放散虫(ポリキスティナ)の生細胞観察と培養 実験から得られた知見と問題点 Recent Knowledge On
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Evaluated List of Cenozic-Recent Radiolarian Species Names (Polycystinea), Based on Those Used in the DSDP, ODP and IODP Deep-Sea Drilling Programs
Zootaxa 3999 (3): 301–333 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3999.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:69B048D3-7189-4DC0-80C0-983565F41C83 An evaluated list of Cenozic-Recent radiolarian species names (Polycystinea), based on those used in the DSDP, ODP and IODP deep-sea drilling programs DAVID LAZARUS1, NORITOSHI SUZUKI2, JEAN-PIERRE CAULET3, CATHERINE NIGRINI4†, IRINA GOLL5, ROBERT GOLL5, JANE K. DOLVEN6, PATRICK DIVER7 & ANNIKA SANFILIPPO8 1Museum für Naturkunde, Invalidenstrasse 43, 10115 Berlin, Germany. E-mail: [email protected] 2Institute of Geology and Paleontology, Tohoku University, Sendai 980-8578 Japan. E-mail: [email protected] 3242 rue de la Fure, Charavines, 38850 France. E-mail: [email protected] 4deceased 5Natural Science Dept, Blinn College, 2423 Blinn Blvd, Bryan, Texas 77805, USA. E-mail: [email protected] 6Minnehallveien 27b, 3290 Stavern, Norway. E-mail: [email protected] 7Divdat Consulting, 1392 Madison 6200, Wesley, Arkansas 72773, USA. E-mail: [email protected] 8Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA. E-mail: [email protected] Abstract A first reasonably comprehensive evaluated list of radiolarian names in current use is presented, covering Cenozoic fossil to Recent species of the primary fossilising subgroup Polycystinea. It is based on those species names that have appeared in the literature of the Deep Sea Drilling Project and its successor programs, the Ocean Drilling Program and Integrated Ocean Drilling Program, plus additional information from the published literature, and several unpublished taxonomic da- tabase projects. -
Radiolarian Distribution in Equatorial Pacifie Plankton East
OCEANOLOGICA ACTA 1985 -VOL. 8 - N• 1 ~---- Tropical Pacifie Zooplankton distribution Living radiolaria distribution Radiolarian distribution In East Radiolaria Pacifique tropical Distribution du zooplancton equatorial Pacifie plankton Distribution des radiolaires vivants Radiolaria Demetrio Boltovskoy, Silvia S. Jankilevich Consejo Nacional de Investigaciones Cientificas y Técnicas, Departamento de Ciencias Biol6gicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina. Received 2/1/84, in revised form 10/5/84, accepted 22/6/84. ABSTRACT On the basis of radiolarian data, four major areas can be recognized in the Eastern equatorial Pacifie Ocean (transected from approximately 9°N, 80°W to 2°N, 140°W to l7°N, 155°W): 1) Between 5°N, 80°W and 2°N, 95°W, with high overall productivity and low radiolarian abundance and diversity; Spongodiscus sp. A, and to a lesser extent D. tetrathalamus, are the dominating taxa in this assemblage. 2) Along the equator, between approximately 95°W and 140°W. The productivity and planktonic standing stock of this area decrease to the west, while its radiolarian diversity and abundance increa.se, as well as the diversity of sorne other zooplankters. This area can be further subdivided into two sections at 124°W, the western one being conspicuously richer both quanti- and qualitatively than the eastern section. 0. stenozona + T. octacantha are characteristic of this area. 3) From approximately 6°N, 138°W to 10°N, 142°W; radiolarian abundance and diversity drop sharply, as weil as overall planktonic productivity and standing stock. 4) From approximately 10°N, 142°W to 17°N, 153°W; there is a further decrease in radiolarian abundance and diversity. -
An Evaluated List of Cenozic-Recent Radiolarian Species Names (Polycystinea), Based on Those Used in the DSDP, ODP and IODP Deep-Sea Drilling Programs
Zootaxa 3999 (3): 301–333 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3999.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:69B048D3-7189-4DC0-80C0-983565F41C83 An evaluated list of Cenozic-Recent radiolarian species names (Polycystinea), based on those used in the DSDP, ODP and IODP deep-sea drilling programs DAVID LAZARUS1, NORITOSHI SUZUKI2, JEAN-PIERRE CAULET3, CATHERINE NIGRINI4†, IRINA GOLL5, ROBERT GOLL5, JANE K. DOLVEN6, PATRICK DIVER7 & ANNIKA SANFILIPPO8 1Museum für Naturkunde, Invalidenstrasse 43, 10115 Berlin, Germany. E-mail: [email protected] 2Institute of Geology and Paleontology, Tohoku University, Sendai 980-8578 Japan. E-mail: [email protected] 3242 rue de la Fure, Charavines, 38850 France. E-mail: [email protected] 4deceased 5Natural Science Dept, Blinn College, 2423 Blinn Blvd, Bryan, Texas 77805, USA. E-mail: [email protected] 6Minnehallveien 27b, 3290 Stavern, Norway. E-mail: [email protected] 7Divdat Consulting, 1392 Madison 6200, Wesley, Arkansas 72773, USA. E-mail: [email protected] 8Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA. E-mail: [email protected] Abstract A first reasonably comprehensive evaluated list of radiolarian names in current use is presented, covering Cenozoic fossil to Recent species of the primary fossilising subgroup Polycystinea. It is based on those species names that have appeared in the literature of the Deep Sea Drilling Project and its successor programs, the Ocean Drilling Program and Integrated Ocean Drilling Program, plus additional information from the published literature, and several unpublished taxonomic da- tabase projects. -
19. Radiolarians from Sites 434, 435, and 436, Northwest Pacific, Leg 56, Deep Sea Drilling Project
19. RADIOLARIANS FROM SITES 434, 435, AND 436, NORTHWEST PACIFIC, LEG 56, DEEP SEA DRILLING PROJECT Toyosaburo Sakai, Department of Geology, Utsunomiya University, Utsunomiya, Japan INTRODUCTION heated for about 30 minutes at 60°C to set the Caedax and then sealed with a cover glass. Chert samples were During Leg 56 of the Deep Sea Drilling Project, six etched in a 5 per cent hydrofluoric acid solution for holes were drilled at three sites near the Japan Trench about five hours and then washed in water with a soft (Table 1). Sites 434 and 435 are located on the landward brush to detach radiolarian specimens from the chert. wall of the trench and Site 436 on the crest of an outer These were boiled in a solution of sodium hexameta- rise. At all of the sites, Neogene radiolarians were con- phosphate for about 30 minutes, then sieved and mounted sistently recovered, and the lowermost two cores of on a slide in the same manner as for other samples. One Hole 436 contained Cretaceous radiolarians as well. to 10 slides were prepared from each sample to deter- Of the rich and well-preserved Neogene radiolarians mine the relative abundance of taxa present in a given recovered during this cruise, this chapter discusses only assemblage. those of biostratigraphic importance. It consists of a This relative abundance is ordinarily obtained by in- tabulation of occurrence-abundance, a radiolarian event vestigating 500 specimens, which I have categorized as list, and a range chart. In addition, it includes in- follows: A, abundant (over 80 specimens); C, common formation suggesting certain phylogenetic relationships (21-80 specimens); F, few (6-20 specimens); R, rare and a brief discussion of the correlation between the (fewer than 6 specimens); and + , for one or two speci- zones used in this report and those established in Japa- mens present in an assemblage of more than 2000 radi- nese land sequences. -
16. Radiolaria from the Eastern North Pacific, Deep Sea Drilling Project, Leg 18
16. RADIOLARIA FROM THE EASTERN NORTH PACIFIC, DEEP SEA DRILLING PROJECT, LEG 18 Stanley A. Kling, Cities Service Oil Company CONTENTS Page Pagt Introduction 617 Range Chart and Geographic Variation Biostratigraphic Framework 618 in Species Ranges 629 Miocene 618 Evolutionary lineages 629 Pliocene 618 Preservation 633 Pleistocene 618 Paleoecology 633 Radiolarian Site Summaries 618 Possible Mesozoic (Franciscan) Occurrences 633 Site 172 619 Systematics 633 Site 173 619 Collosphaeridae 634 Site 174 620 Actinommidae 634 Site 175 623 Spongodiscidae 635 Site 176 623 Litheliidae 635 Site 177 623 Acanthodesmiidae 635 Site 178 624 Theoperidae 635 Site 179 624 Carpocaniidae 638 Site 180 624 Pterocoryidae 638 Site 181 624 Artostrobiidae 639 Site 182 624 References 640 Radiolarian Events and Potential Datum Levels 624 Plates 641 INTRODUCTION ten stratigraphic horizons at Site 173, becomes parti<;ularrj important. Radiolarians occur at all the sites drilled on DSDP Leg Forms that could be identified with some confidence are 18, although two sites (172 and 174) produced only a few tabulated for those sites in which radiolarians undergo specimens in the surface sediment. Sites 173 and 178 observable stratigraphic change. The distinction among produced sequences extending from Quaternary back into morphotypic, morphotypic-evolutionary, and evolutionary early Miocene, while sequences at other sites are of stratigraphic limits of species, suggested by Riedel and Pliocene-Pleistocene or Pleistocene age. Sanfilippo (1971; Riedel and Sanfilippo, in press), is made Site 173, with abundant well-preserved specimens in this study as nearly as possible. This concept has been throughout, provides the best known sequence of western useful in defining limits of a number of species with rather North American Neogene radiolarians. -
Radiolarian Biostratigraphy of Paleogene Deposits of the Russian Platform (Voronesh Anticline)
Radiolarian biostratigraphy of Paleogene deposits of the Russian Platform (Voronesh Anticline) Irina M. POPOVA Institute of Geology and Paleontology, University of Lausanne, BFSH-2 (Switzerland) [email protected] Centro di Studio di Geologia dell’Appennino e delle catene Perimediterranee, via la Pira 4, Firenze (Italy) Peter O. BAUMGARTNER Institute of Geology and Paleontology, University of Lausanne, BFSH-2 (Switzerland) [email protected] Jean GUEX Institute of Geology and Paleontology, University of Lausanne, BFSH-2 (Switzerland) [email protected] Svetlana V. TOCHILINA Pacific Oceanological Institute, Vladivostok (Russia) Zoya I. GLEZER All Union Geological Institute (VSEGEI), Sredny pr. 74, Saint-Petersburg (Russia) Popova I. M., Baumgartner P. O., Guex J., Tochilina S. V. & Glezer Z. I. 2002. — Radiolarian biostratigraphy of Paleogene deposits of the Russian Platform (Voronesh Anticline). Geodiversitas 24 (1) : 7-59. ABSTRACT The aim of the present biostratigraphic investigation is to construct a discrete radiolarian biochronological scale for the Paleogene of the Voronesh Anticline, processing data with the BIOGRAPH program (Savary & Guex 1991). The subdivisions of this scale are characterized by unique and mutual- ly exclusive assemblages of taxa which are similar to “Concurrent Range Zones” or “Oppel Zones”. This new approach allows to resolve the contradic- tions in correlation that have existed in numerous previous publications and resulted in the creation of three different radiolarian biostratigraphic schemes for the same region of the Russian Platform. The base material for our study are radiolarian assemblages collected from four Paleogene sections located in GEODIVERSITAS • 2002 • 24 (1) © Publications Scientifiques du Muséum national d’Histoire naturelle, Paris. -
Holocene Radiolaria from Sediments of the Gulf of California Text By: Richard N
Holocene Radiolaria from Sediments of the Gulf of California Text by: Richard N. Benson (2005) The following text is excerpted and revised from my 1966 Ph.D. thesis from the University of Minnesota, Minneapolis, Minnesota, USA, “Recent Radiolaria from the Gulf of California.” It reflects the information about the Gulf of California (with a few more recent updates) and the state of radiolarian taxonomy available at that time. I am indebted to William R. Riedel of the Scripps Institution of Oceanography who introduced me to and first mentored me on the study of these beautiful siliceous protist skeletons. In 2003, I spent two months in Oslo, Norway, with Kjell Bjørklund and Jane Dolven to revise and update the taxonomy of the radiolarian taxa I defined and described in 1966 and which now appear in www.radiolaria.org under Radiolarian species info: Holocene (Recent)- --Gulf of California. The Appendix lists the revised names followed by Benson’s (1966) names and cited illustrations that conform to our 2003 concept of each taxon. I have included summaries of later studies of radiolarian distributions in the Gulf by Molina- Cruz (1986), Pisias (1986), and Molina-Cruz et al. (1999). I have renamed taxa listed in those studies to reflect the updated taxonomy found in radiolaria.org. See the synonymies in radiolaria.org for each taxon for names used by the above authors in their studies. Contents Gulf of California Radiolarian Sampling Sites and Procedures................................................. 3 Gulf of California Submarine Topography ................................................................................ 6 Gulf of California Sediments ..................................................................................................... 9 Biogenous Components.......................................................................................................... 9 Gulf of California Climate and Oceanography ....................................................................... -
Classification and Distribution of South Atlantic Recent Polycystine Radiolaria Introduction
CLASSIFICATION AND DISTRIBUTION OF SOUTH ATLANTIC RECENT POLYCYSTINE RADIOLARIA1 Demetrio Boltovskoy ABSTRACT This paper presents a review of the current knowledge on the identification and distribution of Recent polycystine Radiolaria so far recorded, or presumed to occur, in the South Atlantic Ocean (0° to 60°S, from the South American coasts to the coasts of Africa). However, because the area concerned covers from equatorial to Antarctic waters, and since polycystine radiolarians are geographically (but not environmentally) cosmopolitan, the review covers most common species worldwide. Illustrations, short diagnoses, bibliographic references and distributional data (both geographic and vertical) are included for 164 polycystine morphotypes (species-groups, species, and subspecific categories). Introductory remarks offer general data on radiolarian anatomy, biology, ecology, and reproduction. Methodological aspects are dealt with in some detail, with special emphasis being placed on comparative aspects of the environmental and paleoenvironmental information conveyed by planktonic materials, sediment trap samples, and sedimentary deposits. Known or assumed geographic and vertical species-specific distribution ranges are summarized, as well as available information on absolute abundances in the water-column (plankton and sediment trap samples) and in the surface sediments. The illustrated glossary aimed at the less experienced student defines the terms and morphological details useful for diagnostic purposes. Demetrio Boltovskoy, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", and CONICET, Argentina KEYWORDS: Radiolaria, Polycystina, identification, distribution, Recent, plankton, review 1This article constitutes a modified version of the chapter "Radiolaria Polycystina", originally prepared for the book "South Atlantic Zooplankton" (D. -
A New Integrated Morpho- and Molecular Systematic Classification of Cenozoic Radiolarians (Class Polycystinea) – Suprageneric Taxonomy and Logical Nomenclatorial Acts
geodiversitas 2021 43 15 Families DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR : Bruno David, Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Didier Merle ASSISTANT DE RÉDACTION / ASSISTANT EDITOR : Emmanuel Côtez ([email protected]) MISE EN PAGE / PAGE LAYOUT : Emmanuel Côtez COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : Christine Argot (Muséum national d’Histoire naturelle, Paris) Beatrix Azanza (Museo Nacional de Ciencias Naturales, Madrid) Raymond L. Bernor (Howard University, Washington DC) Alain Blieck (chercheur CNRS retraité, Haubourdin) Henning Blom (Uppsala University) Jean Broutin (Sorbonne Université, Paris, retraité) Gaël Clément (Muséum national d’Histoire naturelle, Paris) Ted Daeschler (Academy of Natural Sciences, Philadelphie) Bruno David (Muséum national d’Histoire naturelle, Paris) Gregory D. Edgecombe (The Natural History Museum, Londres) Ursula Göhlich (Natural History Museum Vienna) Jin Meng (American Museum of Natural History, New York) Brigitte Meyer-Berthaud (CIRAD, Montpellier) Zhu Min (Chinese Academy of Sciences, Pékin) Isabelle Rouget (Muséum national d’Histoire naturelle, Paris) Sevket Sen (Muséum national d’Histoire naturelle, Paris, retraité) Stanislav Štamberg (Museum of Eastern Bohemia, Hradec Králové) Paul Taylor (The Natural History Museum, Londres, retraité) COUVERTURE / COVER : Réalisée à partir des Figures de l’article/Made from the Figures of the article. Geodiversitas est indexé dans / Geodiversitas is indexed in: – Science Citation Index Expanded (SciSearch®) -
Jørgensen's Polycystine Radiolarian Slide Collection and New Species
research-articlePapers33X10.1144/jmpaleo2012-027J. K. Dolven et al.Jørgensen’s polycystine radiolarian slide collection 2014 Journal of Micropalaeontology, 33: 21 –58. http://dx.doi.org/10.1144/jmpaleo2012-027 © 2014 The Micropalaeontological Society Jørgensen’s polycystine radiolarian slide collection and new species JANE K. DOLVEN1*, KJELL R. BJØRKLUND2 & TAKUYA ITAKI3 1Department of Geosciences, University of Oslo, PO Box 1047 Blindern, N-0316 Oslo, Norway 2Natural History Museum, Department of Geology, University of Oslo, PO Box 1172 Blindern, N-0318 Oslo, Norway 3Geological Survey of Japan, AIST, Marine Geology Research Group/Institute of Geology and Geoinformation, Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan *Corresponding author (e-mail: [email protected]) ABSTRACT – E. H. Jørgensen’s radiolarian collection is stored at the Natural History Museum in Oslo and holds 93 slides, of these 76 are with plankton from the western and northern coast off Norway. Jørgensen described 43 new polycystine radiolarian species from this material, but did not assign any types. In this pre- sent study we have re-examined the collection, registered and photographed all slides and radiolarian speci- mens, and designated lectotypes and paralectotypes for many of Jørgensen’s species. J. Micropalaeontol. 33(1): 21–58, January 2014. KEYWORDS: radiolaria, taxonomy, Jørgensen’s collection, type species, original descriptions INTRODUCTION PLANKTON SAMPLES AND SLIDES Eugen Honoratus Jørgensen (1862–1938) (Fig. 1) was a Norwegian A large collection of plankton samples, from which Jørgensen lecturer and scientist. He worked most of his life as a researcher at made most of his slides, is stored at the University of Bergen.