CFM56 General Engine Certification & Testing
Total Page:16
File Type:pdf, Size:1020Kb
Flight Operations Support Tuesday, 13 December 2005 OOvveerrvviieeww Flight Ops Support 2 CCFFMM5566 GGeenneerraall TTeecchhnniiccaall FFeeaattuurreess EEnnggiinnee CCeerrttiiffiiccaattiioonn && TTeessttiinngg OOppeerraattiioonnaall CChhaarraacctteerriissttccss EEGGTTMMaarrggiinn,, OOAATTLL RReedduucceedd TTaakkeeOOffff TThhrruusstt NNoorrmmaall OOppeerraattiinngg CCoonnssiiddeerraattiioonnss FFlliigghhtt pphhaasseess,, ooppss rreeccoommmmeennddaattiioonnss CFM PROPRIETARY INFORMATION Subject to restrictions on the cover or first pa ge Flight Operations Support Tuesday, 13 December 2005 CCFFMM iissaa JJooiinntt CCoommppaannyyooff 3 SSnneeccmmaa,, FFrraannccee AAnndd GGeenneerraall EElleeccttrriicc CCoo..,, UU..SS..AA.. CFM PROPRIETARY INFORMATION Subject to restrictions on the cover or first pa ge Flight Operations Support Tuesday, 13 December 2005 CFM General 4 - LP system - Installations A jointly owned - Gearbox company - Controls and accessories EFECTIVE 50/50 WORK SPLIT An effective division of labor dictates exactly how the companies allocate their manufacturing resources. This work - Core engine split acknowledges the - System integration technological - FADEC/MEC systems achievements of both The CFM56 core is based on the GE F101 engine Snecma's and GE (developed for the B-1 bomber) and employs a single-stage high-pressure turbine to drive a nine- Aircraft Engines' stage compressor. Correspondingly, a Snecma respective advanced four- or five-stage, low-pressure turbine organizations drives the Snecma fan and booster. CFM PROPRIETARY INFORMATION Subject to restrictions on the cover or first pa ge Flight Operations Support Tuesday, 13 December 2005 CCFFMM GGeenneerraall 5 CFM56-2 (1979) 22 / 24 Klb CFM56-3 (1984) 18.5 / 20 / 22 / 23.5 Klb CFM56-5A (1987) 22 / 23.5 / 25 / 26.5 Klb CFM56-5C (1991) 31.2 / 32.5 / 34 Klb • DC8 • KC-135 FR • C-135 FR BOEING 737 • E-3 (AWACS) 300 / 400 / 500 • KE-3 ( Tanker) AIRBUS • E-6 A319 / A320 CFM56-5B (1993) 21.6 / 22 / 23.5 / 27 30 / 31 /33 Klb AIRBUS A340 CFM56-7B (1996) 19.5 / 20.6 / 22.7 AIRBUS 24.2 / 26.3 / 27.3 Klb A318 / A319 / A320 / A321 … 18 KLB TO 34 KLB … GROWTH CAPABILITY WITH COMMONALITY BENEFITS BOEING 737 600 / 700 / 800 / 900 CFM PROPRIETARY INFORMATION Subject to restrictions on the cover or first pa ge Flight Operations Support Tuesday, 13 December 2005 CCFFMM GGeenneerraall 6 CFM56 Family Today as of August 31, 2005 A318 737-300 C-40 • Around 20,000 CFM56 on commitment (options & spares included) A319 737-400 MMA • 538 Operators / Customers & VIP A320-100/-200 737-500 KC-135R • 6,044 A/C / 15,135 engines in service A321-100/200 737-600 E-3 • 297million Engine Flight Hours & 174 A340-200 737-700 C-135FR million Engine Flight Cycles A340-300 737-800 E-6 • 1 aircraft departure every 3 seconds A340 Enhanced 737-900 RC-135 THE WORLD’S MOST POPULAR ENGINE DC-8-71/-72/- 73 B737 AEW&C KE-3 CFM PROPRIETARY INFORMATION Subject to restrictions on the cover or first pa ge Flight Operations Support Tuesday, 13 December 2005 CCFFMM GGeenneerraall 7 CFM56 Engine Fleet Status as of August 31, 2005 EVERY four seconds, every single day, an aircraft with our engines takes off. CFM56 engines power more planes to mores places than any other engine in their thrust class; they’ve logged more than 247 million flying hours and nearly 60 billion miles. Reliably. Efficiently. Cost-effectively. Every four seconds, every single day. CFM PROPRIETARY INFORMATION Subject to restrictions on the cover or first pa ge Flight Operations Support Tuesday, 13 December 2005 CCFFMM GGeenneerraall 8 Reliability Rates CFM56 (Rate/Number of events) as of August 31, 2005 12-Month Rolling Rate EVERY four seconds, every single day, an aircraft with our engines takes off. CFM56 engines power more planes to mores places than any other engine in their thrust class; they’ve logged more than 247 million flying hours and nearly 60 billion miles. Reliably. Efficiently. Cost-effectively. Every four seconds, every single day. CFM PROPRIETARY INFORMATION Subject to restrictions on the cover or first pa ge Flight Operations Support Tuesday, 13 December 2005 CCFFMM GGeenneerraall 9 Experience and Forecast 300 290 280 270 260 A318 250 240 230 737-900 220 210 200 CFM56 FLEET 190 180 170 160 737-600 150 737-800 140 130 737-700 120 A321-200 110 A319 100 90 80 A321-100 CFM56-3 / -7B FLEET 70 A340 60 737-500 50 40 737-400 CFM56-5 FLEET A320 30 737-300 20 Super 70 10 0 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 100M EFH IN 1997 … 200M IN 2002 … 300M IN 2005 A CFM-POWERED AIRCRAFT TAKES OFF EVERY 4 SECONDS CFM PROPRIETARY INFORMATION 0511T-V 08/03 Subject to restrictions on the cover or first pa ge Flight Operations Support Tuesday, 13 December 2005 CCFFMM5566 EEnnggiinnee HHiigghh TTiimmeess 10 As of December 31, 2003 High Time Engine Highest on Wing life* ENGINE CFM56 engines built around the TSN CSN EFH EFC single stage HPT concept CFM56-5A 41,247 30,684 30,631 15,300 CFM56-5B 22,761 19,966 22,628 13,985 CFM56-5C 48,300 9,345 31,899 6,491 CFM56-2C 50,775 19,985 22,614 8,541 PROVEN OVER CFM56-7B 24,500 13,945 24,500 12,571 242M EFH CFM56-3 56,850 56,178 40,729 20,000 WORLDWIDE RECORD FOR CFM56-3 on-wing life without removal 40,729 hours / 17,504 cycles 20,000 cycles First engine removal on Sept. 05, 2003 World records for high cycle operations * Longest intervals achieved on wing without removal NEW ENGINES BUILT ON CFM56 RECORD-SETTING ON-WING EXPERIENCE CFM PROPRIETARY INFORMATION 0921H RELA LLM0803A Subject to restrictions on the cover or first pa ge Flight Operations Support Tuesday, 13 December 2005 Flight Ops Support 11 CCFFMM5566 GGeenneerraall TTeecchhnniiccaall FFeeaattuurreess EEnnggiinnee CCeerrttiiffiiccaattiioonn && TTeessttiinngg OOppeerraattiioonnaall CChhaarraacctteerriissttccss EEGGTTMMaarrggiinn,, OOAATTLL RReedduucceedd TTaakkeeOOffff TThhrruusstt NNoorrmmaall OOppeerraattiinngg CCoonnssiiddeerraattiioonnss FFlliigghhtt pphhaasseess,, ooppss rreeccoommmmeennddaattiioonnss CFM PROPRIETARY INFORMATION Subject to restrictions on the cover or first pa ge Flight Operations Support Tuesday, 13 December 2005 CCFFMM5566 CCoommmmoonn AArrcchhiitteeccttuurree 12 All CFM56 engines have STA 0 STA 25 STA 3 STA 49,5 1. 5 bearings STA 12 Ball (B) bearings absorb axial loads Roller (R) bearings absorb radial loads 2. 2 sumps N1 (~ 5000 RPM at 100%) 3. 2 frames: Fan frame and turbine rear frame 8 4. LPC, Low Pressure Compressor 4 5 7 1 fan stage 6 2 3 or 4 booster stages 5. HPC, High Pressure Compressor 9 rotor stages, 4 variable stages, 5 fixed stator stages 2 6. HPT, High Pressure Turbine Single-stage turbine nozzle 1 5 bearings 1 B Single-stage turbine rotor 2 R 3 B 3 7. Combustor 4 R N2 (~ 15000 RPM at 100%) 5 R Single annular combustor Dual annular combustor (optional on CFM56-5B and CFM56-7B) 3 8. LPT, Low Pressure Turbine STA 0 : Ambient condition STA 12 : Fan inlet 4 or 5 stages 9 9. 3 gearbox arrangements STA 25 : HP inlet Inlet, transfer, accessory STA 3 : HP compressor discharg e STA 49,5: EGT mesuring plane Flow path air temperature rise CFM PROPRIETARY INFORMATION Subject to restrictions on the cover or first pa ge Flight Operations Support Tuesday, 13 December 2005 CCFFMM5566--33 vvss --77BB DDeessiiggnn 13 Spinner shape • Conical: Provides best ice accretion characteristics (minimizes) 24 Fan blades, 61 inch Ø • Elliptical: Provides best hail CFM56-7B ingestion capability 3 stage Booster 4 Stage LPT • Coniptical: A compromise between ice accretion characteristics and hail Coniptical Spinner ingestion capability Eliptical Spinner 3 stage Booster 4 Stage LPT CFM56-3 38 Fan blades, 60 inch Ø Conical Elliptical Coniptical CFM PROPRIETARY INFORMATION Subject to restrictions on the cover or first pa ge Flight Operations Support Tuesday, 13 December 2005 CCFFMM5566--33 FFaammiillyy 14 -3B1 -3B1 -3B2 -3C1 -3C1 -3C1 -3C1 18.5 Klbs 20.0 Klbs 22.0 Klbs 23.5 Klbs Boeing 737-300 Boeing 737-400 Boeing 737-500 CFM PROPRIETARY INFORMATION Subject to restrictions on the cover or first pa ge Flight Operations Support Tuesday, 13 December 2005 EEnnggiinnee CCoonnttrrooll SSyysstteemm 18 Engine Power Management The CFM56-3 engine control system consists of both: - Hydromechanical Unit, MEC (Main Engine Control) - Electronic Unit, PMC (Power Management Control) Idling System Fuel Limiting System HPTCCV N1 Vs T Speed (N2) VSV Governing System VBV N1 Vs Z Main Tasks Add Tasks Corrections MEC PMC Power Management CFM PROPRIETARY INFORMATION Subject to restrictions on the cover or first pa ge Flight Operations Support Tuesday, 13 December 2005 EEnnggiinnee CCoonnttrrooll SSyysstteemm 19 Hydromechanical Unit MEC Main Engine Control Automatically schedules: • WF ( Fuel Flow ) N2 • VBV ( Variable Bleed Valve ) • VSV ( Variable Stator Vane ) • HPTCCV ( High Pressure Turbine Clearance Control Valve ) Electronic Unit PMC Power Management Control – Adjust FAN speed scheduling N1 CFM PROPRIETARY INFORMATION Subject to restrictions on the cover or first pa ge Flight Operations Support Tuesday, 13 December 2005 EEnnggiinnee CCoonnttrrooll SSyysstteemm 20 Control System Schematic Main Engine Control (MEC) N2 N1 Fan Speed •Function N2 Core Speed - Schedules a core speed as a function of WF Fuel Flow altitude, temperature and thrust lever TMC Torque Motor Current position PS12 Fan Inlet Static Air Pressure - Schedules variable geometry (VSV/VBV) PS3 Compressor Discharge Pressure - Regulates turbine clearance control CBP Compressor Bleed Pressure PMC MEC T12 Fan Inlet Total Air Temperature (TCC) T2.5 HPC Inlet Air Temperature position T2 Fan Inlet Temperature - Provides metered fuel flow to the TC1 Turbine Clearance Control (5Th Stage) combustor TC2 Turbine Clearance Control (9Th Stage) TC3 Turbine Clearance Control (Timer Signal) •Inputs - Core speed (N2) - Fan inlet static pressure (PS12) Power Management Control (PMC) - Compressor inlet temperature (T25) - Power lever angle (PLA) •Function N1 - Torque motor current (TMC) - Schedules a fan speed as a function of altitude, temperature and power lever - Compressor discharge pressure angle.