Plasmonic Nanoparticles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plasmonic Colloidal Nanoparticles with Open Eccentric Cavities Via Acid-Induced Chemical Transformation
View metadata, citation and similar papers at core.ac.uk brought to you by CORE NPG Asia Materials (2015) 7, e167; doi:10.1038/am.2015.15 OPEN & 2015 Nature Publishing Group All rights reserved 1884-4057/15 www.nature.com/am ORIGINAL ARTICLE Plasmonic colloidal nanoparticles with open eccentric cavities via acid-induced chemical transformation Won Joon Cho1,5, Alum Jung2,5, Suenghoon Han2, Sung-Min Lee3, Taewook Kang4, Kun-Hong Lee2, Kyung Cheol Choi3 and Jin Kon Kim1 Surface-enhanced Raman spectroscopy (SERS) has been considered a promising technique for the detection of trace molecules in biomedicine and environmental monitoring. The ideal metal nanoparticles for SERS must not only fulfill important requirements such as high near-field enhancement and a tunable far-field response but also overcome the diffusion limitation at extremely lower concentrations of a target material. Here, we introduce a novel method to produce gold nanoparticles with open eccentric cavities by selectively adapting the structure of non-plasmonic nanoparticles via acid-mediated surface replacement. Copper oxide nanoparticles with open eccentric cavities are first prepared using a microwave-irradiation-assisted surfactant-free hydrothermal reaction and are then transformed into gold nanoparticles by an acidic gold precursor while maintaining their original structure. Because of the strong near-field enhancement occurring at the mouth of the open cavities and the very rough surfaces resulting from the uniformly covered hyperbranched sharp multi-tips and the free access of SERS molecules inside of the nanoparticles without diffusion limitation, adenine, one of the four bases in DNA, in an extremely diluted aqueous solution (1.0 pM) was successfully detected with excellent reproducibility upon laser excitation with a 785-nm wavelength. -
Plasmonic Nanoparticles in Chemical Analysis
RSC Advances REVIEW View Article Online View Journal | View Issue Plasmonic nanoparticles in chemical analysis Jan Krajczewski, Karol Koła˛taj and Andrzej Kudelski* Cite this: RSC Adv.,2017,7, 17559 Many very sensitive analytical methods utilising specific properties of plasmonic metal nanoparticles have been developed. Some of these techniques are so sensitive that observation of the reliable signal even from a single molecule of the analyte is possible. In this review article we present the most important analytical techniques based on the plasmonic properties of selected metal nanoparticles and the basic theoretical background of these analytical techniques, including the mechanism of the interaction of the electromagnetic radiation with the plasmonic nanoparticles. The analytical techniques presented in this article include methods based on the change of the optical properties of plasmonic nanoparticles caused by analyte-induced aggregation, etching or the change of the growth of plasmonic nanoparticles, and techniques utilising increased efficiency of some optical processes in the proximity of the plasmonic nanoparticles, e.g. surface-enhanced Raman scattering (SERS), surface enhanced infra-red Received 23rd January 2017 absorption (SEIRA), and metal enhanced fluorescence (MEF). Recently, an observed increase in the Accepted 16th March 2017 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. number of applications of techniques utilising surface plasmon resonance for the analysis of various DOI: 10.1039/c7ra01034f industrial, biological, medical, and environmental samples allows us to predict a large increase of the rsc.li/rsc-advances significance of these techniques in the near future. 1. Introduction intensive colour of suspensions of Ag and Au nanoparticles was the reason for using these materials in ancient times. -
Dielectric Function for Gold in Plasmonics Applications: Size Dependence of Plasmon Resonance Frequencies and Damping Rates for Nanospheres
Plasmonics DOI 10.1007/s11468-015-0128-7 Dielectric Function for Gold in Plasmonics Applications: Size Dependence of Plasmon Resonance Frequencies and Damping Rates for Nanospheres Anastasiya Derkachova1 · Krystyna Kolwas1 · Iraida Demchenko1 Received: 10 August 2015 / Accepted: 13 October 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Realistic representation of the frequency Introduction dependence of dielectric function of noble metals has a significant impact on the accuracy of description of their Optical properties of matter are consequences of how it optical properties and farther applications in plasmonics, reflect, transmit, and absorb visible light. In many optical nanoscience, and nanotechnology. Drude-type models suc- problems, the complex refractive index n of a material is cessfully used in describing material properties of silver, for the basic parameter. The index of refraction is related to the gold are known to be not perfect above the threshold energy dielectric function (DF) ε(ω, k) which describes the elec- at 1.8 eV. We give the improved, simple dielectric function tronic interaction of a medium with the incident light wave for gold which accounts for the frequency dependence of of frequency ω and wave vector k. In many problems, the the interband transitions over 1.8 eV and, in addition, for general form of the dielectric function ε(ω, k) can be sim- the finite size effects in gold nanoparticles. On that basis, plified to the spatially local function ε(ω, k) = ε(ω) = we provide the improved characterization of the spectral n(ω)2 = (n (ω)+in (ω))2 [1, 2]. -
University of Trento Parallel FDTD Electromagnetic Simulation of Dispersive Plasmonic Nanostructures and Opal Photonic Crystals in the Optical Frequency Range
PhD Dissertation International Doctoral School in Information and Communication Technologies DISI - University of Trento Parallel FDTD Electromagnetic Simulation of Dispersive Plasmonic Nanostructures and Opal Photonic Crystals in the Optical Frequency Range Antonino Cal`aLesina Advisor: Dott. Alessandro Vaccari FBK - Fondazione Bruno Kessler REET - Renewable Energies and Environmental Technologies XXV Cycle - April 2013 Abstract In the last decade, nanotechnology has enormously and rapidly developed. The technological progress has allowed the practical realization of devices that in the past have been studied only from a theoretical point of view. In particular we focus here on nanotechnologies for the optical frequency range, such as plasmonic devices and photonic crystals, which are used in many areas of engineering. Plasmonic noble metal nanoparticles are used in order to improve the photovoltaic solar cell efficiency for their for- ward scattering and electromagnetic field enhancement properties. Pho- tonic crystals are used for example in low threshold lasers, biosensors and compact optical waveguide. The numerical simulation of complex problems in the field of plasmonics and photonics is cumbersome. The dispersive behavior has to be modeled in an accurate way in order to have a detailed description of the fields. Besides the code parallelization is needed in order to simulate large and realistic problems. Finite Difference Time Domain (FDTD) is the numerical method used for solving the Maxwell's equations and simulating the electromagnetic interaction between the optical radiation and the nanostructures. A modified algorithm for the Drude dispersion is proposed and validated in the case of noble metal nanoparticles. The modi- fied approach is extended to other dispersion models from a theoretical point of view. -
Analysis of the Interaction Between Classical and Quantum Plasmons Via FDTD-TDDFT Method Jian Wei You, Member, IEEE, and Nicolae C
IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, VOL. XX, NO. XX, XX 2019 1 Analysis of the interaction between classical and quantum plasmons via FDTD-TDDFT method Jian Wei You, Member, IEEE, and Nicolae C. Panoiu, Member, IEEE Abstract—A powerful hybrid FDTD–TDDFT method is used to surface-enhanced Raman scattering [5], [18], higher-harmonic study the interaction between classical plasmons of a gold bowtie light generation [19]–[22], catalytic monitoring of reactant nanoantenna and quantum plasmons of graphene nanoflakes adsorption [23], sensing of electron charge-transfer events (GNFs) placed in the narrow gap of the nanoantenna. Due to the hot-spot plasmon of the bowtie nanoantenna, the local- [24], and biosensing [25], [26]. field intensity in the gap increases significantly, so that the When the geometrical size of plasmonic nanoparticles is less optical response of the GNF is dramatically enhanced. To study than about 10 nm, the description of their optical properties this interaction between classical and quantum plasmons, we becomes more challenging because quantum effects begin to decompose this multiscale and multiphysics system into two play an important role. At this scale, plasmon resonances computational regions, a classical and a quantum one. In the quantum region, the quantum plasmons of the GNF are studied become more sensitive to the quantum nature of the conduction using the TDDFT method, whereas the FDTD method is used electrons [9], thus the theoretical predictions of approaches to investigate the classical plasmons of the bowtie nanoantenna. based entirely on the Maxwell equations are less successful in Our analysis shows that in this hybrid system the quantum describing experimental results [27], [28]. -
Nonlocal and Size-Dependent Dielectric Function for Plasmonic Nanoparticles
applied sciences Article Nonlocal and Size-Dependent Dielectric Function for Plasmonic Nanoparticles Kai-Jian Huang 1,2 , Shui-Jie Qin 1,2,*, Zheng-Ping Zhang 1, Zhao Ding 1 and Zhong-Chen Bai 2 1 College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China 2 Guizhou Provincial Key Lab for Photoelectron Technology and Application, Guizhou University, Guiyang 550025, China * Correspondence: [email protected] Received: 4 July 2019; Accepted: 26 July 2019; Published: 31 July 2019 Abstract: We develop a theoretical approach to investigate the impact that nonlocal and finite-size effects have on the dielectric response of plasmonic nanostructures. Through simulations, comprehensive comparisons of the electron energy loss spectroscopy (EELS) and the optical performance are discussed for a gold spherical dimer system in terms of different dielectric models. Our study offers a paradigm of high efficiency compatible dielectric theoretical framework for accounting the metallic nanoparticles behavior combining local, nonlocal and size-dependent effects in broader energy and size ranges. The results of accurate analysis and simulation for these effects unveil the weight and the evolution of both surface and bulk plasmons vibrational mechanisms, which are important for further understanding the electrodynamics properties of structures at the nanoscale. Particularly, our method can be extended to other plasmonic nanostructures where quantum-size or strongly interacting effects are likely to play an important role. Keywords: EELS; plasmons vibrational modes; nanoparticles; nonlocal and size-dependent dielectric 1. Introduction Classical local electrodynamics in nanostructures under the assumption that the polarization characteristics at a given point are locally related to the external electromagnetic excitation, which has been thoroughly explored from isolated nanoparticles and dimers to other complex structures [1–5]. -
Plasmon Lasers
Plasmon Lasers Wenqi Zhu1,2, Shawn Divitt1,2, Matthew S. Davis1, 2, 3, Cheng Zhang1,2, Ting Xu4,5, Henri J. Lezec1 and Amit Agrawal1, 2* 1Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899 USA 2Maryland NanoCenter, University of Maryland, College Park, MD 20742 USA 3Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY 13244 USA 4National Laboratory of Solid-State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China 5Collaborative Innovation Center of Advanced Microstructures, Nanjing, China Corresponding*: [email protected] Recent advancements in the ability to design, fabricate and characterize optical and optoelectronic devices at the nanometer scale have led to tremendous developments in the miniaturization of optical systems and circuits. Development of wavelength-scale optical elements that are able to efficiently generate, manipulate and detect light, along with their subsequent integration on functional devices and systems, have been one of the main focuses of ongoing research in nanophotonics. To achieve coherent light generation at the nanoscale, much of the research over the last few decades has focused on achieving lasing using high- index dielectric resonators in the form of photonic crystals or whispering gallery mode resonators. More recently, nano-lasers based on metallic resonators that sustain surface plasmons – collective electron oscillations at the interface between a metal and a dielectric – have emerged as a promising candidate. This article discusses the fundamentals of surface plasmons and the various embodiments of plasmonic resonators that serve as the building block for plasmon lasers. -