Example Sheet 7

Total Page:16

File Type:pdf, Size:1020Kb

Example Sheet 7 MA3F1 Introduction to Topology November 11, 2019 Example Sheet 7 Please let me (Martin) know if any of the problems are unclear or have typos. Please turn in a solution to one of Exercises (7.1) or (7.4) by 12:00 on 21/11/2019, to the dropoff box in front of the undergraduate office. If you collaborate with other students, please include their names. For the next three problems we need the following definition. Suppose X is a topological space. We define CX to be the cone on X: that is, CX = X × I=(x; 1) ∼ (y; 1) for all x; y 2 X. The point a = [(x; 1)] is called the apex of the cone. (7.1) Equip the integers Z with the discrete topology. Show that CZ is homeomorphic to the wedge sum of a countable collection of unit intervals at 1. Solution (7.1) The disjoint union of a countable collection of unit intervals is defined to be S fng × I = × I, the latter with the product topology. The wedge sum n2Z Z _n2ZI at 1 is then defined in the same way as the cone CZ. 2 (7.2) Let In ⊂ R to be the line segment connecting (0; 1) to (n; 0), for n 2 Z. Set D = [n2ZIn and equip D with the subspace topology. Show that CZ is not homeomorphic to D. Solution (7.2) Suppose that they are homeomorphic via q : D ! CZ. Note that q sends the apex to the apex (removing the apex gives a space with a countable number of connected components in both cases, and the apex is the only point with this property). Also, qjIn is a homeomorphism to its image. Define the set U ⊂ D where U \ In is the half-open interval containing the apex and having length 1=jnj. Note that U is not open in D. However, q(U) is open in CZ. Could one simply argue that U \ In is not open in the subspace topology, but its image is open in the cone topology? (7.3) For any space X, show that CX is contractible. Deduce that π1(CX; a) is trivial. Hint: You may use the following fact: if X is a topological spaces, and Y = X= ∼ a quotient space, then Y × I =∼ (X × I)= ∼0; where (x; t) ∼0 (y; s) if x ∼ y and t = s. That is, the product topology of the quotient and the interval is the same as the quotient topology of the product (you may try to prove this!) 1 MA3F1 Introduction to Topology November 11, 2019 Solution (7.3) Construct a homotopy CX×I ! CX by first constructing a homotopy H :(X × I) × I ! CX and then identifying, (X × I) × I H q×IdI CX × I G CX By the Hint, the resulting map G is continuous. As a map, take H((x; s); t) = [(x; st)]. This map induces a homotopy G from IdCX to the apex. (7.4) Suppose G and H are nontrivial groups. Show that the free product G ∗ H is not isomorphic to Z2. Solution (7.4) The free product of two non-trivial groups is not abelian. (7.5) Suppose that fGαg is a countable collection of countable groups. Show that ∗αGα is countable. Solution (7.5) The disjoint union of the Gα, less their identity elements, is countable. Thus the set of reduced words is countable. Since this is the underlying set for ∗αGα, we are done. 2 For the next two problems we need the following definition. Let Cn ⊂ R be the circle of radius 1=n centered at (1=n; 0) 2 R2. We define H ⊂ R2, the Hawaiian 1 earring, to be the union H = [n=1Cn, equipped with the subspace topology. We take H to be a pointed space, with basepoint at h = (0; 0). Let Γ = π1(H; h). (7.6) For all n > 0 give a retraction rn : H ! Cn. Explain why rn is continuous. Show that Γ = π1(H; h) is uncountable. Briefly explain why Γ is not isomorphic to 1 ∼ π1 _n2NS = ∗n2NZ: Solution (7.6) The retraction rn is defined by sending Cm to h, for all m 6= n, and fixing Cn pointwise. The only thing to check is that this is continuous. Fix U ⊂ Cn an open interval. If h 62 U then the preimage of U is exactly U. Since U is open in Cn it is open in H and we are done. If h lies in U then the preimage is H − (Cn − U). This is again relatively open. Consider two infinite binary strings fang and fbng. We use these strings to code elements of π1. These elements are equal in π1 if and only if the strings are identical - this is because all retractions must have the same image. (Actually, see Hatcher Example 1.25) One is countable, the other is not. Note that the spaces are not homeomorphic for a more basic reason - H is compact, _S1 is not. 2.
Recommended publications
  • Arxiv:1712.06224V3 [Math.MG] 27 May 2018 Yusu Wang3 Department of Computer Science, the Ohio State University
    Vietoris–Rips and Čech Complexes of Metric Gluings 03:1 Vietoris–Rips and Čech Complexes of Metric Gluings Michał Adamaszek MOSEK ApS Copenhagen, Denmark [email protected] https://orcid.org/0000-0003-3551-192X Henry Adams Department of Mathematics, Colorado State University Fort Collins, CO, USA [email protected] https://orcid.org/0000-0003-0914-6316 Ellen Gasparovic Department of Mathematics, Union College Schenectady, NY, USA [email protected] https://orcid.org/0000-0003-3775-9785 Maria Gommel Department of Mathematics, University of Iowa Iowa City, IA, USA [email protected] https://orcid.org/0000-0003-2714-9326 Emilie Purvine Computing and Analytics Division, Pacific Northwest National Laboratory Seattle, WA, USA [email protected] https://orcid.org/0000-0003-2069-5594 Radmila Sazdanovic1 Department of Mathematics, North Carolina State University Raleigh, NC, USA [email protected] https://orcid.org/0000-0003-1321-1651 Bei Wang2 School of Computing, University of Utah Salt Lake City, UT, USA [email protected] arXiv:1712.06224v3 [math.MG] 27 May 2018 https://orcid.org/0000-0002-9240-0700 Yusu Wang3 Department of Computer Science, The Ohio State University 1 Simons Collaboration Grant 318086 2 NSF IIS-1513616 and NSF ABI-1661375 3 NSF CCF-1526513, CCF-1618247, CCF-1740761, and DMS-1547357 Columbus, OH, USA [email protected] https://orcid.org/0000-0001-7950-4348 Lori Ziegelmeier Department of Mathematics, Statistics, and Computer Science, Macalester College Saint Paul, MN, USA [email protected] https://orcid.org/0000-0002-1544-4937 Abstract We study Vietoris–Rips and Čech complexes of metric wedge sums and metric gluings.
    [Show full text]
  • ALGEBRAIC TOPOLOGY Contents 1. Preliminaries 1 2. the Fundamental
    ALGEBRAIC TOPOLOGY RAPHAEL HO Abstract. The focus of this paper is a proof of the Nielsen-Schreier Theorem, stating that every subgroup of a free group is free, using tools from algebraic topology. Contents 1. Preliminaries 1 2. The Fundamental Group 2 3. Van Kampen's Theorem 5 4. Covering Spaces 6 5. Graphs 9 Acknowledgements 11 References 11 1. Preliminaries Notations 1.1. I [0, 1] the unit interval Sn the unit sphere in Rn+1 × standard cartesian product ≈ isomorphic to _ the wedge sum A − B the space fx 2 Ajx2 = Bg A=B the quotient space of A by B. In this paper we assume basic knowledge of set theory. We also assume previous knowledge of standard group theory, including the notions of homomorphisms and quotient groups. Let us begin with a few reminders from algebra. Definition 1.2. A group G is a set combined with a binary operator ? satisfying: • For all a; b 2 G, a ? b 2 G. • For all a; b; c 2 G,(a ? b) ? c = a ? (b ? c). • There exists an identity element e 2 G such that e ? a = a ? e = a. • For all a 2 G, there exists an inverse element a−1 2 G such that a?a−1 = e. A convenient way to describe a particular group is to use a presentation, which consists of a set S of generators such that each element of the group can be written Date: DEADLINE AUGUST 22, 2008. 1 2 RAPHAEL HO as a product of elements in S, and a set R of relations which define under which conditions we are able to simplify our `word' of product of elements in S.
    [Show full text]
  • Math 601 Algebraic Topology Hw 4 Selected Solutions Sketch/Hint
    MATH 601 ALGEBRAIC TOPOLOGY HW 4 SELECTED SOLUTIONS SKETCH/HINT QINGYUN ZENG 1. The Seifert-van Kampen theorem 1.1. A refinement of the Seifert-van Kampen theorem. We are going to make a refinement of the theorem so that we don't have to worry about that openness problem. We first start with a definition. Definition 1.1 (Neighbourhood deformation retract). A subset A ⊆ X is a neighbourhood defor- mation retract if there is an open set A ⊂ U ⊂ X such that A is a strong deformation retract of U, i.e. there exists a retraction r : U ! A and r ' IdU relA. This is something that is true most of the time, in sufficiently sane spaces. Example 1.2. If Y is a subcomplex of a cell complex, then Y is a neighbourhood deformation retract. Theorem 1.3. Let X be a space, A; B ⊆ X closed subspaces. Suppose that A, B and A \ B are path connected, and A \ B is a neighbourhood deformation retract of A and B. Then for any x0 2 A \ B. π1(X; x0) = π1(A; x0) ∗ π1(B; x0): π1(A\B;x0) This is just like Seifert-van Kampen theorem, but usually easier to apply, since we no longer have to \fatten up" our A and B to make them open. If you know some sheaf theory, then what Seifert-van Kampen theorem really says is that the fundamental groupoid Π1(X) is a cosheaf on X. Here Π1(X) is a category with object pints in X and morphisms as homotopy classes of path in X, which can be regard as a global version of π1(X).
    [Show full text]
  • Local Topological Properties of Asymptotic Cones of Groups
    Local topological properties of asymptotic cones of groups Greg Conner and Curt Kent October 8, 2018 Abstract We define a local analogue to Gromov’s loop division property which is use to give a sufficient condition for an asymptotic cone of a complete geodesic metric space to have uncountable fundamental group. As well, this property is used to understand the local topological structure of asymptotic cones of many groups currently in the literature. Contents 1 Introduction 1 1.1 Definitions...................................... 3 2 Coarse Loop Division Property 5 2.1 Absolutely non-divisible sequences . .......... 10 2.2 Simplyconnectedcones . .. .. .. .. .. .. .. 11 3 Examples 15 3.1 An example of a group with locally simply connected cones which is not simply connected ........................................ 17 1 Introduction Gromov [14, Section 5.F] was first to notice a connection between the homotopic properties of asymptotic cones of a finitely generated group and algorithmic properties of the group: if arXiv:1210.4411v1 [math.GR] 16 Oct 2012 all asymptotic cones of a finitely generated group are simply connected, then the group is finitely presented, its Dehn function is bounded by a polynomial (hence its word problem is in NP) and its isodiametric function is linear. A version of that result for higher homotopy groups was proved by Riley [25]. The converse statement does not hold: there are finitely presented groups with non-simply connected asymptotic cones and polynomial Dehn functions [1], [26], and even with polynomial Dehn functions and linear isodiametric functions [21]. A partial converse statement was proved by Papasoglu [23]: a group with quadratic Dehn function has all asymptotic cones simply connected (for groups with subquadratic Dehn functions, i.e.
    [Show full text]
  • Zuoqin Wang Time: March 25, 2021 the QUOTIENT TOPOLOGY 1. The
    Topology (H) Lecture 6 Lecturer: Zuoqin Wang Time: March 25, 2021 THE QUOTIENT TOPOLOGY 1. The quotient topology { The quotient topology. Last time we introduced several abstract methods to construct topologies on ab- stract spaces (which is widely used in point-set topology and analysis). Today we will introduce another way to construct topological spaces: the quotient topology. In fact the quotient topology is not a brand new method to construct topology. It is merely a simple special case of the co-induced topology that we introduced last time. However, since it is very concrete and \visible", it is widely used in geometry and algebraic topology. Here is the definition: Definition 1.1 (The quotient topology). (1) Let (X; TX ) be a topological space, Y be a set, and p : X ! Y be a surjective map. The co-induced topology on Y induced by the map p is called the quotient topology on Y . In other words, −1 a set V ⊂ Y is open if and only if p (V ) is open in (X; TX ). (2) A continuous surjective map p :(X; TX ) ! (Y; TY ) is called a quotient map, and Y is called the quotient space of X if TY coincides with the quotient topology on Y induced by p. (3) Given a quotient map p, we call p−1(y) the fiber of p over the point y 2 Y . Note: by definition, the composition of two quotient maps is again a quotient map. Here is a typical way to construct quotient maps/quotient topology: Start with a topological space (X; TX ), and define an equivalent relation ∼ on X.
    [Show full text]
  • Lecture 2: Spaces of Maps, Loop Spaces and Reduced Suspension
    LECTURE 2: SPACES OF MAPS, LOOP SPACES AND REDUCED SUSPENSION In this section we will give the important constructions of loop spaces and reduced suspensions associated to pointed spaces. For this purpose there will be a short digression on spaces of maps between (pointed) spaces and the relevant topologies. To be a bit more specific, one aim is to see that given a pointed space (X; x0), then there is an entire pointed space of loops in X. In order to obtain such a loop space Ω(X; x0) 2 Top∗; we have to specify an underlying set, choose a base point, and construct a topology on it. The underlying set of Ω(X; x0) is just given by the set of maps 1 Top∗((S ; ∗); (X; x0)): A base point is also easily found by considering the constant loop κx0 at x0 defined by: 1 κx0 :(S ; ∗) ! (X; x0): t 7! x0 The topology which we will consider on this set is a special case of the so-called compact-open topology. We begin by introducing this topology in a more general context. 1. Function spaces Let K be a compact Hausdorff space, and let X be an arbitrary space. The set Top(K; X) of continuous maps K ! X carries a natural topology, called the compact-open topology. It has a subbasis formed by the sets of the form B(T;U) = ff : K ! X j f(T ) ⊆ Ug where T ⊆ K is compact and U ⊆ X is open. Thus, for a map f : K ! X, one can form a typical basis open neighborhood by choosing compact subsets T1;:::;Tn ⊆ K and small open sets Ui ⊆ X with f(Ti) ⊆ Ui to get a neighborhood Of of f, Of = B(T1;U1) \ ::: \ B(Tn;Un): One can even choose the Ti to cover K, so as to `control' the behavior of functions g 2 Of on all of K.
    [Show full text]
  • Arxiv:0704.1009V1 [Math.KT] 8 Apr 2007 Odo References
    LECTURES ON DERIVED AND TRIANGULATED CATEGORIES BEHRANG NOOHI These are the notes of three lectures given in the International Workshop on Noncommutative Geometry held in I.P.M., Tehran, Iran, September 11-22. The first lecture is an introduction to the basic notions of abelian category theory, with a view toward their algebraic geometric incarnations (as categories of modules over rings or sheaves of modules over schemes). In the second lecture, we motivate the importance of chain complexes and work out some of their basic properties. The emphasis here is on the notion of cone of a chain map, which will consequently lead to the notion of an exact triangle of chain complexes, a generalization of the cohomology long exact sequence. We then discuss the homotopy category and the derived category of an abelian category, and highlight their main properties. As a way of formalizing the properties of the cone construction, we arrive at the notion of a triangulated category. This is the topic of the third lecture. Af- ter presenting the main examples of triangulated categories (i.e., various homo- topy/derived categories associated to an abelian category), we discuss the prob- lem of constructing abelian categories from a given triangulated category using t-structures. A word on style. In writing these notes, we have tried to follow a lecture style rather than an article style. This means that, we have tried to be very concise, keeping the explanations to a minimum, but not less (hopefully). The reader may find here and there certain remarks written in small fonts; these are meant to be side notes that can be skipped without affecting the flow of the material.
    [Show full text]
  • Making New Spaces from Old Ones - Part 2
    Making New Spaces from Old Ones - Part 2 Renzo’s math 570 1 The torus A torus is (informally) the topological space corresponding to the surface of a bagel, with topology induced by the euclidean topology. Problem 1. Realize the torus as a quotient space of the euclidean plane by an appropriate action of the group Z Z ⊕ Let the group action Z Z R2 R2 be defined by (m, n) (x, y) = ⊕ × → · (m + x,n + y), and consider the quotient space R2/Z Z. Componentwise, ⊕ each element x R is equal to x+m, for all m Z by the quotient operation, ∈ ∈ so in other words, our space is equivalent to R/Z R/Z. Really, all we have × done is slice up the real line, making cuts at every integer, and then equated the pieces: Since this is just the two dimensional product space of R mod 1 (a.k.a. the quotient topology Y/ where Y = [0, 1] and = 0 1), we could equiv- alently call it S1 S1, the unit circle cross the unit circle. Really, all we × are doing is taking the unit interval [0, 1) and connecting the ends to form a circle. 1 Now consider the torus. Any point on the ”shell” of the torus can be identified by its position with respect to the center of the torus (the donut hole), and its location on the circular outer rim - that is, the circle you get when you slice a thin piece out of a section of the torus. Since both of these identifying factors are really just positions on two separate circles, the torus is equivalent to S1 S1, which is equal to R2/Z Z × ⊕ as explained above.
    [Show full text]
  • The Capacity of Wedge Sum of Spheres of Different Dimensions
    The Capacity of Wedge Sum of Spheres of Different Dimensions Mojtaba Mohareri, Behrooz Mashayekhy∗, Hanieh Mirebrahimi Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, P.O.Box 1159-91775, Mashhad, Iran. Abstract K. Borsuk in 1979, in the Topological Conference in Moscow, introduced the concept of the capacity of a compactum and raised some interesting questions about it. In this paper, during computing the capacity of wedge sum of finitely many spheres of different dimensions and the complex projective plane, we give a negative answer to a question of Borsuk whether the capacity of a compactum determined by its homology properties. Keywords: Homotopy domination, Homotopy type, Moore space, Polyhedron, CW-complex, Compactum. 2010 MSC: 55P15, 55P55, 55P20,54E30, 55Q20. 1. Introduction and Motivation K. Borsuk in [2], introduced the concept of the capacity of a compactum (compact metric space) as follows: the capacity C(A) of a compactum A is the cardinality of the set of all shapes of compacta X for which Sh(X) 6 Sh(A) (for more details, see [10]). For polyhedra, the notions shape and shape domination in the above definition arXiv:1611.00487v1 [math.AT] 2 Nov 2016 can be replaced by the notions homotopy type and homotopy domination, respec- tively. Indeed, by some known results in shape theory one can conclude that for any polyhedron P , there is a one to one functorial correspondence between the shapes of compacta shape dominated by P and the homotopy types of CW-complexes (not ∗Corresponding author Email addresses: [email protected] (Mojtaba Mohareri), [email protected] (Behrooz Mashayekhy), h−[email protected] (Hanieh Mirebrahimi) Preprint submitted to September 20, 2018 necessarily finite) homotopy dominated by P (for both pointed and unpointed poly- hedra) [6].
    [Show full text]
  • (Jerry) Luo As Its Name May Suggest, the Fundamental Group of a Space Is One of the Most Important Ideas from Algebraic Topology
    FINAL MATH 232A Name: Jiajie (Jerry) Luo As its name may suggest, the fundamental group of a space is one of the most important ideas from algebraic topology. It's an algebraic invariant for topological spaces describing the (closed) loops up to homotopy in that space. Much can be learned about topological spaces through the fundamental group, as well as its generalizations - the higher homotopy groups. While homotopy groups tell us quite a lot about a space, they're limited in accessibility, as computing them have been a challenge. This motivates the construction of another algebraic invariant for topological spaces - homology groups. Unlike, homotopy groups, homology groups are much more accessible, as they are easier to compute. The drawback in this is that they are less intuitive and more of a challenge to define. However, despite this, we will show the power that homology theory possesses in extracting information about topological spaces. We begin by discussing simplicial homology, which is much nicer and more intuitive than its more advanced counterpart, singular homology. To do this, we first introduce the structure on which simplicial homology is built upon - ∆-complex structures. The construction for ∆-complex structures, in a more or less way, is representing a topological space with (generalized) triangles. We define an n-simplex as the convex hull of n + 1 points, m fv0; ··· ; vng, that sit in R , where fv0; ··· ; vng do not lie in a hyperplane of dimension less than n (note that this requires m ≥ n). A simple example is taking the convex hull of the standard n+1 (orthonormal) basis elements on R .
    [Show full text]
  • MATH 227A – LECTURE NOTES 1. Obstruction Theory a Fundamental Question in Topology Is How to Compute the Homotopy Classes of M
    MATH 227A { LECTURE NOTES INCOMPLETE AND UPDATING! 1. Obstruction Theory A fundamental question in topology is how to compute the homotopy classes of maps between two spaces. Many problems in geometry and algebra can be reduced to this problem, but it is monsterously hard. More generally, we can ask when we can extend a map defined on a subspace and then how many extensions exist. Definition 1.1. If f : A ! X is continuous, then let M(f) = X q A × [0; 1]=f(a) ∼ (a; 0): This is the mapping cylinder of f. The mapping cylinder has several nice properties which we will spend some time generalizing. (1) The natural inclusion i: X,! M(f) is a deformation retraction: there is a continous map r : M(f) ! X such that r ◦ i = IdX and i ◦ r 'X IdM(f). Consider the following diagram: A A × I f◦πA X M(f) i r Id X: Since A ! A × I is a homotopy equivalence relative to the copy of A, we deduce the same is true for i. (2) The map j : A ! M(f) given by a 7! (a; 1) is a closed embedding and there is an open set U such that A ⊂ U ⊂ M(f) and U deformation retracts back to A: take A × (1=2; 1]. We will often refer to a pair A ⊂ X with these properties as \good". (3) The composite r ◦ j = f. One way to package this is that we have factored any map into a composite of a homotopy equivalence r with a closed inclusion j.
    [Show full text]
  • HOMOTOPY THEORY for BEGINNERS Contents 1. Notation
    HOMOTOPY THEORY FOR BEGINNERS JESPER M. MØLLER Abstract. This note contains comments to Chapter 0 in Allan Hatcher's book [5]. Contents 1. Notation and some standard spaces and constructions1 1.1. Standard topological spaces1 1.2. The quotient topology 2 1.3. The category of topological spaces and continuous maps3 2. Homotopy 4 2.1. Relative homotopy 5 2.2. Retracts and deformation retracts5 3. Constructions on topological spaces6 4. CW-complexes 9 4.1. Topological properties of CW-complexes 11 4.2. Subcomplexes 12 4.3. Products of CW-complexes 12 5. The Homotopy Extension Property 14 5.1. What is the HEP good for? 14 5.2. Are there any pairs of spaces that have the HEP? 16 References 21 1. Notation and some standard spaces and constructions In this section we fix some notation and recollect some standard facts from general topology. 1.1. Standard topological spaces. We will often refer to these standard spaces: • R is the real line and Rn = R × · · · × R is the n-dimensional real vector space • C is the field of complex numbers and Cn = C × · · · × C is the n-dimensional complex vector space • H is the (skew-)field of quaternions and Hn = H × · · · × H is the n-dimensional quaternion vector space • Sn = fx 2 Rn+1 j jxj = 1g is the unit n-sphere in Rn+1 • Dn = fx 2 Rn j jxj ≤ 1g is the unit n-disc in Rn • I = [0; 1] ⊂ R is the unit interval • RP n, CP n, HP n is the topological space of 1-dimensional linear subspaces of Rn+1, Cn+1, Hn+1.
    [Show full text]