MATERIALS and MOLECULAR RESEARCH DIVISION Annual Report 1982
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Highlights Se- Mathematics and Engineering— the Lead Signers of the Letter Exhibit
June 2003 NEWS Volume 12, No.6 A Publication of The American Physical Society http://www.aps.org/apsnews Nobel Laureates, Industry Leaders Petition April Meeting Prizes & Awards President to Boost Science and Technology Prizes and Awards were presented to seven- Sixteen Nobel Laureates in that “unless remedied, will affect call for “a Presidential initiative for teen recipients at the Physics and sixteen industry lead- our scientific and technological FY 2005, following on from your April meeting in Philadel- ers have written to President leadership, thereby affecting our budget of FY 2004, and focusing phia. George W. Bush to urge increas- economy and national security.” on the long-term research portfo- After the ceremony, ing funding for physical sciences, The letter, which is dated April lios of DOE, NASA, and the recipients and their environmental sciences, math- 14th, also indicates that “the Department of Commerce, in ad- guests gathered at the ematics, computer science and growth in expert personnel dition to NSF and NIH,” that, Franklin Institute for a engineering. abroad, combined with the di- “would turn around a decade-long special reception. The letter, reinforcing a recent minishing numbers of Americans decline that endangers the future Photo Credit: Stacy Edmonds of Edmonds Photography Council of Advisors on Science and entering the physical sciences, of our nation.” The top photo shows four of the five women recipients in front of a space-suit Technology report, highlights se- mathematics and engineering— The lead signers of the letter exhibit. They are (l to r): Geralyn “Sam” Zeller (Tanaka Award); Chung-Pei rious funding problems in the an unhealthy trend—is leading were Burton Richter, director Michele Ma (Maria-Goeppert Mayer Award); Yvonne Choquet-Bruhat physical sciences and related fields corporations to locate more of emeritus of SLAC, and Craig (Heineman Prize); and Helen Edwards (Wilson Prize). -
Berni Julian Alder, Theoretical Physicist and Inventor of Molecular Dynamics, 1925–2020 Downloaded by Guest on September 24, 2021 9 E
RETROSPECTIVE BerniJulianAlder,theoreticalphysicistandinventor of molecular dynamics, 1925–2020 RETROSPECTIVE David M. Ceperleya and Stephen B. Libbyb,1 Berni Julian Alder, one of the leading figures in the invention of molecular dynamics simulations used for a wide array of problems in physics and chemistry, died on September 7, 2020. His career, spanning more than 65 years, transformed statistical mechanics, many body physics, the study of chemistry, and the microscopic dynamics of fluids, by making atomistic computational simulation (in parallel with traditional theory and exper- iment) a new pathway to unexpected discoveries. Among his many honors, the CECAM prize, recognizing exceptional contributions to the simulation of the mi- croscopic properties of matter, is named for him. He was awarded the National Medal of Science by President Berni Julian Alder in 2015. Image credit: Lawrence Obama in 2008. Livermore National Laboratory. Alder was born to Ludwig Adler and Otillie n ´ee Gottschalk in Duisburg, Germany on September 9, sampling algorithm that was to revolutionize statistical 1925. Alder’s father Ludwig was a chemist who worked physics (1). Teller recruited Alder to the just-founded in the German aluminum industry. When the Nazis Lawrence Radiation Laboratory (later, the Lawrence Liv- came to power in 1933, Alder, his parents, elder ermore National Laboratory), where he, along with brother Henry, and twin brother Charles fled to Zurich, other young talented scientists, built a unique “can Switzerland. In 1941, they further emigrated to the do” scientific culture that thrives to this day. United States (becoming “Alders” in the process), Beginning in the mid-1950s, Alder, who possessed where they settled in Berkeley, California. -
SPRING 1991 in This Newsletter You Will Find: 1. Announcement and 2Nd
NEWSLETTER - SPRING 1991 In this Newsletter you will find: 1. Announcement and 2nd Call for Papers for Physics Computing ’91 2. Announcement of the 14th International Conference on the Numerical Simulation of Plasmas 3. Announcement of the 4th International Conference on Computational Physics in Prague 4. In Memory of Sid Fernbach 5. Transition to Divisional Status Expected 6. Fellowship Nomination Process 7. Message from Chair 8. Other News Items 9. Roster of Executive Committee 10. Voting Instructions and Election Information PHYSICS COMPUTING ’91 including The 3rd International Conference on Computational Physics Announcement and Second Call for Papers The Topical Group on Computational Physics has combined forces with the editors of the AIP journal Computers in Physics to bring you a full week on the many aspects of the use of computers in physics including the traditional topics of computational physics. The meeting will convene on 10 June 1991 in the San Jose Convention Center and run through 14 June 1991. San Jose is located some 40 miles southeast of San Francisco at the south end of the San Francisco Bay, and is in the heart of “Silicon” Valley. The universities, national laboratories, and the large assortment of computer hardware and software companies in the region make San Jose an ideal venue for this meeting. The meeting program consists of plenary, oral, poster, and tutorial sessions, with many invited papers being given in the oral sessions. We are fortunate to have D. Allan Bromley, Assistant to the President for Science and Technology, to give our Keynote Address. Our meeting format consists of several 90-minute sessions arranged such that the plenary sessions do not run in parallel with other sessions and with 3-hour poster sessions held in the exhibit hall. -
Cycloalkanes, Cycloalkenes, and Cycloalkynes
CYCLOALKANES, CYCLOALKENES, AND CYCLOALKYNES any important hydrocarbons, known as cycloalkanes, contain rings of carbon atoms linked together by single bonds. The simple cycloalkanes of formula (CH,), make up a particularly important homologous series in which the chemical properties change in a much more dramatic way with increasing n than do those of the acyclic hydrocarbons CH,(CH,),,-,H. The cyclo- alkanes with small rings (n = 3-6) are of special interest in exhibiting chemical properties intermediate between those of alkanes and alkenes. In this chapter we will show how this behavior can be explained in terms of angle strain and steric hindrance, concepts that have been introduced previously and will be used with increasing frequency as we proceed further. We also discuss the conformations of cycloalkanes, especially cyclo- hexane, in detail because of their importance to the chemistry of many kinds of naturally occurring organic compounds. Some attention also will be paid to polycyclic compounds, substances with more than one ring, and to cyclo- alkenes and cycloalkynes. 12-1 NOMENCLATURE AND PHYSICAL PROPERTIES OF CYCLOALKANES The IUPAC system for naming cycloalkanes and cycloalkenes was presented in some detail in Sections 3-2 and 3-3, and you may wish to review that ma- terial before proceeding further. Additional procedures are required for naming 446 12 Cycloalkanes, Cycloalkenes, and Cycloalkynes Table 12-1 Physical Properties of Alkanes and Cycloalkanes Density, Compounds Bp, "C Mp, "C diO,g ml-' propane cyclopropane butane cyclobutane pentane cyclopentane hexane cyclohexane heptane cycloheptane octane cyclooctane nonane cyclononane "At -40". bUnder pressure. polycyclic compounds, which have rings with common carbons, and these will be discussed later in this chapter. -
Berni Alder (1925–2020)
Obituary Berni Alder (1925–2020) Theoretical physicist who pioneered the computer modelling of matter. erni Alder pioneered computer sim- undergo a transition from liquid to solid. Since LLNL ulation, in particular of the dynamics hard spheres do not have attractive interac- of atoms and molecules in condensed tions, freezing maximizes their entropy rather matter. To answer fundamental ques- than minimizing their energy; the regular tions, he encouraged the view that arrangement of spheres in a crystal allows more Bcomputer simulation was a new way of doing space for them to move than does a liquid. science, one that could connect theory with A second advance concerned how non- experiment. Alder’s vision transformed the equilibrium fluids approach equilibrium: field of statistical mechanics and many other Albert Einstein, for example, assumed that areas of applied science. fluctuations in their properties would quickly Alder, who died on 7 September aged 95, decay. In 1970, Alder and Wainwright dis- was born in Duisburg, Germany. In 1933, as covered that this intuitive assumption was the Nazis came to power, his family moved to incorrect. If a sphere is given an initial push, Zurich, Switzerland, and in 1941 to the United its average velocity is found to decay much States. After wartime service in the US Navy, more slowly. This caused a re-examination of Alder obtained undergraduate and master’s the microscopic basis for hydrodynamics. degrees in chemistry from the University of Alder extended the reach of simulation. California, Berkeley. While working for a PhD In molecular dynamics, the forces between at the California Institute of Technology in molecules arise from the electronic density; Pasadena, under the physical chemist John these forces can be described only by quan- Kirkwood, he began to use mechanical com- tum mechanics. -
Studies on Photochemical Reactions of Simple Alkenes
Title STUDIES ON PHOTOCHEMICAL REACTIONS OF SIMPLE ALKENES Author(s) 井上, 佳久 Citation Issue Date Text Version ETD URL http://hdl.handle.net/11094/1547 DOI rights Note Osaka University Knowledge Archive : OUKA https://ir.library.osaka-u.ac.jp/ Osaka University STUDIESON PHOTOCHEMICAL REACTIONS CF SIMPLE ALKENES YOSHIHISA INOUE OSAKA UNIVERSITY OSAKA, JAPAN JANUARY, 1977 ii Preface The work of thi's•theSis 'was performed under the guiqance of Professor Hiroshi Sakurai at the ZnstituteofScientific and lndustrial Research, Osaka University. I arn deeply grateÅíul to Professor Hiroshi Sakurai for his appro- priate guidance and continuOus encouragernent throughout this work since 1972. : am aiso grateful to Professor Yoshinobu Odaira-who initiated me into the organic photochemistry in 1971-1972. : arn indebted to Assistant Professor Setsuo Takamuku for his invaluable discussions throughout the work. Many thanks are given to Drs. Yoshiki Okarrtoto, Chyongjin Pac, Susumu Toki, and Yasuo Shige- mitsu for their helpful suggestions through the stimulating discussions with me. T would like to express my gratitude to Mr. Kazuyoshi Mori- tsugut Mr. Masahiro Kadohira, and Ms. Yoko Kunitomi for their collabo- rations in the course of experiment. Finally I wish to thank all the members of Sakurai Laboratory for their warm friendship. t- ..<2IZI Yoshihisa Inoue Suita, Osaka January, Z977 iii List of Papers The contents of this thesis are composed of the following papers. 1) Mercury Photosensitized Rbaction of Cycloheptene. Mechanism of Norcarane Formation Y. Tnoue, M. Kadohira, S. Takasnuku, and H. Sakurait Tetrahedron Lett., 459(1974). 2) Vapor-phase Photolysis of cis-- and trans-4i5-Diraethylcyclohexenes Y. rnoue, S. -
50 MS10 Abstracts
50 MS10 Abstracts IP1 because of physical requirements like objectivity and plas- Diffusion Generated Motion for Large Scale Simu- tic indifference. The latter leads to the multiplicative de- lations of Grain Growth and Recrystallization composition of the strain tensor and asks to consider the plastic tensor as elements of multiplicative matrix group, A polycrystalline material consists of many crystallites which leads to strong geometric nonlinearities. We show called grains that are differentiated by their varying ori- how polyconvexity and time-incremental minimization can entation. These materials are very common, including be used to establish global existence for elastoplastic evo- most metals and ceramics. The properties of the network lutionary systems. of grains making up these materials influence macroscale properties, such as strength and conductivity. Hence, un- Alexander Mielke derstanding the statistics of the grain network and how it Weierstrass Institute for Applied Analysis and Stochastics evolves is of great interest. We describe new, efficient nu- Berlin merical algorithms for simulating with high accuracy on [email protected] uniform grids the motion of grain boundaries in polycrys- tals. These algorithms are related to the level set method, but generate the desired geometric motion of a network IP4 of curves or surfaces (along with the appropriate bound- Gels and Microfluidic Devices ary conditions) by alternating two very simple operations for which fast algorithms already exist: Convolution with a Gels are materials that consist of a solid, crosslinked sys- kernel, and the construction of the signed distance function tem in a fluid solvent. They are over-whelmingly present to a set. Motions that can be treated with these algorithms in biological systems and also occur in many aspects of include grain growth under misorientation dependent sur- materials applications. -
Revised Group Additivity Values for Enthalpies of Formation (At 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds
Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds Cite as: Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 Submitted: 17 January 1996 . Published Online: 15 October 2009 N. Cohen ARTICLES YOU MAY BE INTERESTED IN Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties The Journal of Chemical Physics 29, 546 (1958); https://doi.org/10.1063/1.1744539 Critical Evaluation of Thermochemical Properties of C1–C4 Species: Updated Group- Contributions to Estimate Thermochemical Properties Journal of Physical and Chemical Reference Data 44, 013101 (2015); https:// doi.org/10.1063/1.4902535 Estimation of the Thermodynamic Properties of Hydrocarbons at 298.15 K Journal of Physical and Chemical Reference Data 17, 1637 (1988); https:// doi.org/10.1063/1.555814 Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 25, 1411 © 1996 American Institute of Physics for the National Institute of Standards and Technology. Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon-Hydrogen and Carbon-Hydrogen-Oxygen Compounds N. Cohen Thermochemical Kinetics Research, 6507 SE 31st Avenue, Portland, Oregon 97202-8627 Received January 17, 1996; revised manuscript received September 4, 1996 A program has been undertaken for the evaluation and revision of group additivity values (GAVs) necessary for predicting, by means of Benson's group additivity method, thermochemical properties of organic molecules. This review reports on the portion of that program dealing with GAVs for enthalpies of formation at 298.15 K (hereinafter abbreviated as 298 K) for carbon-hydrogen and carbon-hydrogen-oxygen compounds. -
Open Ronald Aungst Thesis 2.Pdf
The Pennsylvania State University The Graduate School Eberly College of Science STEREOSELECTIVE SYNTHESIS OF (Z)-2-ACYL-2-ENALS VIA RETROCYCLOADDITIONS OF 5-ACYL-4-ALKYL-4H-1,3-DIOXINS: APPLICATIONS IN NATURAL PRODUCT SYNTHESIS A Thesis in Chemistry By Ronald A. Aungst, Jr. © 2007 Ronald A. Aungst, Jr. Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2007 The thesis of Ronald A. Aungst, Jr., was reviewed and approved* by the following: Raymond L. Funk Professor of Chemistry Thesis Advisor Chair of Committee Steven M. Weinreb Russell and Mildred Marker Professor Of Natural Products Chemistry Kenneth S. Feldman Professor of Chemistry J. Martin Bollinger, Jr. Associate Professor of Biochemistry and Molecular Biology Associate Professor of Chemistry Ayusman Sen Professor of Chemistry Head of Chemistry *Signatures are on file in the Graduate School ABSTRACT Reported herein are several approaches for the synthesis of substituted acrolein derivatives via the retrocycloaddition of substituted 4H-1,3-dioxins. Upon thermal or Lewis acid mediated retro hetero Diels-Alder reactions of these substrates, an appropriately substituted acrolein derivative is generated (stereoselectively in most cases) which can be utilized as a substrate for a variety of cycloaddition reactions. These cycloadditions, including Diels-Alder, hetero Diels-Alder, and [4 + 3], have provided access to several ring systems with excellent control over regio- and stereoselectivity. A strategy for the stereocontrolled synthesis of (Z)-2-acylenals has been developed through utilization of a retrocycloaddition reaction of 5-acyl-4-alkyl-4H- 1,3-dioxins. This approach has provided concise synthetic routes to several natural products containing the 5-acyl-2H-3,4-dihydropyran substructure. -
The Early Years of Quantum Monte Carlo (1): the Ground State
The Early Years of Quantum Monte Carlo (1): the Ground State Michel Mareschal1,2, Physics Department, ULB , Bruxelles, Belgium Introduction In this article we shall relate the history of the implementation of the quantum many-body problem on computers, and, more precisely, the usage of random numbers to that effect, known as the Quantum Monte Carlo method. The probabilistic nature of quantum mechanics should have made it very natural to rely on the usage of (pseudo-) random numbers to solve problems in quantum mechanics, whenever an analytical solution is out of range. And indeed, very rapidly after the appearance of electronic machines in the late forties, several suggestions were made by the leading scientists of the time , - like Fermi, Von Neumann, Ulam, Feynman,..etc- which would reduce the solution of the Schrödinger equation to a stochastic or statistical problem which , in turn, could be amenable to a direct modelling on a computer. More than 70 years have now passed and it has been witnessed that, despite an enormous increase of the computing power available, quantum Monte Carlo has needed a long time and much technical progresses to succeed while numerical quantum dynamics mostly remains out of range at the present time. Using traditional methods for the implementation of quantum mechanics on computers has often proven inefficient, so that new algorithms needed to be developed. This is very much in contrast with what happened for classical systems. At the end of the fifties, the two main methods of classical molecular simulation, Monte Carlo and Molecular Dynamics, had been invented and an impressively rapid development was going to take place in the following years: this has been described in previous works [Mareschal,2018] [Battimelli,2018]. -
United States Patent (19) 11 Patent Number: 4,880,764 Imai Et Al
United States Patent (19) 11 Patent Number: 4,880,764 Imai et al. (45) Date of Patent: "k Nov. 14, 1989 54 DEHYDROGENATION CATALYST AND 3,931,054 1/1976 Lester .................................. 502/332 PROCESS 3,936,395 2/1976 Hayes ....... ... 252/466 4,003,852 1/1977 Hayes ....... ... 252/466 (75) Inventors: Tamotsu Imai, Mt. Prospect; Hayim 4,104,317 8/1978 Antos ....... ... 585/434 Abrevaya, Wilmette, both of Ill, Y 4,672,146 6/1987 Abrevaya. ... 585/660 4,716, 143 12/1987 Inai .......... ... 585/660 73 Assignee: UOP, Des Plaines, Ill. 4,786,625 1/1988 Imai et al. ... 585/660 Notice: The portion of the term of this patent 4,827,072 5/1989 Imai .......... ... 585/443 subsequent to Nov. 22, 2005 has been Primary Examiner-Asok Pal disclaimed. 57 ABSTRACT Appl. No.: 21 289,137 A novel catalytic composite and a process of its use is 22 Fied: Dec. 23, 1988 disclosed. The catalyst comprises a platinum group metal component, a first modifier component selected Related U.S. Application Data from Group IA and IIA elements of the Periodic Table, 60 Continuation-in-part of Ser. No. 221,977, Jul. 20, 1988, a second modifier components selected from the group Pat. No. 4,827,072, which is a division of Ser. No. of elements consisting of palladium, iridum, and os 31,882, Dec. 11, 1987, Pat. No. 4,786,625, which is a mium, and a third modifier component selected from continuation-in-part of Ser. No. 18,541, Feb. 25, 1987, the elements of Group IVA of the Peridoic Table of the Pat. -
NINETEENTH NATIONAL ORGANIC CHEMISTRY SYMPOSIUM of The
NINETEENTH NATIONAL ORGANIC CHEMISTRY SYMPOSIUM of the AMERICAN CHEMICAL SOCIETY AUSPICES OF THE DIVISION OF ORGANIC CHEMISTRY AND THE ARIZONA STATE UNIVERSITY * June 13-17,1965 Tempe, Arizona NINETEENTH NATIONAL ORGANIC CHEMISTRY SYMPOSIUM of the . AMERICAN CHEMICAL SOCIETY * Registration: Gammage Auditorium and Palo Verde Hall Sunday June 13 - Thursday June 17 Meetings: Gammage Auditorium G. Biichi J. F. Bunnett E. J. Corey W. G. Dauben W. Herz H. Muxfeldt J. D. Roberts M. Stiles G. Stork H. H. Wasserman K. B. Wiberg 'j I Program Monday, June 13 Registration: Gammage Auditorium and Palo Verde Halls Meetings: Gammage Auditorium 10:00 A.M. Welcome WILLIAM J. BURKE, Vice President, Arizona State University. Re sponse, T. L. CAIRNS, Chairman, Division of Organic Chemistry, ACS 10:30 A.M. E. J. COREY, "New Methods for the Construction of Complex Molecules." 11:30 A.M. Discussion of Paper 1 2:00 P.M. HARRY H. WASSERMAN, "The Oxi dation of Heterocyclic Systems by Mole cular Oxygen." 3:00 P.M. Discussion of Paper 2 3:30 P.M. WILLIAM G. DAUBEN, "Some As pects of the Photochemistry of Conju gated Dienes." 4:30 P.M. Discussion of Paper 3 Tuesday, June 15 9:00A.M. GILBERT STORK, "Progress ill Syn thetic Organic Chemistry." 10:00 A.M. Discussion of Paper 4 10:30 A.M. HANS MUXFELDT, "Total Synthesis of Tetracycline Antibiotics." 11:30 A.M. Discussion of Paper 5 8:00 P.M. ARTHUR C. COPE, Roger Adams Award Address, "Resolution and Prop erties of trans Cyclic Olefins; Transition Metal Complexes with Organic Com pounds." Wednesday, June 16 9:00A.M.