited States Patent C ’ Patented Aug.- 12, 1969 3,461,160 *nited States Patent C ’ Patented Aug.- 12, 1969 1 2 HNO3 is introduced into the reaction system as an 3,461,160 I aqueous solution. Optionally, an organic solvent (dioxane, PREPARATION OF DICARBOXYLIC ACIDS acetic acid, tetrahydrofuran, Z-nitropropane, or nitrocy Eugene Dennis Wilhoit, Orange, Tex., assignor to E. I. du Pont de Nemours and Company, Wilmington, Del., a clohexane) can be introduced into the reaction system. The corporation of Delaware preferred organic solvents in this process are dioxane and No Drawing. Filed Apr. 28, 1966, Ser. No. 545,833 acetic acid. In the synthesis of higher molecular weight di Int. Cl. C07c 51/20, 51/32 carboxylic acids (those containing 10-18 carbon atoms, US. Cl. 260-533 13 Claims for example) it is preferred, but not necessary, that an or ganic solvent be present to ensure that all materials are '10 maintained in the liquid phase. Usually when lower molec ABSTRACT OF THE DISCLOSURE ular weight ole?ns are employed as the starting material, A process for the oxidation of cyclic ole?ns to dicar organic solvents are not required. boxylic acids such as 1,12-dodecanedioic acid which com The amount of HNO3, H2O, vanadium element, and prises contacting the ole?ns in a liquid phase reaction sys osmium element present is expressed in terms of the rela tem comprising aqueous nitric acid and a catalyst which tive weights of each in the reaction system, based upon is a combination of osmium and vanadium at a tempera 100 parts. Organic starting materials and products, or ture in the range 50 to 150° C. with an oxygen pressure in ganic solvents, and any other material present (such as the a range of 1-7 atmospheres. remainder of the compound in which the catalysts were introduced, if not introduced as the element itself) do not form part of this calculation. The amount of ole?n and This invention relates to dicarboxylic acids, and more solvent employed is expressed as parts per 100 parts of the particularly, to a process for the preparation of dicarbox system mentioned above. ylic acids from cyclic ole?ns. HNO, can comprise 10-70 parts (by weight) of the above-mentioned 100 part system, preferably 25-50 parts Dicarboxylic acids are useful in the manufacture of 25 synthetic resins, plasticizers, and industrial chemicals. The thereof. The amounts of vanadium and osmium, expressed prior art teaches that cyclic ole?ns may be oxidized to di as the amount of the element present, are vanadium, 0.01 carboxylic acids directly in low yield. Since the low yield 07 part, preferably 0.1-0.5 part; and osmium, 0.01-5.0 might have been due to the complexity of the reaction, parts, preferably 0.5-2.5 parts. Thus the relative amount of water is 24-90 parts. Should the presence of an organic the art further teaches that it is desirable to conduct the 30 oxidation in multiple stages so as to afford greater control solvent be desirable, the amount thereof can be varied of the products formed. widely, depending upon the particular reaction system. The process of the present invention provides a simple With the preferred organic solvent, dioxane, generally no one-step high-yield method for the production of dicar more than 100 parts of dioxane are present. It may be de sirable to add to the reaction system dicarboxylic acids, boxylic acids from cyclic ole?ns, which consumes only 35 small amounts of HNO3. The reduction products of HNO3 such as adipic acid, to increase the solubility of the organic formed in this process (nitric oxide and nitrogen dioxide) materials, For example, due to cosolubility effects, cyclo can, by reaction with oxygen in the presence of water, be hexene seems to be more soluble in an aqueous solution regenerated to HNO3. of adipic acid than in water alone. The process of the present invention comprises oxi 40 The relative amount of ole?n present in the process of dizing cyclic mono-, di-, or polyole?ns in a liquid-phase this invention at any given point should be controlled, system comprising HNO3 and osmium-vanadium catalyst. whether a batch or continuous method is employed. In The presence of an organic solvent (for the dicarboxylic either event, slow continuous admission of ole?n is pre acid product) is optional. Such a solvent is desirable when ferred, so that there is never present at any point during the process more ole?n than osmium on a molar basis. the product is of limited solubility in water. This process, 45 for example, can be employed to oxidize substituted or Should an excess of ole?n be present, a reaction with unsubstituted cyclic monoole?ns to the corresponding di HNO3 would probably ensue, with diminution of yield. basic acid. Likewise, cyclic diole?ns can be oxidatively The heat of reaction can be better controlled with a slow ruptured at each ole?nic bond to form two dibasic acids admission of ole?n. of lower molecular weight and can also be ruptured at one 50 The process of this invention can be carried out as a ole?nic bond to form unsaturated diacids. , batch-type operation or in a continuous manner. Illustrative of cyclic ole?ns useful as starting materials A typical continuous process useful in this invention in the process of this invention are those containing up to comprises feeding aqueous HNO3 (and, optionally, an 18 carbon atoms, for example, cyclohexane, cycloheptene, organic solvent) and the ole?n into a stirred, heated re cyclooctene, cyclononene, cyclodecene, cycloundecene, 55 action mixture described above. An aqueous solution com cyclododecene, cyclohexadiene, 1,5-cyclooctadiene, 3 prising mainly HNO3 and dibasic acid(s) is drawn from methylcyclohexene, 4-methylcyclohexene, 4-vinylcyclohex the reactor. If the aqueous solution is sufficiently concen one, B-methylcyclooctene, 3-methylcyclodecene, 3-methyl trated in dicarboxylic acid, the solution can be cooled, if cyclododecene, and cis-4-cyclohexene-l,Z-dicarboxylic necessary, to 50-70" C. to precipitate out the dicarboxylic acid. 60 acid product(s). The solid product is separated by ?ltra The vanadium-osmium system can be supplied to the re tion and the aqueous ?ltrate is recycled. The aqueous ?l action mixture in any one of a number of forms. For ex trate can optionally be concentrated in a still prior to re ample, either osmium or vanadium can be introduced as cycling. the element itself, an oxide of the element, or a salt con When the process of the present invention is conducted taining the element. It is immaterial in which of the above 65 on a batch basis, it is generally preferred that ole?n be forms osmium and vanadium are supplied to the reaction introduced into a stirred aqueous solution of HNO3 and system, since oxidation occurs at once on making up the osmium-vanadium catalyst (and organic solvent, if any), reaction ssytem as described herein. Illustrative of the the solution being held at reaction temperature. Ole?n and chemical forms in which the catalysts can be introduced osmium can optionally be premixed prior to addition of are osmium (as the element), OsO4, vanadium (as the 70 acid. element), V204, V205, and NH4VO3 (ammonium vana The temperature, time, and composition of the reaction date), I<2[OSO4(OH)2]. system are interrelated, and a degree of latitude is avail 3,461,160 3 4 able in selecting these process variables. The temperature and a portion of the solution was analyzed by liquid of the process can be in the range 50—150° C. The pre chromatography (see table for relative weights of reac~ ferred temperature range is 60—120° C. tants and yield of major products based on amount of The process of this invention can optionally be carried ole?n charged). From the remainder of the solution, di out in the presence or absence of oxygen. Pressures of 5 basic acid products were then isolated by crystallization oxygen of up to several hundred p.s.i. can be employed in and identi?ed. this process. Conveniently maintained oxygen pressures The amount of gaseous product (N2 and N20) not use are in the range from about 1-7 atmospheres, i.e., up to ful in regeneration of HNO3 corresponded to the consump about 100 psi. Air can be employed as the source of tion of 0.15 gram of HNO3 per mole of adipic acid pro oxygen in this process. In this event the oxygen pressure 10 duced. referred to herein is the partial pressure of oxygen in air. Examples II-X The presence of oxygen (as the element or as air) over the ole?n oxidation process incorporates the advantage of The procedure of these examples was that of Example regenerating HNO3 in situ simultaneously with the ole?n I, except for modi?cation as noted in the Table. The total volume of the aqueous solution of HNO3, osmium and oxidation. By applying oxygen pressure to the oxidation 15 system, NO is very rapidly converted to N02, which sub vanadium varied between 20 and 40 ml. Note that in Ex sequently reacts with H2O to form HNO3. Since the major amples II, V, and VI dioxane was present, in Example off-gases from the ole?n oxidation of this process are NO IX 2-nitropropane was employed, and in Example X ace tic acid was present. and N02, applying oxygen to the system thus sharply re Example XI duces the amount of off-gas from the reactor. This meth 20 od of operation, therefore, has the advantage of requiring Dioxane (10 ml.) and 2 ml.
Recommended publications
  • Cycloalkanes, Cycloalkenes, and Cycloalkynes
    CYCLOALKANES, CYCLOALKENES, AND CYCLOALKYNES any important hydrocarbons, known as cycloalkanes, contain rings of carbon atoms linked together by single bonds. The simple cycloalkanes of formula (CH,), make up a particularly important homologous series in which the chemical properties change in a much more dramatic way with increasing n than do those of the acyclic hydrocarbons CH,(CH,),,-,H. The cyclo- alkanes with small rings (n = 3-6) are of special interest in exhibiting chemical properties intermediate between those of alkanes and alkenes. In this chapter we will show how this behavior can be explained in terms of angle strain and steric hindrance, concepts that have been introduced previously and will be used with increasing frequency as we proceed further. We also discuss the conformations of cycloalkanes, especially cyclo- hexane, in detail because of their importance to the chemistry of many kinds of naturally occurring organic compounds. Some attention also will be paid to polycyclic compounds, substances with more than one ring, and to cyclo- alkenes and cycloalkynes. 12-1 NOMENCLATURE AND PHYSICAL PROPERTIES OF CYCLOALKANES The IUPAC system for naming cycloalkanes and cycloalkenes was presented in some detail in Sections 3-2 and 3-3, and you may wish to review that ma- terial before proceeding further. Additional procedures are required for naming 446 12 Cycloalkanes, Cycloalkenes, and Cycloalkynes Table 12-1 Physical Properties of Alkanes and Cycloalkanes Density, Compounds Bp, "C Mp, "C diO,g ml-' propane cyclopropane butane cyclobutane pentane cyclopentane hexane cyclohexane heptane cycloheptane octane cyclooctane nonane cyclononane "At -40". bUnder pressure. polycyclic compounds, which have rings with common carbons, and these will be discussed later in this chapter.
    [Show full text]
  • Studies on Photochemical Reactions of Simple Alkenes
    Title STUDIES ON PHOTOCHEMICAL REACTIONS OF SIMPLE ALKENES Author(s) 井上, 佳久 Citation Issue Date Text Version ETD URL http://hdl.handle.net/11094/1547 DOI rights Note Osaka University Knowledge Archive : OUKA https://ir.library.osaka-u.ac.jp/ Osaka University STUDIESON PHOTOCHEMICAL REACTIONS CF SIMPLE ALKENES YOSHIHISA INOUE OSAKA UNIVERSITY OSAKA, JAPAN JANUARY, 1977 ii Preface The work of thi's•theSis 'was performed under the guiqance of Professor Hiroshi Sakurai at the ZnstituteofScientific and lndustrial Research, Osaka University. I arn deeply grateÅíul to Professor Hiroshi Sakurai for his appro- priate guidance and continuOus encouragernent throughout this work since 1972. : am aiso grateful to Professor Yoshinobu Odaira-who initiated me into the organic photochemistry in 1971-1972. : arn indebted to Assistant Professor Setsuo Takamuku for his invaluable discussions throughout the work. Many thanks are given to Drs. Yoshiki Okarrtoto, Chyongjin Pac, Susumu Toki, and Yasuo Shige- mitsu for their helpful suggestions through the stimulating discussions with me. T would like to express my gratitude to Mr. Kazuyoshi Mori- tsugut Mr. Masahiro Kadohira, and Ms. Yoko Kunitomi for their collabo- rations in the course of experiment. Finally I wish to thank all the members of Sakurai Laboratory for their warm friendship. t- ..<2IZI Yoshihisa Inoue Suita, Osaka January, Z977 iii List of Papers The contents of this thesis are composed of the following papers. 1) Mercury Photosensitized Rbaction of Cycloheptene. Mechanism of Norcarane Formation Y. Tnoue, M. Kadohira, S. Takasnuku, and H. Sakurait Tetrahedron Lett., 459(1974). 2) Vapor-phase Photolysis of cis-- and trans-4i5-Diraethylcyclohexenes Y. rnoue, S.
    [Show full text]
  • Revised Group Additivity Values for Enthalpies of Formation (At 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds
    Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds Cite as: Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 Submitted: 17 January 1996 . Published Online: 15 October 2009 N. Cohen ARTICLES YOU MAY BE INTERESTED IN Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties The Journal of Chemical Physics 29, 546 (1958); https://doi.org/10.1063/1.1744539 Critical Evaluation of Thermochemical Properties of C1–C4 Species: Updated Group- Contributions to Estimate Thermochemical Properties Journal of Physical and Chemical Reference Data 44, 013101 (2015); https:// doi.org/10.1063/1.4902535 Estimation of the Thermodynamic Properties of Hydrocarbons at 298.15 K Journal of Physical and Chemical Reference Data 17, 1637 (1988); https:// doi.org/10.1063/1.555814 Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 25, 1411 © 1996 American Institute of Physics for the National Institute of Standards and Technology. Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon-Hydrogen and Carbon-Hydrogen-Oxygen Compounds N. Cohen Thermochemical Kinetics Research, 6507 SE 31st Avenue, Portland, Oregon 97202-8627 Received January 17, 1996; revised manuscript received September 4, 1996 A program has been undertaken for the evaluation and revision of group additivity values (GAVs) necessary for predicting, by means of Benson's group additivity method, thermochemical properties of organic molecules. This review reports on the portion of that program dealing with GAVs for enthalpies of formation at 298.15 K (hereinafter abbreviated as 298 K) for carbon-hydrogen and carbon-hydrogen-oxygen compounds.
    [Show full text]
  • Open Ronald Aungst Thesis 2.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science STEREOSELECTIVE SYNTHESIS OF (Z)-2-ACYL-2-ENALS VIA RETROCYCLOADDITIONS OF 5-ACYL-4-ALKYL-4H-1,3-DIOXINS: APPLICATIONS IN NATURAL PRODUCT SYNTHESIS A Thesis in Chemistry By Ronald A. Aungst, Jr. © 2007 Ronald A. Aungst, Jr. Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2007 The thesis of Ronald A. Aungst, Jr., was reviewed and approved* by the following: Raymond L. Funk Professor of Chemistry Thesis Advisor Chair of Committee Steven M. Weinreb Russell and Mildred Marker Professor Of Natural Products Chemistry Kenneth S. Feldman Professor of Chemistry J. Martin Bollinger, Jr. Associate Professor of Biochemistry and Molecular Biology Associate Professor of Chemistry Ayusman Sen Professor of Chemistry Head of Chemistry *Signatures are on file in the Graduate School ABSTRACT Reported herein are several approaches for the synthesis of substituted acrolein derivatives via the retrocycloaddition of substituted 4H-1,3-dioxins. Upon thermal or Lewis acid mediated retro hetero Diels-Alder reactions of these substrates, an appropriately substituted acrolein derivative is generated (stereoselectively in most cases) which can be utilized as a substrate for a variety of cycloaddition reactions. These cycloadditions, including Diels-Alder, hetero Diels-Alder, and [4 + 3], have provided access to several ring systems with excellent control over regio- and stereoselectivity. A strategy for the stereocontrolled synthesis of (Z)-2-acylenals has been developed through utilization of a retrocycloaddition reaction of 5-acyl-4-alkyl-4H- 1,3-dioxins. This approach has provided concise synthetic routes to several natural products containing the 5-acyl-2H-3,4-dihydropyran substructure.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,880,764 Imai Et Al
    United States Patent (19) 11 Patent Number: 4,880,764 Imai et al. (45) Date of Patent: "k Nov. 14, 1989 54 DEHYDROGENATION CATALYST AND 3,931,054 1/1976 Lester .................................. 502/332 PROCESS 3,936,395 2/1976 Hayes ....... ... 252/466 4,003,852 1/1977 Hayes ....... ... 252/466 (75) Inventors: Tamotsu Imai, Mt. Prospect; Hayim 4,104,317 8/1978 Antos ....... ... 585/434 Abrevaya, Wilmette, both of Ill, Y 4,672,146 6/1987 Abrevaya. ... 585/660 4,716, 143 12/1987 Inai .......... ... 585/660 73 Assignee: UOP, Des Plaines, Ill. 4,786,625 1/1988 Imai et al. ... 585/660 Notice: The portion of the term of this patent 4,827,072 5/1989 Imai .......... ... 585/443 subsequent to Nov. 22, 2005 has been Primary Examiner-Asok Pal disclaimed. 57 ABSTRACT Appl. No.: 21 289,137 A novel catalytic composite and a process of its use is 22 Fied: Dec. 23, 1988 disclosed. The catalyst comprises a platinum group metal component, a first modifier component selected Related U.S. Application Data from Group IA and IIA elements of the Periodic Table, 60 Continuation-in-part of Ser. No. 221,977, Jul. 20, 1988, a second modifier components selected from the group Pat. No. 4,827,072, which is a division of Ser. No. of elements consisting of palladium, iridum, and os 31,882, Dec. 11, 1987, Pat. No. 4,786,625, which is a mium, and a third modifier component selected from continuation-in-part of Ser. No. 18,541, Feb. 25, 1987, the elements of Group IVA of the Peridoic Table of the Pat.
    [Show full text]
  • NINETEENTH NATIONAL ORGANIC CHEMISTRY SYMPOSIUM of The
    NINETEENTH NATIONAL ORGANIC CHEMISTRY SYMPOSIUM of the AMERICAN CHEMICAL SOCIETY AUSPICES OF THE DIVISION OF ORGANIC CHEMISTRY AND THE ARIZONA STATE UNIVERSITY * June 13-17,1965 Tempe, Arizona NINETEENTH NATIONAL ORGANIC CHEMISTRY SYMPOSIUM of the . AMERICAN CHEMICAL SOCIETY * Registration: Gammage Auditorium and Palo Verde Hall Sunday June 13 - Thursday June 17 Meetings: Gammage Auditorium G. Biichi J. F. Bunnett E. J. Corey W. G. Dauben W. Herz H. Muxfeldt J. D. Roberts M. Stiles G. Stork H. H. Wasserman K. B. Wiberg 'j I Program Monday, June 13 Registration: Gammage Auditorium and Palo Verde Halls Meetings: Gammage Auditorium 10:00 A.M. Welcome WILLIAM J. BURKE, Vice­ President, Arizona State University. Re­ sponse, T. L. CAIRNS, Chairman, Division of Organic Chemistry, ACS 10:30 A.M. E. J. COREY, "New Methods for the Construction of Complex Molecules." 11:30 A.M. Discussion of Paper 1 2:00 P.M. HARRY H. WASSERMAN, "The Oxi­ dation of Heterocyclic Systems by Mole­ cular Oxygen." 3:00 P.M. Discussion of Paper 2 3:30 P.M. WILLIAM G. DAUBEN, "Some As­ pects of the Photochemistry of Conju­ gated Dienes." 4:30 P.M. Discussion of Paper 3 Tuesday, June 15 9:00A.M. GILBERT STORK, "Progress ill Syn­ thetic Organic Chemistry." 10:00 A.M. Discussion of Paper 4 10:30 A.M. HANS MUXFELDT, "Total Synthesis of Tetracycline Antibiotics." 11:30 A.M. Discussion of Paper 5 8:00 P.M. ARTHUR C. COPE, Roger Adams Award Address, "Resolution and Prop­ erties of trans Cyclic Olefins; Transition Metal Complexes with Organic Com­ pounds." Wednesday, June 16 9:00A.M.
    [Show full text]
  • Complexation with Aqueous Silver Ion and with Molecular Iodine. Jerome Robert Olechowski Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1958 Ring Size and Reactivity of Cyclic Olefins: Complexation With Aqueous Silver Ion and With Molecular Iodine. Jerome Robert Olechowski Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Olechowski, Jerome Robert, "Ring Size and Reactivity of Cyclic Olefins: Complexation With Aqueous Silver Ion and With Molecular Iodine." (1958). LSU Historical Dissertations and Theses. 452. https://digitalcommons.lsu.edu/gradschool_disstheses/452 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. RING SIZE AND REACTIVITY OF CYCLIC OLEFINS: COMPLEXATION WITH AQUEOUS SILVER ION AND WITH MOLECULAR IODINE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Jerome Robert Olechowski B.S., Canlsius College, 1952 M.S., The Pennsylvania State University, 1955 January, 1958 ACKNOWLEDGEMENT The author wishes to thank Dr. James G. Traynham, who suggested and guided this investigation. The author wishes to acknowledge the financial aid from the Celanese Corporation of America and from the Petroleum Research Fund of the American Chemical Society, in the form of fellowships. A person who has never written a dissertation may wonder why authors so frequently acknowledge the patience and understanding of their wives.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,382,349 B2 Harrington Et Al
    USOO9382349B2 (12) United States Patent (10) Patent No.: US 9,382,349 B2 Harrington et al. (45) Date of Patent: *Jul. 5, 2016 (54) POLYALPHAOLEFINS PREPARED USING (58) Field of Classification Search MODIFIED SALAN CATALYST COMPOUNDS CPC ........ C08F 4/60189; C08F 4/76; C08F 10/14: CO8F 210/14 (71) Applicants: ExxonMobil Chemical Patents Inc., USPC ............................ 526/172, 161,348.2, 348.3 Baytown, TX (US); Ramot at Tel-Aviv See application file for complete search history. University Ltd., Tel Aviv (IL) (56) References Cited (72) Inventors: Bruce A. Harrington, Houston, TX U.S. PATENT DOCUMENTS (US); Garth R. Giesbrecht, The 4,066,715 A 1/1978 Isa et al. Woodlands, TX (US); Matthew W. 5,153,157 A 10/1992 Hlatky et al. Holtcamp, Huffman, TX (US); Moshe 5,942.459 A 8/1999 Sugano et al. Kol, Ramat Gan (IL); Konstantin Press, 5,955,557 A * 9/1999 Machida ................... CO8F8/04 Rishon LeZion (IL); Gregory S. Day, 526,346 6,309,997 B1 10/2001 Fujita et al. Pasadena, TX (US) 6,399,724 B1 6/2002 Matsui et al. 6,444,773 B1* 9/2002 Markel ..................... CO8F 2.08 (73) Assignees: ExxonMobil Chemical Patents Inc., 526,348 Baytown, TX (US); Ramot at Tel-Aviv 6,462,136 B1 10/2002 Saito University Ltd., Tel Aviv (IL) 6,531,555 B2 3/2003 Whiteker 6,548,723 B2 4/2003 Bagheri et al. 6,632,899 B2 10/2003 Kol et al. (*) Notice: Subject to any disclaimer, the term of this 6,686,490 B1 2/2004 Kol et al.
    [Show full text]
  • The Intramolecular Ene Reaction of Some 1, 2-Diallylcyclohexanes
    ABSTRACT JACK CHING-PING CHENGfor the MASTER OF SCIENCE (Name of Student) (Degree) in Chemistry presented on 1.1.. 5 /976 (Major Dept. ) (Date) Title: THE INTRAMOLECULAR ENE REACTION OF SOME 1, 2- DIALLYLCYCLOHEXANES Redacted for privacy Abstract approved by: Elliot N. Marvell The familiar equilibrium between 1, 7- octadiene and cyclo- octene at temperatures exceeding 3000, indicates that an ene-retroene process could be used as a six atom ring expansion method. To test this possibility we prepared both cis and trans isomers of 1, 2- diallyl- 1, 2 -bis (trimethylsiloxy) cyclohexane and pyrolyzed this both in liquid and vapor phases.Reaction in either phase was clean leading essen- tially to a single product, 1,8-bis (trimethylsiloxy) bicyclo [6.4.0] dodec-2-ene, the ene product.This was not separated into cis and trans isomers either preparatively or analytically.This cis isomer of the reactant rearranges faster than the trans isomer. A minor by-product was identified as 7- spiro [6.5] dodecen-l-one, which ap- parently arises from 2-bicyclo [6.4.0] dodecen-1,8-diol through a pinacol rearrangement. This reaction must therefore result from the presence of traces of moisture, though it is possible to account for the rearrangement without hydrolysis. A sample of 1, 2-dially1-1-trimethylsiloxy cyclohexane was also prepared and rearranged. The product consisted of two isomers in a 9:1 ratio.The major isomer was 1-trimethylsiloxy-6-bicyclo [ 6. 4.0] dodecene and the mirror isomer was the 2-ene. These results show that the 2-ally1 group acts preferentially as the ene component, a result undoubtedly keyed by steric effects.
    [Show full text]
  • United States Patent Office Patented Aug
    3,830,877 United States Patent Office Patented Aug. 20, 1974 2 a quantity not higher than 10% of the copolymer's total 3,830,877 sequences, may have - in some cases-a number 2. COPOLYALKENAMERS HAVING A SEQUENTIAL lower than 5 or higher than 1000. STRUCTURE, AND METHOD FOR PREPARENG The polymeric chains constituting our sequential co SAME polyalkenamers are therefore characterized-when only Gino Dall Asta, San Giuliano Milanese, and Giuseppe Motroni, Milan, Italy, assignors to Montecatini Edison homosequences are present in said chains-by the fol S.p.A. Milan, Italy lowing general formula (3): No Drawing. Filed Aug. 1, 1972, Ser. No. 277,120 Claims priority, application Italy, Aug. 2, 1971, (3) -CH=CH(-CH2)-2-CH=CH(-CH2)mize 27,061/71 O -CH=CH(-CH) , , int, C, C08f 7/00 wherein ni', m', and z', z', have the values indicated U.S. C. 260-875 7 Claims hereinbefore respectively for m and z. The ratio between the various types of alkenameric ABSTRACT OF THE DISCLOSURE units is generally comprised between 5 and 90% of a 5 type of alkenameric units with respect to the polymer There are disclosed new high molecular weight copoly total. alkenamers the chains of which are made up of two or Besides the structures indicated in formula (3), the se more more alternating types of monomeric units arranged quential copolyalkenamers according to the present in according to either homo-sequences or both homo-Se vention may contain also small amounts, not higher than quences and hetero-sequences (which is to Say Sequences 20 15% of the total copolymer, of other monomeric units, made up of statistically distributed monomeric units).
    [Show full text]
  • The Pennsylvania State University
    The Pennsylvania State University The Graduate School Department of Chemistry STUDIES TOWARD THE TOTAL SYNTHESIS OF STREPTORUBIN B A Dissertation in Chemistry by William Brent Clayton © 2008 William Brent Clayton Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2008 ii The dissertation of William Brent Clayton was reviewed and approved* by the following: Ken S. Feldman Professor of Chemistry Dissertation Advisor Chair of Committee Gong Chen Assistant Professor of Chemistry Scott Phillips Assistant Professor of Chemistry Ronald Hedden Assistant Professor of Materials Science and Engineering Ayusman Sen Professor of Chemistry Head of the Department of Chemistry *Signatures are on file in the Graduate School iii ABSTRACT Streptorubin B is a member of the prodigiosin family of natural products which are receiving considerable attention from academia as well as the pharmaceutical industry for their novel immunosuppressive and cytotoxic properties. Despite this interest, little effort has been shown toward an asymmetric synthesis of streptorubin B or the relationship between its chirality and biological activity. Progress toward the asymmetric synthesis of streptorubin B and its stereoisomers is herein described. Alkynyliodonium salts are versatile substrates which have been used to form a variety of heterocycles and other ring systems. The alkylidenecarbenes generated from the addition of soft nucleophiles to alkynyliodonium salts can insert intramolecularly into carbon-hydrogen bonds and typically do so with a high degree of regio- and stereoselectivity. The C ring of streptorubin B was made using this branch of hypervalent iodine chemistry, but this route was later abandoned due to failure of subsequent steps and instability of the products formed.
    [Show full text]
  • The Stereochemistry of the Catalytic Hydrogenation Of
    - 1 - THE STEREOCHEMISTRY OF THE CATALYTIC HYDROGENATION OF CYCLIC ALLYLIC ALCOHOLS Being a Thesis submitted to the University of Surrey for the Degree of Doctor of Philosophy in the Faculty of Science by Raj Kumar Sehga1 Department of Chemistry, July, 1968 University of Surrey, London, S*W. 11 ProQuest Number: 10803856 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10803856 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 4 8 1 0 6 - 1346 - z - ABSTRACT 2~Butylidenecyclopentanone, 2-butylidenecyclohexanone and 2-butylidenecycloheptanone were prepared by the Heformatsky reaction of 2-bromocyclopentanone, B-b^omocyclo- hexanone enol acetate and 2~bromocycloheptanone respectively with n-butyraldehyde and their structure was confirmed by infrared and ultraviolet spectroscopy. Reduction of the exo-cyclic ketones with LiAlH^ gave the corresponding cyclic allylic alcohols which were purified chromatographically and characterised by their mass spectra. On catalytic hydrogenation of these cyclic allylic alcohols, over a number of catalysts, three components were obtained by chromatography* Xn each case the first components were shown to be the dehydrogenation products, by comparison of theif retention times with authentic samples.
    [Show full text]