World Premier International Research Center Initiative (WPI) FY 2017 WPI Project Progress Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CERN Courier – Digital Edition Welcome to the Digital Edition of the January/February 2013 Issue of CERN Courier – the First Digital Edition of This Magazine
I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 3 N UMBER 1 J ANUARY /F EBRUARY 2 0 1 3 CERN Courier – digital edition Welcome to the digital edition of the January/February 2013 issue of CERN Courier – the first digital edition of this magazine. CERN Courier dates back to August 1959, when the first issue appeared, consisting of eight black-and-white pages. Since then it has seen many changes in design and layout, leading to the current full-colour editions of more than 50 pages on average. It went on the web for the High luminosity: first time in October 1998, when IOP Publishing took over the production work. Now, we have taken another step forward with this digital edition, which provides yet another means to access the content beyond the web the heat is on and print editions, which continue as before. Back in 1959, the first issue reported on progress towards the start of CERN’s first proton synchrotron. This current issue includes a report from the physics frontier as seen by the ATLAS experiment at the laboratory’s current flagship, the LHC, as well as a look at work that is under way to get the most from this remarkable machine in future. Particle physics has changed a great deal since 1959 and this is reflected in the article on the emergence of QCD, the theory of the strong interaction, in the early 1970s. To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up To subscribe to the print edition, please visit: http://cerncourier.com/cws/how-to-subscribe LHC PHYSICS FERMILAB FRONTIER Using monojets Oddone to retire to point the way after eight PHYSICS EDITOR: CHRISTINE SUTTON, CERN to new physics fruitful years Opening up DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p7 p35 interdisciplinarity p33 CERNCOURIER www. -
Switching Neutrinos
Research in Progress Physics Fl avor- -Switching Neutrinos rof. Ewa Rondio from the National P Center for Nuclear Research (NCBJ) explains the nature of neutrinos, the measurements taken by the Super-Kamiokande detector, and the involvement of Polish scientists in the project. MIJAKOWSKI PIOTR ACADEMIA: What are neutrinos? What is the difference between the neutrinos that PROF. EWA RONDIO: Literally translated, the word come from space and the neutrinos created on Earth? “neutrino” means “little neutral one.” The name was Neutrinos arriving from space are almost as abundant first suggested when the existence of neutrinos was as photons in the cosmic background radiation, but proposed to patch up the law of conservation of en- their energies are so small that we’re unable to detect ergy. It had turned out that without postulating their them. We can’t see them, even though there are so existence we could not explain why the spectrum of many of them. We can only observe higher-energy energy in beta decay is continuous, whereas two-body neutrinos, for example those arriving from the Sun. decay should give a single constant value. Back then, At first glance, they do not differ in any way from that postulate was considered very risky, because it those made on Earth. However, they have somewhat was believed that such particles would be impossible different energies. Also, those arriving from space are to observe. Experimental physicists have nowadays predominantly neutrinos, whereas those we produce managed that, although it took them quite a long time. on Earth produce are chiefly antineutrinos. -
Ira Sprague Bowen Papers, 1940-1973
http://oac.cdlib.org/findaid/ark:/13030/tf2p300278 No online items Inventory of the Ira Sprague Bowen Papers, 1940-1973 Processed by Ronald S. Brashear; machine-readable finding aid created by Gabriela A. Montoya Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 © 1998 The Huntington Library. All rights reserved. Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague 1 Bowen Papers, 1940-1973 Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague Bowen Paper, 1940-1973 The Huntington Library San Marino, California Contact Information Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 Processed by: Ronald S. Brashear Encoded by: Gabriela A. Montoya © 1998 The Huntington Library. All rights reserved. Descriptive Summary Title: Ira Sprague Bowen Papers, Date (inclusive): 1940-1973 Creator: Bowen, Ira Sprague Extent: Approximately 29,000 pieces in 88 boxes Repository: The Huntington Library San Marino, California 91108 Language: English. Provenance Placed on permanent deposit in the Huntington Library by the Observatories of the Carnegie Institution of Washington Collection. This was done in 1989 as part of a letter of agreement (dated November 5, 1987) between the Huntington and the Carnegie Observatories. The papers have yet to be officially accessioned. Cataloging of the papers was completed in 1989 prior to their transfer to the Huntington. -
Kavli IPMU Annual 2014 Report
ANNUAL REPORT 2014 REPORT ANNUAL April 2014–March 2015 2014–March April Kavli IPMU Kavli Kavli IPMU Annual Report 2014 April 2014–March 2015 CONTENTS FOREWORD 2 1 INTRODUCTION 4 2 NEWS&EVENTS 8 3 ORGANIZATION 10 4 STAFF 14 5 RESEARCHHIGHLIGHTS 20 5.1 Unbiased Bases and Critical Points of a Potential ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙20 5.2 Secondary Polytopes and the Algebra of the Infrared ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙21 5.3 Moduli of Bridgeland Semistable Objects on 3- Folds and Donaldson- Thomas Invariants ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙22 5.4 Leptogenesis Via Axion Oscillations after Inflation ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙23 5.5 Searching for Matter/Antimatter Asymmetry with T2K Experiment ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 24 5.6 Development of the Belle II Silicon Vertex Detector ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙26 5.7 Search for Physics beyond Standard Model with KamLAND-Zen ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙28 5.8 Chemical Abundance Patterns of the Most Iron-Poor Stars as Probes of the First Stars in the Universe ∙ ∙ ∙ 29 5.9 Measuring Gravitational lensing Using CMB B-mode Polarization by POLARBEAR ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 30 5.10 The First Galaxy Maps from the SDSS-IV MaNGA Survey ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙32 5.11 Detection of the Possible Companion Star of Supernova 2011dh ∙ ∙ ∙ ∙ ∙ ∙ -
Algebra & Number Theory Vol. 7 (2013)
Algebra & Number Theory Volume 7 2013 No. 3 msp Algebra & Number Theory msp.org/ant EDITORS MANAGING EDITOR EDITORIAL BOARD CHAIR Bjorn Poonen David Eisenbud Massachusetts Institute of Technology University of California Cambridge, USA Berkeley, USA BOARD OF EDITORS Georgia Benkart University of Wisconsin, Madison, USA Susan Montgomery University of Southern California, USA Dave Benson University of Aberdeen, Scotland Shigefumi Mori RIMS, Kyoto University, Japan Richard E. Borcherds University of California, Berkeley, USA Raman Parimala Emory University, USA John H. Coates University of Cambridge, UK Jonathan Pila University of Oxford, UK J-L. Colliot-Thélène CNRS, Université Paris-Sud, France Victor Reiner University of Minnesota, USA Brian D. Conrad University of Michigan, USA Karl Rubin University of California, Irvine, USA Hélène Esnault Freie Universität Berlin, Germany Peter Sarnak Princeton University, USA Hubert Flenner Ruhr-Universität, Germany Joseph H. Silverman Brown University, USA Edward Frenkel University of California, Berkeley, USA Michael Singer North Carolina State University, USA Andrew Granville Université de Montréal, Canada Vasudevan Srinivas Tata Inst. of Fund. Research, India Joseph Gubeladze San Francisco State University, USA J. Toby Stafford University of Michigan, USA Ehud Hrushovski Hebrew University, Israel Bernd Sturmfels University of California, Berkeley, USA Craig Huneke University of Virginia, USA Richard Taylor Harvard University, USA Mikhail Kapranov Yale University, USA Ravi Vakil Stanford University, -
Asian Nobel Prize' for Mapping the Universe 27 May 2010
Scientists win 'Asian Nobel Prize' for mapping the universe 27 May 2010 Three US scientists whose work helped map the category. universe are among the recipients of the one- million-US-dollar Shaw Prize, known as the "Asian (c) 2010 AFP Nobel," the competition's organisers said Thursday. Princeton University professors Lyman Page and David Spergel and Charles Bennett of Johns Hopkins University, won the award for an experiment that helped to determine the "geometry, age and composition of the universe to unprecedented precision." The trio will share the Shaw Prize's award for astronomy, with one-million-US-dollar prizes also awarded in the categories for mathematical sciences and life sciences and medicine. The University of California's David Julius won the award for life sciences and medicine for his "seminal discoveries" of how the skin senses pain and temperature, the organisers' statement said. "(Julius's) work has provided insights into fundamental mechanisms underlying the sense of touch as well as knowledge that opens the door to rational drug design for the treatment of chronic pain," the statement said. Princeton's Jean Bourgain won an award for his "profound work" in mathematical sciences, it said. The Shaw Prize, funded by Hong Kong film producer and philanthropist Run Run Shaw and first awarded in 2004, honours exceptional contributions "to the advancement of civilization and the well-being of humankind." The awards will be presented at a ceremony in Hong Kong on September 28. Last year, two scientists whose work challenged the assumption that obesity is caused by a lack of will power won the life sciences and medicine 1 / 2 APA citation: Scientists win 'Asian Nobel Prize' for mapping the universe (2010, May 27) retrieved 27 September 2021 from https://phys.org/news/2010-05-scientists-asian-nobel-prize-universe.html This document is subject to copyright. -
Professor Peter Goldreich Member of the Board of Adjudicators Chairman of the Selection Committee for the Prize in Astronomy
The Shaw Prize The Shaw Prize is an international award to honour individuals who are currently active in their respective fields and who have recently achieved distinguished and significant advances, who have made outstanding contributions in academic and scientific research or applications, or who in other domains have achieved excellence. The award is dedicated to furthering societal progress, enhancing quality of life, and enriching humanity’s spiritual civilization. Preference is to be given to individuals whose significant work was recently achieved and who are currently active in their respective fields. Founder's Biographical Note The Shaw Prize was established under the auspices of Mr Run Run Shaw. Mr Shaw, born in China in 1907, was a native of Ningbo County, Zhejiang Province. He joined his brother’s film company in China in the 1920s. During the 1950s he founded the film company Shaw Brothers (HK) Limited in Hong Kong. He was one of the founding members of Television Broadcasts Limited launched in Hong Kong in 1967. Mr Shaw also founded two charities, The Shaw Foundation Hong Kong and The Sir Run Run Shaw Charitable Trust, both dedicated to the promotion of education, scientific and technological research, medical and welfare services, and culture and the arts. ~ 1 ~ Message from the Chief Executive I warmly congratulate the six Shaw Laureates of 2014. Established in 2002 under the auspices of Mr Run Run Shaw, the Shaw Prize is a highly prestigious recognition of the role that scientists play in shaping the development of a modern world. Since the first award in 2004, 54 leading international scientists have been honoured for their ground-breaking discoveries which have expanded the frontiers of human knowledge and made significant contributions to humankind. -
David Spergel Is the Director of the Center for Computational Astrophysics and the Charles Young Professor of Astronomy at Princeton University
David Spergel is the director of the Center for Computational Astrophysics and the Charles Young Professor of Astronomy at Princeton University. He is the former chair of the Space Studies Board. Using microwave background observations from the Wilkinson Microwave Anisotropy Probe (WMAP) and the Atacama Cosmology Telescope, Spergel has measured the age, shape and composition of the universe. These observations have played a significant role in establishing the standard model of cosmology. He is one of the leaders of the Simons Observatory, which will include a planned millimeter-wave telescope that will allow us to take the next step in studying the microwave sky and probing the history of the universe. Spergel is currently co-chair of the Wide Field Infrared Survey Telescope (WFIRST) science team. WFIRST will study the nature of dark energy, complete the demographic survey of extrasolar planets, characterize the atmospheres of nearby planets and survey the universe with more than 100 times the field of view of the Hubble Space Telescope. Spergel has played a significant role in designing the coronagraph and in shaping the overall mission. Since completing my Ph.D. work, Spergel has been interested in using laboratory experiments and astronomical observations to probe the nature of dark matter and look for new physics. Recently, Spergel has been active in the exploration of data from the Gaia satellite and observations made by Subaru’s Hyper Suprime-Cam. Spergel serves as co-chair of the Global Coordination of Ground and Space Astrophysics working group of the International Astronomical Union. At Princeton, Spergel was department chair for a decade. -
Long Baseline Neutrino Oscillation Experiments 1 Introduction 2
Long Baseline Neutrino Oscillation Experiments Mark Thomson Cavendish Laboratory Department of Physics JJ Thomson Avenue Cambridge, CB3 0HE United Kingdom 1 Introduction In the last ten years the study of the quantum mechanical e®ect of neutrino os- cillations, which arises due to the mixing of the weak eigenstates fºe; º¹; º¿ g and the mass eigenstates fº1; º2; º3g, has revolutionised our understanding of neutrinos. Until recently, this understanding was dominated by experimental observations of at- mospheric [1, 2, 3] and solar neutrino [4, 5, 6] oscillations. These measurements have been of great importance. However, the use of naturally occuring neutrino sources is not su±cient to determine fully the flavour mixing parameters in the neutrino sector. For this reason, many of the current and next generation of neutrino experiments are based on high intensity accelerator generated neutrino beams. The ¯rst generation of these long-baseline (LBL) neutrino oscillation experiments, K2K, MINOS and CNGS, are the main subject of this review. The next generation of LBL experiments, T2K and NOºA, are also discussed. 2 Theoretical Background For two neutrino weak eigenstates fº®; º¯g related to two mass eigenstates fºi; ºjg, by a single mixing angle θij, it is simple to show that the survival probability of a neutrino of energy Eº and flavour ® after propagating a distance L through the vacuum is à ! 2 2 2 2 1:27¢mji(eV )L(km) P (º® ! º®) = 1 ¡ sin 2θij sin ; (1) Eº(GeV) 2 2 2 where ¢mji is the di®erence of the squares of the neutrino masses, mj ¡ mi . -
A Brief Overview of Neutrino Oscillabon Results and Future Prospects
A brief overview of neutrino oscillaon results and future prospects Trevor Stewart On behalf of the T2K collaboraon Rutherford Appleton Laboratory ICNFP 2016 01/01/2015 Trevor Stewart, RAL 1 The Nobel Prize in Physics 2015 Takaaki Kajita, Arthur B. McDonald “for the discovery of neutrino oscillaons, which shows that neutrinos have mass" 06/07/2016 Trevor Stewart, RAL 2 Intoduc2on • This talk will discuss recent neutrino oscillaon results and how they contribute to our overall understanding of the physics of neutrinos • Will present results from current experiments such as T2K, NOνA, Daya Bay, RENO, and Double Chooz • Discuss future experiments such as Hyper- Kamiokande, DUNE, and JUNO • If I do not men2on your favourite experiment then please forgive me, it is for the sake of brevity 01/01/2015 Trevor Stewart, RAL 3 Two-flavour neutrino oscillaons ⌫ cos✓ sin✓ ⌫ • e = 1 Two sets of eigenstates for ⌫µ sin✓ cos✓ ⌫2 neutrinos ✓ ◆ ✓− ◆✓ 2 ◆ - Flavour states which 2 2 ⎛ Δm L ⎞ P(ν →ν ) = sin (2θ )sin ⎜ ⎟ interact µ e ⎜ 4E ⎟ ∆m2 = m2 m2 ⎝ ⎠ - Mass states which 2 − 1 propagate ⌫µ ⌫1, ⌫2 ⌫µ or ⌫e • Measure • Result probabili2es – Mixing angle(s) – Disappearance – Mass differences – Appearance 01/01/2015 Trevor Stewart, RAL 4 The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix ⌫e ⌫1 • Unfortunately things are not as ⌫ = U ⌫ 0 µ1 0 21 simple as the 2-flavour mixing ⌫⌧ ⌫3 shown on the previous slide @ A @ A • 3-flavour mixing Flavour eigenstates Mass eigenstates - Three independent mixing (coupling to the W, Z) (definite masses) angles and CP violang -
Proceedings National Academy of Sciences
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Officers BRUCE ALBERTS, President of the JACK HALPERN, Vice President Academy PETER H. RAVEN, Home Secretary F. SHERWOOD ROWLAND, Foreign Secretary MILDRED S. DRESSELHAUS, Treasurer Editor-in-Chief NICHOLAS R. COZZARELLI Editorial Board PETER J. BICKEL JACK HALPERN PAUL R. SCHIMMEL of the MICHAEL T. CLEGG ERIC R. KANDEL STUART L. SCHREIBER Proceedings MARSHALL H. COHEN RICHARD A. LERNER CARLA J. SHATZ STANLEY N. COHEN HARVEY F. LODISH CHRISTOPHER A. SIMS MAX D. COOPER PHIL W. MAJERUS ALLAN C. SPRADLING JAMES E. DARNELL, JR. ARNO G. MOTULSKY LARRY R. SQUIRE IGOR B. DAWID RONALD L. PHILLIPS CHARLES F. STEVENS HERMAN N. EISEN TOM POLLARD JOANNE STUBBE RAYMOND L. ERIKSON STANLEY B. PRUSINER KARL K. TUREKIAN RONALD M. EVANS CHARLES RADDING IRVING L. WEISSMAN NINA FEDOROFF GIAN-CARLO ROTA SHERMAN M. WEISSMAN CHARLES FEFFERMAN DAVID D. SABATINI PETER G. WOLYNES JOSEPH L. GOLDSTEIN GOTTFRIED SCHATZ Publisher: KENNETH R. FULTON Managing Editor: FRANCES R. ZWANZIG Associate Editorial Manager: JOHN M. MALLOY Associate Manager for Production: JOANNE D'AMiCo Author/Member Support Coordinators: REID S. COMPTON, BARBARA A. BACON System Administrator: MARILYN J. MASON Manuscript Processor: JACQUELINE V. PERRY Secretary: BRENDA L. MCCOY Administrative/Systems Aide: DomTTE A. MAY Subscription Fulfillment: JULIA A. LiTTLE Office Assistant: CYNTHIA MATHEWS Correspondence: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, 2101 Constitution Avenue, NW, Washington, DC 20418 (via U.S. postal service) or 1010 Wisconsin Avenue, NW, Suite 530, Washington, DC 20007 (via courier service). Information for Contributors: See pp. i and ii (of this issue). -
MATTERS of GRAVITY Contents Editor
MATTERS OF GRAVITY The newsletter of the Topical Group on Gravitation of the American Physical Society Number 17 Spring 2001 Contents APS TGG News: APS Prize on gravitation, by Clifford Will .................. 3 TGG Elections, by David Garfinkle ...................... 3 We hear that, by Jorge Pullin ......................... 3 Research Briefs: Experimental Unruh Radiation?, by Matt Visser ............... 4 Why is the Universe accelerating?, by Beverly Berger ............ 6 The Lazarus Project, by Richard Price .................... 9 LIGO locks its first detector!, by Stan Whitcomb ............... 12 Progress on the nonlinear r-mode problem, by Keith Lockitch ........ 13 Conference Reports Analog Models of General Relativity, by Matt Visser ............. 17 Astrophysical Sources of Gravitational radiation, by Joan Centrella ..... 19 Numerical relativity at the 20th Texas meeting, by Pablo Laguna ...... 21 Editor Jorge Pullin Center for Gravitational Physics and Geometry The Pennsylvania State University University Park, PA 16802-6300 Fax: (814)863-9608 Phone (814)863-9597 Internet: [email protected] WWW: http://www.phys.psu.edu/~pullin ISSN: 1527-3431 1 Editorial Not much to report here. If you are burning to have Matters of Gravity with you all the time, the newsletter is now available for Palm Pilots, Palm PC's and web-enabled cell phones as an Avantgo channel. Check out http://www.avantgo.com under technology science. The next newsletter is due September 1st. If everything goes well this newsletter should! be available in the gr-qc Los Alamos archives (http://xxx.lanl.gov) under number gr-qc/yymmnnn. To retrieve it send email to [email protected] with Subject: get yymmnnn (numbers 2-16 are also available in gr-qc).