Erythropoiesis and Splenomegaly

Total Page:16

File Type:pdf, Size:1020Kb

Erythropoiesis and Splenomegaly Innate Immune Activation during Salmonella Infection Initiates Extramedullary Erythropoiesis and Splenomegaly This information is current as Amy Jackson, Minelva R. Nanton, Hope O'Donnell, Adovi of September 27, 2021. D. Akue and Stephen J. McSorley J Immunol published online 15 October 2010 http://www.jimmunol.org/content/early/2010/10/15/jimmun ol.1001198 Downloaded from Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision http://www.jimmunol.org/ • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: by guest on September 27, 2021 http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published October 15, 2010, doi:10.4049/jimmunol.1001198 The Journal of Immunology Innate Immune Activation during Salmonella Infection Initiates Extramedullary Erythropoiesis and Splenomegaly Amy Jackson, Minelva R. Nanton, Hope O’Donnell, Adovi D. Akue, and Stephen J. McSorley Systemic Salmonella infection commonly induces prolonged splenomegaly in murine or human hosts. Although this increase in splenic cellularity is often assumed to be due to the recruitment and expansion of leukocytes, the actual cause of splenomegaly remains unclear. We monitored spleen cell populations during Salmonella infection and found that the most prominent increase is found in the erythroid compartment. At the peak of infection, the majority of spleen cells are immature CD712Ter119+ retic- ulocytes, indicating that massive erythropoiesis occurs in response to Salmonella infection. Indeed, this increase in RBC precur- sors corresponded with marked elevation of serum erythropoietin (EPO). Furthermore, the increase in RBC precursors and EPO production required innate immune signaling mediated by Myd88/TRIF. Neutralization of EPO substantially reduced the imma- Downloaded from ture RBC population in the spleen and allowed a modest increase in host control of infection. These data indicate that early innate immunity to Salmonella initiates marked splenic erythropoiesis and may hinder bacterial clearance. The Journal of Immunology, 2010, 185: 000–000. almonella infections are typically transmitted by contami- CD4 T cells are activated rapidly postinfection, it takes several nated food or water and can cause a spectrum of clinical weeks to develop Salmonella-specific Th1 cells that are capable of http://www.jimmunol.org/ S manifestations, ranging from uncomplicated local gastro- producing large amounts of IFN-g and controlling intracellular enteritis to typhoid (1, 2). The outcome of Salmonella infection bacterial replication (11, 12). In the absence of Th1 cells or IFN-g, depends on the particular bacterial serovar and both the genetic the infected host is unable to regulate bacterial growth and even- susceptibility and immune competence of the infected host (1, 2). tually succumbs to infection (13, 14). The increasing incidence of Salmonella antibiotic resistance and During systemic infection, Salmonella spp. replicate extensively the limited potential for the development of new antibiotics (3–5) within phagocyte populations of the GALTs, spleen, liver, and necessitate the generation of new Salmonella vaccines. However, bone marrow (15, 16). The early innate immune response to in- for this goal to be realized, a greater understanding of bacteria– fection invokes chemokine-dependent recruitment of neutrophils host interactions and immunity to infection is required. and monocytes to the infected site, where they can be activated to by guest on September 27, 2021 Salmonella spp. are facultative intracellular bacteria that are produce inducible NO synthase and kill bacteria (16, 17). How- able to survive macrophage phagocytosis and replicate within ever, recruitment of phagocytes can also be counterproductive, a modified endosome, called the Salmonella-containing vacuole because these newly recruited phagocytes provide a rich source (6, 7). Salmonella-containing vacuole formation is regulated by of new cells for additional infection. Indeed, prior depletion of multiple Salmonella virulence genes, which allow adaptation of phagocytes actually increases host resistance to Salmonella in- the macrophage intracellular environment for optimal bacterial fection (18). In addition to recruitment of phagocytes, Salmonella growth (7). Infected phagocytes therefore require an activation infection also induces marked activation and expansion of CD4 signal provided by IFN-g to initiate bactericidal processes that and CD8 T cells (19–21), the majority of which appear to be overcome phagosome modifications and eliminate the infecting Salmonella-specific and eventually control bacterial replication bacteria (8). During the early stages of Salmonella infection, IFN-g (22). Thus, a hallmark of Salmonella infection is increased cellularity is provided by cells of the innate immune system, such as NK cells, of the spleen, owing in part to recruitment and expansion of phago- neutrophils, and macrophages, thus allowing the host to restrain cyte and lymphocyte populations responding to infection. Although initial bacterial growth while a Salmonella-specific adaptive im- the splenomegaly accompanying Salmonella infection is sometimes mune response develops (9, 10). Although Salmonella-specific attributed to this increase in splenic leukocytes, the contribution of other cell populations is not always carefully examined. Center for Infectious Diseases and Microbiology Translational Research and Division The expansion and differentiation of erythroid cells usually of Gastroenterology, Hepatology and Nutrition, Department of Medicine, McGuire occurs in the bone marrow and is tightly regulated by the pro- Translational Research Facility, University of Minnesota Medical School, Minneap- duction of the hormone erythropoietin (EPO). Erythroid progen- olis, MN 55455 itor cells respond to EPO and progress through a series of well- Received for publication April 13, 2010. Accepted for publication September 9, 2010. characterized differentiation stages before extruding nuclei and forming mature circulating erythrocytes (23, 24). This process of This work was supported by Grants AI055743, AI56172, and AI076278 from the National Institutes of Health. erythroid differentiation is normally regulated so that sufficient Address correspondence and reprint requests to Stephen J. McSorley, University of erythrocytes are produced in the bone marrow. However, under Minnesota Medical Center, Center for Infectious Diseases and Microbiology Trans- conditions of stress, erythroid differentiation can become dys- lational Research, TRF, 2001 6th Street SE, Minneapolis, MN 55455. E-mail address: regulated, and a large increase in erythrocytes can be initiated in [email protected] the spleen (25), termed “extramedullary erythropoiesis”. Abbreviations used in this paper: EPO, erythropoietin; WT, wild type. Erythropoiesis can also be substantially altered during infec- Copyright Ó 2010 by The American Association of Immunologists, Inc. 0022-1767/10/$16.00 tion with microbial pathogens. For example, infection with Friend www.jimmunol.org/cgi/doi/10.4049/jimmunol.1001198 2 ERYTHROPOIESIS DURING SALMONELLA INFECTION spleen focus-forming virus initiates erythroid hyperplasia in the science; BD Biosciences). After staining, cells were fixed using parafor- absence of EPO (26), and studies published decades earlier clearly maldehyde and examined by flow cytometry using a FACS Canto. All flow demonstrate that injection of bacterial endotoxin can reduce bone data were analyzed using FlowJo software (Tree Star). marrow, but increase splenic erythropoiesis (27–29). A more re- EPO measurement cent study reported that Salmonella infection can cause erythroid depletion of the bone marrow and a corresponding increase in Blood was collected by retro-orbital bleeding of anesthetized, infected, and uninfected mice and incubated at room temperature for 2 h. Each sample splenic erythropoiesis (30). However, the initiation of splenic was centrifuged in a bench-top centrifuge to pellet the RBCs, and serum was erythropoiesis during Salmonella infection has received relatively collected and stored at 220˚C. EPO concentrations in serum samples were little attention. measured using the Quantikine Mouse/Rat Epo Immunoasssay (R&D In this study, we examined the process of splenomegaly during Systems, Minneapolis, MN) following the recommended protocol. murine Salmonella infection. Our data show that a massive in- In vivo blockade of EPO crease in immature erythroid reticulocytes accounts for the greatest single change in splenic cell populations following Salmonella Salmonella-infected mice were injected i.v. with 250 mg monoclonal rat anti-mouse EPO or rat IgG2a isotype control (R&D Systems) in PBS, infection. Expansion of this erythroid population was initiated by 2 and 4 d postinfection. Blood was collected by retro-orbital bleeding of a marked increase in EPO production, which required recognition anesthetized mice on days 4 and 7 postinfection,
Recommended publications
  • Mechanisms of Erythrocyte Development and Regeneration: Implications for Regenerative Medicine and Beyond Emery H
    © 2018. Published by The Company of Biologists Ltd | Development (2018) 145, dev151423. http://dx.doi.org/10.1242/dev.151423 REVIEW Mechanisms of erythrocyte development and regeneration: implications for regenerative medicine and beyond Emery H. Bresnick1,*, Kyle J. Hewitt1, Charu Mehta1, Sunduz Keles2, Robert F. Paulson3 and Kirby D. Johnson1 ABSTRACT better understanding of how stress can influence erythropoiesis, Hemoglobin-expressing erythrocytes (red blood cells) act as both during development and in a regenerative context. In this fundamental metabolic regulators by providing oxygen to cells and Review, we focus on cell-autonomous and non-cell-autonomous tissues throughout the body. Whereas the vital requirement for mechanisms governing erythrocyte development, the applicability oxygen to support metabolically active cells and tissues is well of these mechanisms to stress-instigated erythropoiesis (erythrocyte established, almost nothing is known regarding how erythrocyte regeneration) and their implications for other regenerative development and function impact regeneration. Furthermore, many processes. We begin by considering the principles that govern the questions remain unanswered relating to how insults to hematopoietic cell fate transitions that produce the diverse complement of blood stem/progenitor cells and erythrocytes can trigger a massive cells, including erythrocytes. It is not our intent, however, to regenerative process termed ‘stress erythropoiesis’ to produce comprehensively address this topic, as it has been heavily reviewed billions of erythrocytes. Here, we review the cellular and molecular elsewhere (Crisan and Dzierzak, 2016; Dzierzak and de Pater, 2016; mechanisms governing erythrocyte development and regeneration, Orkin and Zon, 2008; Tober et al., 2016). and discuss the potential links between these events and other regenerative processes.
    [Show full text]
  • Fetal-Like Erythropoiesis During Recovery from Transient Erythroblastopenia of Childhood (TEC)
    Pediatr. Res. 15: 1036-1039 (198 1) erythrocyte, aplasia transient erythroblastopenia of childhood fetal-like erythropoiesis Fetal-Like Erythropoiesis during Recovery from Transient Erythroblastopenia of Childhood (TEC) Division of Hematolog). and Oncology, Children's Hospital Medical Center and the Sidney Farber Cancer It~stitule, and the Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA Summary bone marrow failure (7.%. 16)' or in states of ra~idbone marrow recovery from aplasia after bone marrow transplantation (1, 3, Fetal-like erythropoiesis frequently accompanies marrow stress 17). The term "fetal-like" is used because the erythrocytes may conditions such as Diamond-Blackfan syndrome and aplastic ane- express only one and not all of the characteristics of fetal red mia. In contrast, patients with transient erythroblastopenia of blood cells. childhood have erythrocytes which lack fetal characteristics at the To if fetal-like erythropoiesis accompanies bone mar- time of diagnosis. This report describes nine children with transient row recovery from other hypoplastic states, we studied children erythroblastopenia of childhood in whom transient, fetal-like eryth- with transient erythroblastopenia of childhood (TEC) from the was observed during the period These pa- tirne of presentation to full recovery, TEC is an unusual disease of tients initially presented with anemia, reticulocytopenia, erythro- infants and young children, characterized by the insidious onset cytes of normal size for age, low levels of fetal hemoglobin, and of hypoproliferative anemia without decreases in leukocyte and i-antigen. During the recovery period, however, erythrocytes man- platelet production. Although the anemia may be quite severe at ifested one or more fetal characteristics. These included an in- presentation, rapid and complete recovery is the rule with per- creased fetal hemoglobin (in three of five patients), the presence manent restoration of normal hematopoiesis (2, 11, 19, 23, 25, 26).
    [Show full text]
  • The Role of Macrophages in Erythropoiesis and Erythrophagocytosis
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Frontiers - Publisher Connector REVIEW published: 02 February 2017 doi: 10.3389/fimmu.2017.00073 From the Cradle to the Grave: The Role of Macrophages in Erythropoiesis and Erythrophagocytosis Thomas R. L. Klei†, Sanne M. Meinderts†, Timo K. van den Berg and Robin van Bruggen* Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands Erythropoiesis is a highly regulated process where sequential events ensure the proper differentiation of hematopoietic stem cells into, ultimately, red blood cells (RBCs). Macrophages in the bone marrow play an important role in hematopoiesis by providing signals that induce differentiation and proliferation of the earliest committed erythroid progenitors. Subsequent differentiation toward the erythroblast stage is accompanied by the formation of so-called erythroblastic islands where a central macrophage provides further cues to induce erythroblast differentiation, expansion, and hemoglobinization. Edited by: Robert F. Paulson, Finally, erythroblasts extrude their nuclei that are phagocytosed by macrophages Pennsylvania State University, USA whereas the reticulocytes are released into the circulation. While in circulation, RBCs Reviewed by: slowly accumulate damage that is repaired by macrophages of the spleen. Finally, after Xinjian Chen, 120 days of circulation, senescent RBCs are removed from the circulation by splenic and University of Utah, USA Reinhard Obst, liver macrophages. Macrophages are thus important for RBCs throughout their lifespan. Ludwig Maximilian University of Finally, in a range of diseases, the delicate interplay between macrophages and both Munich, Germany developing and mature RBCs is disturbed. Here, we review the current knowledge on *Correspondence: Robin van Bruggen the contribution of macrophages to erythropoiesis and erythrophagocytosis in health [email protected] and disease.
    [Show full text]
  • Lecture 2 Haemopoiesis, Erythropoiesis and Leucopoiesis Haemopoiesis Haemopoiesis Or Haematopoiesis Is the of Process Formation of New Blood Cellular Components
    NPTEL – Biotechnology – Cell Biology Lecture 2 Haemopoiesis, erythropoiesis and leucopoiesis Haemopoiesis Haemopoiesis or haematopoiesis is the of process formation of new blood cellular components. It has been estimated that in an adult human, approximately 1011–1012 new blood cells are produced daily in order to maintain steady state levels in the peripheral circulation. The mother cells from which the progeny daughter blood cells are generated are known as haematopoietic stem cells. In an embryo yolk sac is the main site of haemopoiesis whereas in human the basic sites where haemopoiesis occurs are the bone marrow (femur and tibia in infants; pelvis, cranium, vertebrae, and sternum of adults), liver, spleen and lymph nodes (Table 1). In other vertebrates haemapoiesis occurs in loose stroma of connective tissue of the gut, spleen, kidney or ovaries. Table 1: Sites of Haemopoiesis in humans Stage Sites Fetus 0–2 months (yolk sac) 2–7 months (liver, spleen) 5–9 months (bone marrow) Infants Bone marrow Adults Vertebrae, ribs, sternum, skull, sacrum and pelvis, proximal ends of femur The process of haemopoiesis Pluripotent stem cells with the capability of self renewal, in the bone marrow known as the haemopoiesis mother cell give rise to the separate blood cell lineages. This haemopoietic stem cell is rare, perhaps 1 in every 20 million nucleated cells in bone marrow. Figure 1 illustrates the bone marrow pluripotent stem cell and the cell lines that arise from it. Cell differentiation occurs from a committed progenitor haemopoietic stem cell and one stem cell is capable of producing about 106 mature blood cells after 20 cell divisions.
    [Show full text]
  • Regulation of Erythropoiesis in the Fetus and Newborn
    Arch Dis Child: first published as 10.1136/adc.47.255.683 on 1 October 1972. Downloaded from Review Article Archives of Disease in Childhood, 1972, 47, 683. Regulation of Erythropoiesis in the Fetus and Newborn PER HAAVARDSHOLM FINNE and SVERRE HALVORSEN From the Paediatric Research Institute, Barneklinikken, Rikshospitalet, Oslo, Norway The present concept of the regulation of erythro- sis in the human is predominantly myeloid during poiesis is based on the theory that a humoral factor, normal conditions. In other species (mice, rats) erythropoietin, stimulates red cell production it is different, with the shift from hepatic to myeloid through its effects on the erythropoietin sensitive stage occurring after birth (Lucarelli, Howard, stem cell, on DNA synthesis in the erythroblast, and Stohlman, 1964; Stohlman, 1970). and on the release of reticulocytes (Gordon and A progressive increase in erythrocyte content per Zanjani, 1970; Hodgson, 1970). Erythropoietin ml and in Hb concentration has been found in production is regulated by the difference between human blood during the course of intrauterine oxygen supply and demand within the oxygen development, leading to the normal high values at sensitive cells in the kidney. As a response to birth (Thomas and Yoffey, 1962; Walker and hypoxia, a factor called erythrogenin is produced in Tumbull, 1953). Marks, Gairdner, and Roscoe the kidney. This factor acts on a serum substrate (1955), however, found no increase in Hb values copyright. to generate an active humoral factor, the erythro- with gestational age after 31 weeks gestation. poietic stimulating factor (ESF) or erythropoietin The alteration in Hb structure during intrauterine (Gordon, 1971), increased amount of which leads and early neonatal life changes its physical proper- to increased red cell production.
    [Show full text]
  • Resolving the Distinct Stages in Erythroid Differentiation Based on Dynamic Changes in Membrane Protein Expression During Erythropoiesis
    Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis Ke Chena,1, Jing Liua,1, Susanne Heckb, Joel A. Chasisc, Xiuli Ana,d,2, and Narla Mohandasa aRed Cell Physiology Laboratory, bFlow Cytometry Core, New York Blood Center, New York, NY 10065; cLife Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and dDepartment of Biophysics, Peking University Health Science Center, Beijing 100191, China Communicated by Joseph F. Hoffman, Yale University School of Medicine, New Haven, CT, August 18, 2009 (received for review June 25, 2009) Erythropoiesis is the process by which nucleated erythroid progeni- results in loss of cohesion between the bilayer and the skeletal tors proliferate and differentiate to generate, every second, millions network, leading to membrane loss by vesiculation. This diminution of nonnucleated red cells with their unique discoid shape and mem- in surface area reduces red cell life span with consequent anemia. brane material properties. Here we examined the time course of A number of additional transmembrane proteins, including CD44 appearance of individual membrane protein components during and Lu, have been characterized, although their structural organi- murine erythropoiesis to throw new light on our understanding of zation in the membrane has not been fully defined. the evolution of the unique features of the red cell membrane. We Some transmembrane proteins exhibit multiple functions. Band found that the accumulation of all of the major transmembrane and 3 serves as an anion exchanger, while Rh/RhAG are probably gas all skeletal proteins of the mature red blood cell, except actin, accrued transporters (8, 9), and Duffy functions as a chemokine receptor progressively during terminal erythroid differentiation.
    [Show full text]
  • WBC Aplasia: Case Report
    Hematology & Transfusion International Journal Case Report Open Access WBC Aplasia: Case Report Abstract Volume 8 Issue 6 - 2020 Pure white cell aplasia (PWCA) is a rare acquired cause of agranulocytosis characterized Mariam AlGhazal,1 Rehab Bu Khamseen,1 by absence of all myeloid lineages in bone marrow with intact erythropoiesis and 2 2 megakaryopoiesis. Reported cases were associated with autoimmune conditions, thymomas, Mona AlZaher, Lama AlGharyafi, Zainab 2 1 chronic lymphocytic leukemia, infections, and as an adverse drug reaction. Presentation Alruwaiy, Manal alghazal 1 ranges from asymptomatic severe neutropenia to fatal sepsis. Several medications were Department of hematopathology Ministry of health, Dammam tried along with treatment of the underlying cause if identified. Steroids, immunoglobulin, regional laboratory & blood banking, Saudi Arabia 2 azathioprine, cyclosporine, rutiximab, GCSF and bone marrow transplant were all tried Department of hematology Dammam medical complex hospital, Saudi Arabia with variable response. Here we report a case of PWCA in middle age male, who responded to cyclosporine. Correspondence: Mariam AlGhazal, Department of hematopathology Ministry of health, Dammam regional laboratory & blood banking, Saudi Arabia, Email Received: November 12, 2020 | Published: November 26, 2020 Introduction of the total hematopoiesis and basically normoblastic in maturation. Megakaryocytes are present & normal in morphology Mature Pure white cell aplasia (PWCA) is a rare cause of neutropenia lymphocytes and plasma cells constitutes 50% and 2% respectively and mechanisms remain uncertain. The diagnosis is based on bone (there is around 11% large granular lymphocytes with abundant marrow examination, which reveals virtually absent granulopoiesis, cytoplasm & fine azurophilic granules out of total lymphocytes). 1 while erythropoiesis and megakaryocytopoiesis are intact.
    [Show full text]
  • Proposed Decision Memo for Erythropoiesis Stimulating Agents (Esas) for Non-Renal Disease Indications (CAG-00383N)
    Proposed Decision Memo for Erythropoiesis Stimulating Agents (ESAs) for non-renal disease indications (CAG-00383N) Decision Summary Emerging safety concerns (thrombosis, cardiovascular events, tumor progression, reduced survival) have prompted CMS to review its coverage of erythropoiesis stimulating agents (ESAs). The initial scope of this national coverage analysis (NCA) was "non-renal" uses. Current non-renal indications for ESA use that are approved by the FDA are: cancer treatment related anemia (erythropoietin, darbepoetin), AZT-induced anemia in HIV-AIDS (erythropoietin only), and prophylactic use for select patients undergoing elective orthopedic procedures with significant expected blood loss (erythropoietin only) (Aranesp® drug label; Procrit® drug label). Because there is a preponderance of emerging data for ESA use in the oncology setting, the focus of the NCA will be ESA use in cancer and related conditions. The other non-renal uses may be addressed in future NCAs. We expect that our future reviews will also include the more adequately powered study of ESA use in spine surgery patients. In the interim, local Medicare contractors may continue to make reasonable and necessary determinations on all non-cancer and non-neoplastic conditions as well as other non-renal uses of ESAs. CMS is seeking public comment on our proposed determination that there is sufficient evidence to conclude that erythropoiesis stimulating agent (ESA) treatment is not reasonable and necessary for beneficiaries with certain clinical conditions, either because of a deleterious effect of the ESA on their underlying disease or because the underlying disease increases their risk of adverse effects related to ESA use. These conditions include: 1.
    [Show full text]
  • A Three-Dimensional in Vitro Model of Erythropoiesis Recapitulates Erythroid Failure in Myelodysplastic Syndromes
    Leukemia (2020) 34:271–282 https://doi.org/10.1038/s41375-019-0532-7 ARTICLE Myelodysplastic syndrome A three-dimensional in vitro model of erythropoiesis recapitulates erythroid failure in myelodysplastic syndromes 1 1 1 1 Edda María Elvarsdóttir ● Teresa Mortera-Blanco ● Marios Dimitriou ● Thibault Bouderlique ● 1 1 1 1 2 1 Monika Jansson ● Isabel Juliana F. Hofman ● Simona Conte ● Mohsen Karimi ● Birgitta Sander ● Iyadh Douagi ● 1 1 Petter S. Woll ● Eva Hellström-Lindberg Received: 19 January 2019 / Revised: 13 May 2019 / Accepted: 20 May 2019 / Published online: 2 August 2019 © The Author(s) 2019. This article is published with open access Abstract Established cell culture systems have failed to accurately recapitulate key features of terminal erythroid maturation, hampering our ability to in vitro model and treat diseases with impaired erythropoiesis such as myelodysplastic syndromes with ring sideroblasts (MDS-RS). We developed an efficient and robust three-dimensional (3D) scaffold culture model supporting terminal erythroid differentiation from both mononuclear (MNC) or CD34+-enriched primary bone marrow cells from healthy donors and MDS-RS patients. While CD34+ cells did not proliferate beyond two weeks in 2D suspension + 1234567890();,: 1234567890();,: cultures, the 3D scaffolds supported CD34 and MNC erythroid proliferation over four weeks demonstrating the importance of the 3D environment. CD34+ cells cultured in 3D facilitated the highest expansion and maturation of erythroid cells, including generation of erythroblastic islands and enucleated erythrocytes, while MNCs supported multi-lineage hemopoietic differentiation and cytokine secretion relevant for MDS-RS. Importantly, MDS-RS 3D-cultures supported de novo generation of ring sideroblasts and maintenance of the mutated clone.
    [Show full text]
  • Stress Erythropoiesis Is a Key Inflammatory Response
    cells Review Stress Erythropoiesis is a Key Inflammatory Response 1, 2 3, 3 Robert F. Paulson *, Baiye Ruan , Siyang Hao y and Yuanting Chen 1 Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease at Penn State University, University Park, PA 16802, USA 2 Department of Veterinary and Biomedical Sciences, Pathobiology Graduate Program at Penn State University, University Park, PA 16802, USA; [email protected] 3 Department of Veterinary and Biomedical Sciences, Graduate Program in Molecular, Cellular and Integrative Biosciences at Penn State University, University Park, PA 16802, USA; [email protected] (S.H.); [email protected] (Y.C.) * Correspondence: [email protected]; Tel.: +814-863-6306 Present Address: Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, y USA; [email protected]. Received: 9 February 2020; Accepted: 3 March 2020; Published: 6 March 2020 Abstract: Bone marrow medullary erythropoiesis is primarily homeostatic. It produces new erythrocytes at a constant rate, which is balanced by the turnover of senescent erythrocytes by macrophages in the spleen. Despite the enormous capacity of the bone marrow to produce erythrocytes, there are times when it is unable to keep pace with erythroid demand. At these times stress erythropoiesis predominates. Stress erythropoiesis generates a large bolus of new erythrocytes to maintain homeostasis until steady state erythropoiesis can resume. In this review, we outline the mechanistic differences between stress erythropoiesis and steady state erythropoiesis and show that their responses to inflammation are complementary. We propose a new hypothesis that stress erythropoiesis is induced by inflammation and plays a key role in maintaining erythroid homeostasis during inflammatory responses.
    [Show full text]
  • Erythropoiesis Stimulating Agents (ESA)
    Erythropoiesis Stimulating Agents (ESA) Policy Number: Original Effective Date: MM.04.008 04/15/2007 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST 03/01/2013 Section: Prescription Drugs Place(s) of Service: Home; Office; Outpatient I. Description Endogenous erythropoietin (EPO) is a glycoprotein hematopoietic growth factor that regulates hemoglobin levels in response to changes in the blood oxygen concentration. Erythropoiesis- stimulating agents (ESAs) are produced using recombinant DNA technologies and have pharmacologic properties similar to EPO. The primary clinical use of ESAs is in patients with chronic anemia. II. Criteria/Guidelines A. Epoetin alfa and darbepoetin alfa are covered (subject to Limitations/Exclusions and Administrative Guidelines) for the following: 1. Treatment of anemia associated with chronic kidney disease, (pre-treatment hemoglobin is less than 10g/dL.) with or without the use of dialysis until hemoglobin reaches a target of 10 to 11 g/dL. 2. Treatment of anemia (pre-treatment hemoglobin is less than (10g/dL) in AZT-treated HIV infected patients, when the dose of AZT is equal to or less than 4,200 mg per week and the patient's pre-treatment endogenous erythropoietin level is less than or equal to 500 mUnits/mL. The maximum dosage of erythropoietin should not exceed a total of 60,000 units per week. 3. Treatment of anemia due to the effects of concomitantly administered chemotherapy in patients with non-myeloid malignancies. 4. Treatment of anemia (pre-treatment hemoglobin is greater than 10 to less than or equal to 13 g/dL) in patients scheduled to undergo elective, non-cardiac, nonvascular surgery to reduce the need for allogeneic blood transfusions.
    [Show full text]
  • Complications of Multiple Myeloma Therapy, Part 2: Risk Reduction and Management of Venous Thromboembolism, Osteonecrosis of the Jaw, Renal Complications, and Anemia
    S-13 Supplement Complications of Multiple Myeloma Therapy, Part 2: Risk Reduction and Management of Venous Thromboembolism, Osteonecrosis of the Jaw, Renal Complications, and Anemia Ruben Niesvizky, MD,a and Ashraf Z. Badros, MD,b New York, New York, and Baltimore, Maryland Key Words and improved duration of response, but they have been Thalidomide, bortezomib, lenalidomide, deep vein thrombosis, associated with an increased risk of certain adverse pulmonary embolism, bisphosphonates, erythropoiesis- events. Venous thromboembolism (VTE), osteonecro- stimulating agents sis of the jaw (ONJ), renal failure, and anemia are all common complications of MM therapy. Community Abstract Venous thromboembolism (VTE), osteonecrosis of the jaw, renal fail- oncologists should be familiar with these potential com- ure, and anemia are all common complications of multiple myeloma plications and the strategies for preventing, identifying, therapy. Many of these adverse events have been documented only and managing them. in the past 5 to 10 years, in conjunction with the introduction of a series of the newer therapies thalidomide, bortezomib, and lenalid- omide. This article discusses these complications in detail and pro- Venous Thromboembolism vides strategies for health care providers to best prevent, identify, and manage them. Preventive measures, such as VTE prophylaxis VTE typically manifests as deep vein thrombosis (DVT) and appropriate dental hygiene, as well as patient education, dose or pulmonary embolism (PE). Both cancer and cancer adjustments, limited duration of drug treatment, and consideration treatments have been identified as discrete risk fac- of therapies that are associated with less burdensome adverse-event tors.1 Current evidence indicates that cancer increases profiles, can contribute to substantially improved outcomes and thrombosis risk 4.1-fold and chemotherapy increases quality of life.
    [Show full text]