Solutions to Problem Set 1

Total Page:16

File Type:pdf, Size:1020Kb

Solutions to Problem Set 1 Prof. Paul Biran Algebraic Topology I HS 2013 ETH Z¨urich Solutions to problem set 1 Notation. I := [0; 1]; we omit ◦ in compositions: fg := f ◦ g. 1. It follows straight from the definitions of \mapping cone" and \mapping cylinder" that the 0 0 0 0 map F~ : Mfφ ! Mf given by y 7! y for y 2 Y and (x ; t) 7! (φ(x ); t) for (x ; t) 2 X × I is well-defined and descends to a map F : Cfφ ! Cf . We will show that F~ is a homotopy equivalence, which implies that the same is true for F . Let : X ! X0 be a homotopy inverse of φ, and let g : X × I ! X be a homotopy connecting φψ to idX . Consider the map G~ : Mfφψ ! Mfφ defined analogously to F~; that is, it maps y 7! y and (x; t) 7! ( (x0); t). The composition F~G~ : Mfφψ ! Mf is then given by y 7! y and (x; t) 7! (φψ(x); t). Note that we have another map h : Mfφψ ! Mf induced by the homotopy fg : X × I ! Y connecting fφψ to f: h is given by y 7! y and ( fg(x; 2t) 2 Y t ≤ 1 (x; t) 7! 2 1 (x; 2t − 1) 2 X × I 2 ≤ t and [Bredon, Theorem I.14.18] tells us that h is a homotopy equivalence. We will now show that F~G~ ' h. Consider the homotopy Σ : Mfφψ × I ! Mf given by (y; s) 7! y for (y; s) 2 Y × I and 8 s <fg(x; 2t) 2 Y t ≤ 2 (x; t; s) 7! 2 s s : g(x; s); 2−s t − 2−s 2 X × I 2 ≤ t for (x; t; s) 2 (X × I) × I. Note that Σ is well-defined and continuous and satisfies Σ(·; 0) = F~G~ and Σ(·; 1) = h. It follows that F~G~ is a homotopy equivalence, too. In an analogous manner, one can define a map H~ : Mfφψφ ! Mfφψ and then show that G~H~ : Mfφψφ ! Mfφψ is a homotopy equivalence. The rest of the proof is analogous to the end of the proof of [Bredon, Theorem I.14.19]. Namely, let k and k0 be homotopy inverses of F~G~ resp. G~H~ , so that in particular kF~G~ ' ~ ~ 0 ~ ~ 0 idMfφψ and GHk ' idMf . Then L := kF and R := Hk are left resp. right homotopy inverses of G~. By Problem 4 on this sheet, L and R are in fact homotopy inverses of G~, and hence G~ is a homotopy equivalence. Hence F~G~ and G~ are both homotopy equivalences, from which it follows that also F~ is a homotopy equivalence. 2. By [Bredon, Prop. I.14.5], contractibility of X means that idX is homotopic to a map whose image is a singleton fx0g 2 X; that is, there exists a map h : X × I ! X such that 0 h(x; 0) = x and h(x; 1) = x0 for all x 2 X. Consider now the map h = r ◦ h : A × I ! A. For a 2 A, it satisfies h0(a; 0) = r(h(a; 0)) = r(a) = a by the defining property of retraction, 0 and h (a; 1) = r(x0) ; in other words, idA is homotopic to a map with image fr(x0)g ⊂ A, and hence A is contractible (again by [Bredon, Prop. I.14.5]). 1 3. Recall that Sn = fx 2 Rn+1 kxk = 1g. We claim that the expression (1 − t)f(x) + tg(x) (x; t) 7! ; k(1 − t)f(x) + tg(x)k yields a well-defined map φ : X × I ! Sn. Pretending that this is true, note that φ(x; 0) = f(x) and φ(x; 1) = g(x) for all x 2 X, and hence f and g are homotopic. To prove well-definedness, we must show that the denominator never vanishes. To do so, we assume the contrary, i.e., that there exists some (x; t) 2 X×I such that (1−t)f(x)+tg(x) = 0. This is equivalent to (1 − t)f(x) = −tg(x), from which we obtain (1 − t) · kf(x)k = t · kg(x)k; 1 since kf(x)k = kg(x)k = 1, it follows that 1 − t = t, and hence t = 2 . Inserting this into the first equation, we obtain f(x) = −g(x), which contradicts our assumption. 4. Using the assumptions fg ' idY and hf ' idX , we obtain fh = fh idY ' fhfg ' f idX g = fg ' idY : Hence h is in fact a homotopy inverse of f, and thus f is a homotopy equivalence. (Similarly, one can show that g is a homotopy inverse of f.) 5. One could prove these statements by writing down explicit maps and homotopies. To facil- itate this, one could use, for example, the following \model" for S2 (and similar models for X; V; S2 _ S1 and S2 _ S2). The map 1 2 p 2 p 2 S × [−1; 1] ! S ; (x1; x2; h) 7! 1 − h x1; 1 − h x2; h ; induces a homeomorphism (S1 × [−1; 1])= ∼ ≈ S2; where ∼ is the equivalence relation that identifies all points of S1 × {−1g with each other, and all points of S1 × f+1g with each other. (Namely, the map is continuous and bijective, and since S1 × [−1; 1] is compact, it is a homeomorphism.) Another less direct way of proving the required statements is to use the following fact: If (Z; A) is a CW pair consisting of a CW complex Z and a contractible subcomplex A, then the quotient map Z ! X=A is a homotopy equivalence. (See [Hatcher p.11].) To use this, one must endow the spaces X and Y with appropriate structures of CW complexes. For X, consider an additional arc A on S2 connecting the north and the south pole; a possible CW complex structure has the two poles as 0-cells, the interiors of the \stick" and the arc A as 1-cells, and the rest of S2 as a 2-cell. The statement above implies that X ! X=A is a homotopy equivalence, but also that X=A is homotopy equivalent to S2 _ S1 (namely, denote by X~ the CW complex obtained by removing the stick, whose associated space is S2; then X=A~ is homotopy equivalent to S2 by the statement above; from this it follows easily that X=A is homotopy equivalent to S2 _ S1). For Y , consider the CW complex structure with one 0-cell on the equator, one 1-cell (the rest of the equator), and three 2-cells (northern and southern hemispheres and the disc in the equator plane). Denoting the last-mentioned 2-cell by A, the statement above tells us that Y ! Y=A is a homotopy equivalence; on the other hand, it is easy to see (using e.g. the model above), that Y=A is homeomorphic to S2 _ S2. 6. We view RP 2 as D2= ∼, where ∼ is the equivalence relation that identifies antipodal points on the boundary. That is, x; y 2 D2 satisfy x ∼ y if and only if x = y, or x and y both lie on S1 ⊂ D2 and satisfy x = −y. 2 Consider the map F : S1 t (S1 × I) ! RP 2 defined on S1 by e2πit 7! [eπit] for t 2 [0; 1], and on S1 × I by (e2πit; s) 7! [(1 − s)e2πit]. (Note that the first part is well-defined and continuous, because e2πi0 = −1 ∼ 1 = e2πi1 and hence [e2πi0] = [e2πi1] 2 RP 2.) 0 2 2πit Observe that F descends to a well-defined map F : Mf ! RP , because F (f(e )) = F (e4πit) = [e2πit] = F (e2πit; 0), and moreover F 0 is clearly surjective. Since F 0 maps all of 1 2 00 2 S × f1g to a single point, namely [0] 2 RP , it descends further to a map F : Cf ! RP . 00 0 1 Note that F is bijective, since F is injective on Mf n (S × f1g). 2 Since Cf is compact and RP is Hausdorff, we conclude using [Bredon, Theorem I.7.8] that φ is a homeomorphism. 3.
Recommended publications
  • Local Topological Properties of Asymptotic Cones of Groups
    Local topological properties of asymptotic cones of groups Greg Conner and Curt Kent October 8, 2018 Abstract We define a local analogue to Gromov’s loop division property which is use to give a sufficient condition for an asymptotic cone of a complete geodesic metric space to have uncountable fundamental group. As well, this property is used to understand the local topological structure of asymptotic cones of many groups currently in the literature. Contents 1 Introduction 1 1.1 Definitions...................................... 3 2 Coarse Loop Division Property 5 2.1 Absolutely non-divisible sequences . .......... 10 2.2 Simplyconnectedcones . .. .. .. .. .. .. .. 11 3 Examples 15 3.1 An example of a group with locally simply connected cones which is not simply connected ........................................ 17 1 Introduction Gromov [14, Section 5.F] was first to notice a connection between the homotopic properties of asymptotic cones of a finitely generated group and algorithmic properties of the group: if arXiv:1210.4411v1 [math.GR] 16 Oct 2012 all asymptotic cones of a finitely generated group are simply connected, then the group is finitely presented, its Dehn function is bounded by a polynomial (hence its word problem is in NP) and its isodiametric function is linear. A version of that result for higher homotopy groups was proved by Riley [25]. The converse statement does not hold: there are finitely presented groups with non-simply connected asymptotic cones and polynomial Dehn functions [1], [26], and even with polynomial Dehn functions and linear isodiametric functions [21]. A partial converse statement was proved by Papasoglu [23]: a group with quadratic Dehn function has all asymptotic cones simply connected (for groups with subquadratic Dehn functions, i.e.
    [Show full text]
  • Zuoqin Wang Time: March 25, 2021 the QUOTIENT TOPOLOGY 1. The
    Topology (H) Lecture 6 Lecturer: Zuoqin Wang Time: March 25, 2021 THE QUOTIENT TOPOLOGY 1. The quotient topology { The quotient topology. Last time we introduced several abstract methods to construct topologies on ab- stract spaces (which is widely used in point-set topology and analysis). Today we will introduce another way to construct topological spaces: the quotient topology. In fact the quotient topology is not a brand new method to construct topology. It is merely a simple special case of the co-induced topology that we introduced last time. However, since it is very concrete and \visible", it is widely used in geometry and algebraic topology. Here is the definition: Definition 1.1 (The quotient topology). (1) Let (X; TX ) be a topological space, Y be a set, and p : X ! Y be a surjective map. The co-induced topology on Y induced by the map p is called the quotient topology on Y . In other words, −1 a set V ⊂ Y is open if and only if p (V ) is open in (X; TX ). (2) A continuous surjective map p :(X; TX ) ! (Y; TY ) is called a quotient map, and Y is called the quotient space of X if TY coincides with the quotient topology on Y induced by p. (3) Given a quotient map p, we call p−1(y) the fiber of p over the point y 2 Y . Note: by definition, the composition of two quotient maps is again a quotient map. Here is a typical way to construct quotient maps/quotient topology: Start with a topological space (X; TX ), and define an equivalent relation ∼ on X.
    [Show full text]
  • Arxiv:0704.1009V1 [Math.KT] 8 Apr 2007 Odo References
    LECTURES ON DERIVED AND TRIANGULATED CATEGORIES BEHRANG NOOHI These are the notes of three lectures given in the International Workshop on Noncommutative Geometry held in I.P.M., Tehran, Iran, September 11-22. The first lecture is an introduction to the basic notions of abelian category theory, with a view toward their algebraic geometric incarnations (as categories of modules over rings or sheaves of modules over schemes). In the second lecture, we motivate the importance of chain complexes and work out some of their basic properties. The emphasis here is on the notion of cone of a chain map, which will consequently lead to the notion of an exact triangle of chain complexes, a generalization of the cohomology long exact sequence. We then discuss the homotopy category and the derived category of an abelian category, and highlight their main properties. As a way of formalizing the properties of the cone construction, we arrive at the notion of a triangulated category. This is the topic of the third lecture. Af- ter presenting the main examples of triangulated categories (i.e., various homo- topy/derived categories associated to an abelian category), we discuss the prob- lem of constructing abelian categories from a given triangulated category using t-structures. A word on style. In writing these notes, we have tried to follow a lecture style rather than an article style. This means that, we have tried to be very concise, keeping the explanations to a minimum, but not less (hopefully). The reader may find here and there certain remarks written in small fonts; these are meant to be side notes that can be skipped without affecting the flow of the material.
    [Show full text]
  • Making New Spaces from Old Ones - Part 2
    Making New Spaces from Old Ones - Part 2 Renzo’s math 570 1 The torus A torus is (informally) the topological space corresponding to the surface of a bagel, with topology induced by the euclidean topology. Problem 1. Realize the torus as a quotient space of the euclidean plane by an appropriate action of the group Z Z ⊕ Let the group action Z Z R2 R2 be defined by (m, n) (x, y) = ⊕ × → · (m + x,n + y), and consider the quotient space R2/Z Z. Componentwise, ⊕ each element x R is equal to x+m, for all m Z by the quotient operation, ∈ ∈ so in other words, our space is equivalent to R/Z R/Z. Really, all we have × done is slice up the real line, making cuts at every integer, and then equated the pieces: Since this is just the two dimensional product space of R mod 1 (a.k.a. the quotient topology Y/ where Y = [0, 1] and = 0 1), we could equiv- alently call it S1 S1, the unit circle cross the unit circle. Really, all we × are doing is taking the unit interval [0, 1) and connecting the ends to form a circle. 1 Now consider the torus. Any point on the ”shell” of the torus can be identified by its position with respect to the center of the torus (the donut hole), and its location on the circular outer rim - that is, the circle you get when you slice a thin piece out of a section of the torus. Since both of these identifying factors are really just positions on two separate circles, the torus is equivalent to S1 S1, which is equal to R2/Z Z × ⊕ as explained above.
    [Show full text]
  • KK-Theory As a Triangulated Category Notes from the Lectures by Ralf Meyer
    KK-theory as a triangulated category Notes from the lectures by Ralf Meyer Focused Semester on KK-Theory and its Applications Munster¨ 2009 1 Lecture 1 Triangulated categories formalize the properties needed to do homotopy theory in a category, mainly the properties needed to manipulate long exact sequences. In addition, localization of functors allows the construction of interesting new functors. This is closely related to the Baum-Connes assembly map. 1.1 What additional structure does the category KK have? −n Suspension automorphism Define A[n] = C0(R ;A) for all n ≤ 0. Note that by Bott periodicity A[−2] = A, so it makes sense to extend the definition of A[n] to Z by defining A[n] = A[−n] for n > 0. Exact triangles Given an extension I / / E / / Q with a completely posi- tive contractive section, let δE 2 KK1(Q; I) be the class of the extension. The diagram I / E ^> >> O δE >> > Q where O / denotes a degree one map is called an extension triangle. An alternate notation is δ Q[−1] E / I / E / Q: An exact triangle is a diagram in KK isomorphic to an extension triangle. Roughly speaking, exact triangles are the sources of long exact sequences of KK-groups. Remark 1.1. There are many other sources of exact triangles besides extensions. Definition 1.2. A triangulated category is an additive category with a suspension automorphism and a class of exact triangles satisfying the axioms (TR0), (TR1), (TR2), (TR3), and (TR4). The definition of these axiom will appear in due course. Example 1.3.
    [Show full text]
  • MATH 227A – LECTURE NOTES 1. Obstruction Theory a Fundamental Question in Topology Is How to Compute the Homotopy Classes of M
    MATH 227A { LECTURE NOTES INCOMPLETE AND UPDATING! 1. Obstruction Theory A fundamental question in topology is how to compute the homotopy classes of maps between two spaces. Many problems in geometry and algebra can be reduced to this problem, but it is monsterously hard. More generally, we can ask when we can extend a map defined on a subspace and then how many extensions exist. Definition 1.1. If f : A ! X is continuous, then let M(f) = X q A × [0; 1]=f(a) ∼ (a; 0): This is the mapping cylinder of f. The mapping cylinder has several nice properties which we will spend some time generalizing. (1) The natural inclusion i: X,! M(f) is a deformation retraction: there is a continous map r : M(f) ! X such that r ◦ i = IdX and i ◦ r 'X IdM(f). Consider the following diagram: A A × I f◦πA X M(f) i r Id X: Since A ! A × I is a homotopy equivalence relative to the copy of A, we deduce the same is true for i. (2) The map j : A ! M(f) given by a 7! (a; 1) is a closed embedding and there is an open set U such that A ⊂ U ⊂ M(f) and U deformation retracts back to A: take A × (1=2; 1]. We will often refer to a pair A ⊂ X with these properties as \good". (3) The composite r ◦ j = f. One way to package this is that we have factored any map into a composite of a homotopy equivalence r with a closed inclusion j.
    [Show full text]
  • HOMOTOPY THEORY for BEGINNERS Contents 1. Notation
    HOMOTOPY THEORY FOR BEGINNERS JESPER M. MØLLER Abstract. This note contains comments to Chapter 0 in Allan Hatcher's book [5]. Contents 1. Notation and some standard spaces and constructions1 1.1. Standard topological spaces1 1.2. The quotient topology 2 1.3. The category of topological spaces and continuous maps3 2. Homotopy 4 2.1. Relative homotopy 5 2.2. Retracts and deformation retracts5 3. Constructions on topological spaces6 4. CW-complexes 9 4.1. Topological properties of CW-complexes 11 4.2. Subcomplexes 12 4.3. Products of CW-complexes 12 5. The Homotopy Extension Property 14 5.1. What is the HEP good for? 14 5.2. Are there any pairs of spaces that have the HEP? 16 References 21 1. Notation and some standard spaces and constructions In this section we fix some notation and recollect some standard facts from general topology. 1.1. Standard topological spaces. We will often refer to these standard spaces: • R is the real line and Rn = R × · · · × R is the n-dimensional real vector space • C is the field of complex numbers and Cn = C × · · · × C is the n-dimensional complex vector space • H is the (skew-)field of quaternions and Hn = H × · · · × H is the n-dimensional quaternion vector space • Sn = fx 2 Rn+1 j jxj = 1g is the unit n-sphere in Rn+1 • Dn = fx 2 Rn j jxj ≤ 1g is the unit n-disc in Rn • I = [0; 1] ⊂ R is the unit interval • RP n, CP n, HP n is the topological space of 1-dimensional linear subspaces of Rn+1, Cn+1, Hn+1.
    [Show full text]
  • HOMOTOPY CARTESIAN DIAGRAMS in N-ANGULATED CATEGORIES 1
    Homology, Homotopy and Applications, vol. 21(2), 2019, pp.377–394 HOMOTOPY CARTESIAN DIAGRAMS IN n-ANGULATED CATEGORIES ZENGQIANG LIN and YAN ZHENG (communicated by Claude Cibils) Abstract It has been proved by Bergh and Thaule that the higher map- ping cone axiom is equivalent to the higher octahedral axiom for n-angulated categories. In this paper we use homotopy carte- sian diagrams to give several new equivalent statements of the higher mapping cone axiom. As an application we give a new and elementary proof of the fact that the stable category of a Frobenius (n − 2)-exact category is an n-angulated category, which was first proved by Jasso. 1. Introduction Let n be an integer greater than or equal to three. The notion of n-angulated category was introduced by Geiss, Keller and Oppermann in [5] as the axiomatization of certain (n − 2)-cluster tilting subcategories of triangulated categories. In particular, a 3-angulated category is a classical triangulated category. Examples of n-angulated categories can be found in [5, 4, 8]. Bergh and Thaule discussed the axioms of n- angulated categories in [3]. They showed that for n-angulated categories the higher mapping cone axiom is equivalent to the higher octahedral axiom. The first aim and motivation of this paper is to understand the higher octahe- dral axiom. The n-angle induced by the higher octahedral axiom is very mysterious because it involves a lot of objects and morphisms. How do these objects and mor- phisms behave together? What are the morphisms of n-angles hidden in the higher octahedral axiom? The second motivation is to discuss other equivalent statements of the higher mapping cone axiom.
    [Show full text]
  • Example Sheet 7
    MA3F1 Introduction to Topology November 11, 2019 Example Sheet 7 Please let me (Martin) know if any of the problems are unclear or have typos. Please turn in a solution to one of Exercises (7.1) or (7.4) by 12:00 on 21/11/2019, to the dropoff box in front of the undergraduate office. If you collaborate with other students, please include their names. For the next three problems we need the following definition. Suppose X is a topological space. We define CX to be the cone on X: that is, CX = X × I=(x; 1) ∼ (y; 1) for all x; y 2 X. The point a = [(x; 1)] is called the apex of the cone. (7.1) Equip the integers Z with the discrete topology. Show that CZ is homeomorphic to the wedge sum of a countable collection of unit intervals at 1. Solution (7.1) The disjoint union of a countable collection of unit intervals is defined to be S fng × I = × I, the latter with the product topology. The wedge sum n2Z Z _n2ZI at 1 is then defined in the same way as the cone CZ. 2 (7.2) Let In ⊂ R to be the line segment connecting (0; 1) to (n; 0), for n 2 Z. Set D = [n2ZIn and equip D with the subspace topology. Show that CZ is not homeomorphic to D. Solution (7.2) Suppose that they are homeomorphic via q : D ! CZ. Note that q sends the apex to the apex (removing the apex gives a space with a countable number of connected components in both cases, and the apex is the only point with this property).
    [Show full text]
  • Notes on Derived Categories and Derived Functors
    NOTES ON DERIVED CATEGORIES AND DERIVED FUNCTORS MARK HAIMAN References You might want to consult these general references for more information: 1. R. Hartshorne, Residues and Duality, Springer Lecture Notes 20 (1966), is a standard reference. 2. C. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics 38 (1994), has a useful chapter at the end on derived categories and functors. 3. B. Keller, Derived categories and their uses, in Handbook of Algebra, Vol. 1, M. Hazewinkel, ed., Elsevier (1996), is another helpful synopsis. 4. J.-L. Verdier's thesis Cat´egoriesd´eriv´ees is the original reference; also his essay with the same title in SGA 4-1/2, Springer Lecture Notes 569 (1977). The presentation here incorporates additional material from the following references: 5. P. Deligne, Cohomologie `asupports propres, SGA 4, Springer Lecture Notes 305 (1973) 6. P. Deligne, Cohomologie `asupport propres et construction du foncteur f !, appendix to Residues and Duality [1]. 7. J.-L. Verdier, Base change for twisted inverse image of coherent sheaves, in Algebraic Geometry, Bombay Colloquium 1968, Oxford Univ. Press (1969) 8. N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988) 121{154 9. A. Neeman, Grothendieck duality via Bousfield’s techniques and Brown representabil- ity, J.A.M.S. 9, no. 1 (1996) 205{236. 1. Basic concepts Definition 1.1. An additive category is a category A in which Hom(A; B) is an abelian group for all objects A, B, composition of arrows is bilinear, and A has finite direct sums and a zero object. An abelian category is an additive category in which every arrow f has a kernel, cokernel, image and coimage, and the canonical map coim(f) ! im(f) is an isomorphism.
    [Show full text]
  • HOMOLOGICAL ALGEBRA NOTES 1. Chain Homotopies Consider A
    1 HOMOLOGICAL ALGEBRA NOTES KELLER VANDEBOGERT 1. Chain Homotopies Consider a chain complex C of vector spaces ··· / Cn+1 / Cn / Cn−1 / ··· At every point we may extract the short exact sequences 0 / Zn / Cn / Cn=Zn / 0 0 / d(Cn+1) / Zn / Zn=d(Cn+1) / 0 Since Zn and d(Cn) are vector subspaces, in particular they are injective modules, giving that 0 Cn = Zn ⊕ Bn 0 Zn = Bn ⊕ Hn 0 0 with Bn := Cn=Zn, Hn := Hn(C), and Bn := d(Cn+1). This decom- position allows for a way to move backward along our complex via a composition of projections and inclusions: ∼ 0 ∼ 0 ∼ 0 0 ∼ Cn = Zn ⊕ Bn ! Zn = Bn ⊕ Hn ! Bn = Bn+1 ,! Zn+1 ⊕ Bn+1 = Cn+1 If we denote by sn : Cn ! Cn+l the composition of the above, then one sees dnsndn = dn (more succinctly, dsd = d), and we have the 1These notes were prepared for the Homological Algebra seminar at University of South Carolina, and follow the book of Weibel. Date: November 21, 2017. 1 2 KELLER VANDEBOGERT commutative diagram dn+1 dn / Cn+1 / Cn / Cn−1 / sn sn−1 | dn+1 | dn / Cn+1 / Cn / Cn−1 / Definition 1.1. A complex C is called split is there are maps sn : Cn ! Cn+1 such that dsd = d. The sn are called the splitting maps. If in addition C is acyclic, C is called split exact. The map dn+1sn + sn−1dn is particularly interesting. We have the following: Proposition 1.2. If id = dn+1sn + sn−1dn, then the chain complex C is acyclic.
    [Show full text]
  • A Homotopical Categorification of the Euler Calculus
    A Homotopical Categorification of the Euler Calculus Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Cordelia Laura Elizabeth Henderson Moggach Submitted: Liverpool, 28 January 2020 Minor modifications: Grenoble, 28 July 2020 Abstract Euler calculus is an analogue of the theory of integration for constructible func- tions rather than measurable ones. Due to its computationally accessible nature, Euler calculus plays a central role in aspects of applied algebraic topology, for example in enumeration problems involving networks of sensors. A geometric description of the constructible functions is given by the Grothendieck group of the constructible derived category. This sheaf-theoretic categorification of the constructible functions is well-known. We present an alternative geometric cate- gorification of the constructible functions given by a suitable homotopy category; an analogue of the classical Spanier{Whitehead category but for suitably `tame' spaces over the source space of the constructible functions. To do so, we develop an axiomatic method for constructing Spanier{Whitehead categories given some ambient category with certain basic properties. The lifting of the operations of the Euler calculus to functors between these Spanier{Whitehead categories should illuminate homotopical aspects of the Euler calculus. ii In memory of my father, Anthony Austin Moggach, 1946 { 2015, who hoped so much to ride the Mersey ferry. iv Acknowledgements This PhD thesis was funded by the UK Engineering and Physical Sciences Re- search Council [EPSRC Doctoral Training Studentship, Award 1577502]. I am very grateful for their generous support. I would like to thank, first and foremost, my supervisor, Dr Jon Woolf.
    [Show full text]