ALADIN Causes Selective Failure of Nuclear Protein Import And

Total Page:16

File Type:pdf, Size:1020Kb

ALADIN Causes Selective Failure of Nuclear Protein Import And ALADINI482S causes selective failure of nuclear protein import and hypersensitivity to oxidative stress in triple A syndrome Makito Hirano*, Yoshiko Furiya*, Hirohide Asai*, Akira Yasui†, and Satoshi Ueno*‡ *Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; and †Department of Molecular Genetics, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan Edited by William S. Sly, Saint Louis University School of Medicine, St. Louis, MO, and approved December 21, 2005 (received for review July 4, 2005) Triple A syndrome is an autosomal recessive neuroendocrinological the receptor (3). Although these findings have improved our disease caused by mutations in a gene that encodes 546 amino acid understanding of the biology of nucleocytoplasmic transport, it residues. The encoded protein is the nucleoporin ALADIN, a com- remains unclear which level of disruption results in cell dysfunction ponent of nuclear pore complex (NPC). We identified a mutant leading to human disease. Cronshaw et al. (4) have recently shown ALADINI482S that fails to target NPC and investigated the conse- that most disease-associated mutant ALADINs are predominantly quences of mistargeting using cultured fibroblasts (I482Sf) from a localized in the cytoplasm and not correctly targeted to NPCs. patient with triple A syndrome. ALADINI482S affected a karyo- However, further investigations are required to clarify how mistar- pherin-␣͞␤-mediated import pathway and decreased nuclear ac- geting participates in the pathogenesis of disease. This point re- cumulations of aprataxin (APTX), a repair protein for DNA single- mains unclear primarily because ALADINQ15K causes triple A strand breaks (SSBs), and of DNA ligase I in I482Sf. This decrease syndrome in homozygotes, despite the fact that it precisely localizes was restored by wild-type ALADIN. ALADINI482S had no effect on to NPC (4). imports of M9͞kap-␤2, BIB͞kap-␤3, histone H1͞importin 7, the Recent experimental and clinical studies have shed light on the ubiquitin conjugating enzyme UbcM2͞importin 11, or the spliceo- causative relationship between neurodegeneration and defects in some protein U1A, indicating that ALADINI482S selectively impaired repair of DNA damage. Exposure of adult motor neurons in transport of discrete import complexes through NPC. Cell survival suspension to oxidizing agents can induce both DNA single-strand assay showed hypersensitivity of I482Sf to L-buthionine-(S,R)- breaks (SSBs) and neurodegeneration (5). Reactive oxygen species sulfoximine (BSO), a glutathione-depleting agent. BSO decreased (ROS) induce nuclear loss of DNA repair proteins (Ku 70 and Ku nuclear APTX and ligase I levels in I482Sf and normal control 80), leading to apoptosis in mammalian cells (6). Aprataxin fibroblasts, but increased SSBs only in I482Sf. These observations (APTX), an SSB repair protein, deserves particular attention for several reasons. APTX-defective cells are hypersensitive to geno- implied that I482Sf are hypersensitive to BSO and no longer toxic chemicals that produce SSBs (7). Mutated APTX leads to the sufficiently repair SSBs. Consistent with this notion, I482Sf trans- development of autosomal recessive cerebellar ataxia (7–9). X-ray fected with both APTX and ligase I had increased resistance to BSO, repair cross-complementing group 1 (XRCC1), a molecular scaf- whereas I482Sf transfected with LacZ vector remained hypersen- fold of the DNA repair complex for SSBs, interacts with APTX (9). sitive to BSO. We propose that oxidative stress aggravates nuclear We have focused on DNA ligase I and chromatin assembly factor import failure, which is already compromised in patient cells. 1 (CAF1) p150 protein, two factors that participate in repairing Consequent DNA damage, beyond the limited capacity of DNA ROS-induced SSBs (10). Androgen receptor (AR) regulates gene repair proteins, i.e., APTX and ligase I, may participate in triggering transcription, and its mutant causes a human neurodegenerative cell death. disease, spinal, and bulbar muscular atrophy (11). In biological and medical contexts, we decided to analyze nuclear accumulations of aprataxin ͉ DNA ligase I ͉ nuclear pore complex the above proteins (APTX, XRCC1, ligase I, CAF1, and AR) to test the ability of cells to respond to oxidative stress and to repair riple A syndrome is a neuroendocrinological disease with an DNA damage. Tautosomal recessive mode of inheritance (1). In addition to the We report a mutant ALADINI482S that failed to target NPC in clinical triad of adrenocorticotropic hormone-resistant adrenal a pair of Japanese siblings with triple A syndrome. Here we provide failure that occasionally leads to life-threatening hypoglycemia, information on the consequences of ALADIN mistargeting in achalasia, and alacrima, triple A syndrome is commonly associated patient fibroblasts, termed I482Sf. We show that selective nuclear with progressive neurological impairments involving the cranial import failure was the primary defect caused by disease-associated nerves, autonomic nervous system, and motor neurons. Causative mutant ALADIN, which increased the susceptibility of cells to mutations were recently identified in a gene that encodes 546 amino oxidative stress and led to the accumulation of damaged DNA, acid residues, possessing a molecular mass of 60 kDa (2). The leading to cell death. encoded protein, termed ALADIN, is a component of nuclear pore Results complex (NPC). ALADIN was the first nucleoporin linked to I482S human inheritable disease (2). Vertebrate NPC comprises large ALADIN in Patients. Sequence analysis of the ALADIN gene multiprotein complexes (125 MDa) consisting of 80–100 different revealed that the two siblings with triple A syndrome were ho- nucleoporins. The NPC embedded in the nuclear envelope contains an aqueous channel and acts as the sole gatekeeper controlling the Conflict of interest statement: No conflicts declared. exchange of macromolecules Ͼ40–60 kDa between the cytoplasm and nucleus (3). To overcome this barrier, proteins destined for This paper was submitted directly (Track II) to the PNAS office. nuclear import have specific signals that are recognized by a Abbreviations: NPC, nuclear pore complex; NLS, nuclear localization signal; SSB, single- strand break; XRCC1, X-ray repair cross-complementing group 1; CAF1, chromatin assembly structurally related family of soluble transport receptor proteins, factor 1; APTX, aprataxin; AR, androgen receptor; GFPx2, GFP–GFP; BSO, L-buthionine- collectively termed karyopherin (kap). Typically, nuclear localiza- (S,R)-sulfoximine; GSH, glutathione; DEC, decylubiquinone; VA, all-transretinol; ROS, re- tion signal (NLS) containing cargo is bound by transport receptors. active oxygen species; 8-oxoG, 7,8-dihydro-8-oxoguanine. After the cargo-transport receptor complex is translocated into the ‡To whom correspondence should be addressed. E-mail: [email protected]. nucleus through NPC, RanGTP induces release of the cargo from © 2006 by The National Academy of Sciences of the USA 2298–2303 ͉ PNAS ͉ February 14, 2006 ͉ vol. 103 ͉ no. 7 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0505598103 Downloaded by guest on September 27, 2021 Fig. 1. ALADINI482S mislocalizes from nuclear pore complex (NPC) to cyto- plasm in transfected HeLa cells. The localization of GFP–ALADIN is shown in the left column (green), and NPCs immunostained with monoclonal antibody mAb414 are shown in the middle column (red). The distribution of wild-type (wt) ALADIN and ALADINQ15K overlapped with that of NPC, whereas ALADINI482S and ALADIN312del localized to the cytoplasm, rather than to NPC in the right column (green͞red). mozygous and their mother was heterozygous for a T-to-G trans- MEDICAL SCIENCES version in exon 16, resulting in a substitution from phylogenetically conserved isoleucine to serine at codon 482, ALADINI482S. This mutation was identified in blood DNA samples from the three family members, as well as in skin fibroblast DNA from the female Fig. 2. ALADINI482S affects nuclear import pathways in I482S fibroblasts patient. I482Sf and age- and sex-matched normal control fibroblasts (I482Sf). (A) The kap-␣͞␤-mediated nuclear imports of GFPx2–NLSAPTX and were primarily cultured for this study. GFPx2–NLSSV40 were decreased in I482Sf. GFPx2–NLSXRCC1(239–266) showed iden- tical distributions in both I482Sf and normal control fibroblasts. stNLSXRCC1(239– ALADINI482S Mislocalized from NPC to Cytoplasm. HeLa cells were 403) was highly efficient for nuclear import in both I482Sf and normal control ͞ ␤ ͞ ␤ transfected with GFP–wild-type (wt) and GFP–mutant ALADINs fibroblasts. I482Sf showed normal nuclear imports of M9 kap- 2, BIB kap- 3, histone H1͞importin 7, and UbcM2͞importin 11 complexes and the spliceo- and then fixed and stained with monoclonal antibody mAb414 as an some protein U1A. (B) The above data expressed in a bar graph format NPC marker. mAb414 recognizes nucleoporins (Nup 358, Nup214, (mean Ϯ SD). *, P Ͻ 0.05, unpaired Student’s t test as compared with control Nup153, and Nup62) located at the cytoplasmic or nuclear faces of cells. NPC. GFP–wtALADIN and GFP–ALADINQ15K localized to NPC, whereas GFP–ALADINI482S and GFP–ALADIN312del mis- localized to the cytoplasm (Fig. 1). Although the findings for The nuclear import of GFPx2-NLSXRCC1(239–266) (mediated by ALADINI482S were consistent with those for most other ALADIN kap-␣͞␤) was identical in I482Sf and control cells. An additional mutants as reported by Cronshaw et al. (4), ALADINI482S was
Recommended publications
  • Comparison of the Effect of Mutant and Wild-Type P53 on Global Gene Expression
    [CANCER RESEARCH 64, 8199–8207, November 15, 2004] Comparison of the Effect of Mutant and Wild-Type p53 on Global Gene Expression Thomas J. O’Farrell, Paritosh Ghosh, Nobuaki Dobashi, Carl Y. Sasaki, and Dan L. Longo Laboratory of Immunology, Gerontology Research Center, National Institute on Aging, NIH, Baltimore, Maryland ABSTRACT compared with wild-type (WT) p53 (9). Generally, mutation of resi- dues directly contacting DNA results in a complete loss of DNA The mechanisms for “gain-of-function” phenotypes produced by mu- binding with little loss in folding of the domain, whereas mutation of tant p53s such as enhanced proliferation, resistance to transforming structural residues results in a Ͼ50% loss of folding and DNA binding growth factor-␤–mediated growth suppression, and increased tumorigen- esis are not known. One theory is that these phenotypes are caused by (9). However, considering that the NH2- and COOH-terminal domains novel transcriptional regulatory events acquired by mutant p53s. Another of p53 are distinct from the compact DNA-binding domain and explanation is that these effects are a result of an imbalance of functions considerably less ordered, the mutations in the DNA-binding domain caused by the retention of some of the wild-type transcriptional regulatory are less likely to affect the integrity and function of these domains. events in the context of a loss of other counterbalancing activities. An Because p53 is found mutated in approximately 50% of all cancers, analysis of the ability of DNA-binding domain mutants A138P and R175H, p53 mutants have been rather extensively studied for their ability to ؋ 3 and wild-type p53 to regulate the expression levels of 6.9 10 genes confer “gain-of-function” phenotypes on cells.
    [Show full text]
  • Plugged Into the Ku-DNA Hub: the NHEJ Network Philippe Frit, Virginie Ropars, Mauro Modesti, Jean-Baptiste Charbonnier, Patrick Calsou
    Plugged into the Ku-DNA hub: The NHEJ network Philippe Frit, Virginie Ropars, Mauro Modesti, Jean-Baptiste Charbonnier, Patrick Calsou To cite this version: Philippe Frit, Virginie Ropars, Mauro Modesti, Jean-Baptiste Charbonnier, Patrick Calsou. Plugged into the Ku-DNA hub: The NHEJ network. Progress in Biophysics and Molecular Biology, Elsevier, 2019, 147, pp.62-76. 10.1016/j.pbiomolbio.2019.03.001. hal-02144114 HAL Id: hal-02144114 https://hal.archives-ouvertes.fr/hal-02144114 Submitted on 29 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Progress in Biophysics and Molecular Biology xxx (xxxx) xxx Contents lists available at ScienceDirect Progress in Biophysics and Molecular Biology journal homepage: www.elsevier.com/locate/pbiomolbio Plugged into the Ku-DNA hub: The NHEJ network * Philippe Frit a, b, Virginie Ropars c, Mauro Modesti d, e, Jean Baptiste Charbonnier c, , ** Patrick Calsou a, b, a Institut de Pharmacologie et Biologie Structurale, IPBS, Universite de Toulouse, CNRS, UPS, Toulouse, France b Equipe Labellisee Ligue Contre
    [Show full text]
  • Repair of Double-Strand Breaks by End Joining
    Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Repair of Double-Strand Breaks by End Joining Kishore K. Chiruvella1,4, Zhuobin Liang1,2,4, and Thomas E. Wilson1,3 1Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109 2Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 3Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109 Correspondence: [email protected] Nonhomologous end joining (NHEJ) refers to a set of genome maintenance pathways in which two DNA double-strand break (DSB) ends are (re)joined by apposition, processing, and ligation without the use of extended homology to guide repair. Canonical NHEJ (c-NHEJ) is a well-defined pathway with clear roles in protecting the integrity of chromo- somes when DSBs arise. Recent advances have revealed much about the identity, structure, and function of c-NHEJ proteins, but many questions exist regarding their concerted action in the context of chromatin. Alternative NHEJ (alt-NHEJ) refers to more recently described mechanism(s) that repair DSBs in less-efficient backup reactions. There is great interest in defining alt-NHEJ more precisely, including its regulation relative to c-NHEJ, in light of evidence that alt-NHEJ can execute chromosome rearrangements. Progress toward these goals is reviewed. NA double-strand breaks (DSBs) are seri- the context of influences on the relative utiliza- Dous lesions that threaten a loss of chromo- tion of different DSB repair pathways. somal content. Repair of DSBs is particularly Nonhomologous end joining (NHEJ) is de- challenging because, unlike all other lesions, fined as repair in which two DSB ends are joined the DNA substrate is inherently bimolecular.
    [Show full text]
  • Nuclear Non-Chromatin Proteinaceous Structures: Their Role in the Organization and Function of the Interphase Nucleus
    J. Cell Set. 44, 395-435 (1980) 295 Printed in Great Britain © Company of BiologitU Limited igSo NUCLEAR NON-CHROMATIN PROTEINACEOUS STRUCTURES: THEIR ROLE IN THE ORGANIZATION AND FUNCTION OF THE INTERPHASE NUCLEUS PAUL S. AGUTTER* AND JONATHAN C. W. RICHARDSONf • Department of Biological Sciences, Napier College, Colinton Road, Edinburgh EH10 5DT, Scotland and f Department of Physiology and Pharmacology, University of St Andrews, Bute Medical Buildings, St Andrews, Fife, Scotland REVIEW ARTICLE: CONTENTS I. INTRODUCTION page 39s (1) Historical background 395 (2) Nomenclature 397 II. NUCLEAR PROTEIN MATRIX AND NUCLEAR GHOSTS 397 (1) Isolation 397 (2) Composition 398 (3) Ultrastructure 401 (4) Enzyme activities associated with the nuclear protein matrix 405 (5) Contractility of the nuclear protein matrix 405 (6) Functions associated with the nucleai protein matrix 408 III. SUBFRACTIONS OF THE NUCLEAR PROTEIN MATRIX 411 (A) The pore-lamina 411 (1) Isolation 411 (2) Composition 413 (3) Ultrastructure 414 (4) The molecular organization of the pore-lamina 417 (B) Other subfractions 419 IV. COMPOSITIONAL AND FUNCTIONAL DIFFERENCES BETWEEN THE PORE-LAMINA AND THE REMAINDER OF THE NUCLEAR PROTEIN MATRIX 42O V. PROSPECTS FOR FURTHER RESEARCH 422 (1) The role of the nuclear protein matrix in nucleo-cytoplasmic RNA transport 422 (2) Relevance of a knowledge of factors affecting the stability of the intra- nuclear regions of the matrix to the further development of methods for isolation of the nuclear envelope 423 (3) Fate of the nuclear matrix during mitosis 423 I. INTRODUCTION (1) Historical background Since 1949 there have been several accounts of a 'honeycomb layer' or 'nuclear cortex' in the nuclei of lower eukaryotes (Callan, Randall & Tomlin, 1949; Callan & Tomlin, 1950; Harris & James, 1952; Pappas, 1956; Beams, Tahmisian, Devine & 26-2 396 P.
    [Show full text]
  • Dynamic Force-Induced Direct Dissociation of Protein Complexes in a Nuclear Body in Living Cells
    ARTICLE Received 13 Jan 2012 | Accepted 26 Apr 2012 | Published 29 May 2012 DOI: 10.1038/ncomms1873 Dynamic force-induced direct dissociation of protein complexes in a nuclear body in living cells Yeh-Chuin Poh1, Sergey P. Shevtsov2, Farhan Chowdhury1, Douglas C. Wu1, Sungsoo Na3, Miroslav Dundr2 & Ning Wang1 Despite past progress in understanding mechanisms of cellular mechanotransduction, it is unclear whether a local surface force can directly alter nuclear functions without intermediate biochemical cascades. Here we show that a local dynamic force via integrins results in direct displacements of coilin and SMN proteins in Cajal bodies and direct dissociation of coilin-SMN associated complexes. Spontaneous movements of coilin increase more than those of SMN in the same Cajal body after dynamic force application. Fluorescence resonance energy transfer changes of coilin-SMN depend on force magnitude, an intact F-actin, cytoskeletal tension, Lamin A/C, or substrate rigidity. Other protein pairs in Cajal bodies exhibit different magnitudes of fluorescence resonance energy transfer. Dynamic cyclic force induces tiny phase lags between various protein pairs in Cajal bodies, suggesting viscoelastic interactions between them. These findings demonstrate that dynamic force-induced direct structural changes of protein complexes in Cajal bodies may represent a unique mechanism of mechanotransduction that impacts on nuclear functions involved in gene expression. 1 Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Champaign, Illinois 61801, USA. 2 Department of Cell Biology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA. 3 Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indiana 46202, USA.
    [Show full text]
  • Proteomic Analysis of the Mammalian Nuclear Pore Complex
    JCBArticle Proteomic analysis of the mammalian nuclear pore complex Janet M. Cronshaw,1 Andrew N. Krutchinsky,2 Wenzhu Zhang,2 Brian T. Chait,2 and Michael J. Matunis1 1Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205 2Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, Rockefeller University, New York, NY 10021 s the sole site of nucleocytoplasmic transport, the these proteins were classified as nucleoporins, and a further nuclear pore complex (NPC) has a vital cellular 18 were classified as NPC-associated proteins. Among the 29 Arole. Nonetheless, much remains to be learned about nucleoporins were six previously undiscovered nucleoporins many fundamental aspects of NPC function. To further and a novel family of WD repeat nucleoporins. One of understand the structure and function of the mammalian these WD repeat nucleoporins is ALADIN, the gene mutated NPC, we have completed a proteomic analysis to identify in triple-A (or Allgrove) syndrome. Our analysis defines the and classify all of its protein components. We used mass proteome of the mammalian NPC for the first time and spectrometry to identify all proteins present in a biochemically paves the way for a more detailed characterization of NPC purified NPC fraction. Based on previous characterization, structure and function. sequence homology, and subcellular localization, 29 of Introduction Nucleocytoplasmic transport is mediated by nuclear pore A proteomic analysis revealed that the yeast NPC is com- complexes (NPCs)* (Allen et al., 2000) which span the nuclear posed of 29 nucleoporins (Rout et al., 2000). To date, 24 envelope (NE) lumen, inserting into pores formed by the nucleoporins have been identified in mammals, with up to 25 fusion of inner and outer nuclear membranes.
    [Show full text]
  • Protein Signature of Human Skin Broblasts Allows the Study of The
    Protein signature of human skin broblasts allows the study of the molecular etiology of rare neurological diseases Andreas Hentschel Leibniz-Institut fur Analytische Wissenschaften - ISAS eV Artur Czech Leibniz-Institut fur Analytische Wissenschaften - ISAS eV Ute Münchberg Leibniz-Institut fur Analytische Wissenschaften - ISAS eV Erik Freier Leibniz-Institut fur Analytische Wissenschaften - ISAS eV Ulrike Schara-Schmidt Universitat Duisburg-Essen Medizinische Fakultat Albert Sickmann Leibniz-Institut fur Analytische Wissenschaften - ISAS eV Jens Reimann Universitatsklinikum Bonn Andreas Roos ( [email protected] ) Leibniz-Institut fur Analytische Wissenschaften - ISAS eV https://orcid.org/0000-0003-2050-2115 Research Keywords: Allgrove syndrome, Aladin, AAAS, triple-A syndrome, Myopodin/Synaptopodin-2, Ataxin-2 Posted Date: December 16th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-48014/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on February 9th, 2021. See the published version at https://doi.org/10.1186/s13023-020-01669-1. Page 1/29 Abstract Background: The elucidation of pathomechanisms leading to the manifestation of rare (genetically caused) neurological diseases including neuromuscular diseases (NMD) represents an important step toward the understanding of the genesis of the respective disease and might help to dene starting points for (new) therapeutic intervention concepts. However, these “discovery studies” are often limited by the availability of human biomaterial. Moreover, given that results of next-generation-sequencing approaches frequently result in the identication of ambiguous variants, testing of their pathogenicity is crucial but also depending on patient-derived material.
    [Show full text]
  • The VE-Cadherin/Amotl2 Mechanosensory Pathway Suppresses Aortic InAmmation and the Formation of Abdominal Aortic Aneurysms
    The VE-cadherin/AmotL2 mechanosensory pathway suppresses aortic inammation and the formation of abdominal aortic aneurysms Yuanyuan Zhang Karolinska Institute Evelyn Hutterer Karolinska Institute Sara Hultin Karolinska Institute Otto Bergman Karolinska Institute Maria Forteza Karolinska Institute Zorana Andonovic Karolinska Institute Daniel Ketelhuth Karolinska University Hospital, Stockholm, Sweden Joy Roy Karolinska Institute Per Eriksson Karolinska Institute Lars Holmgren ( [email protected] ) Karolinska Institute Article Keywords: arterial endothelial cells (ECs), vascular disease, abdominal aortic aneurysms Posted Date: June 15th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-600069/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License The VE-cadherin/AmotL2 mechanosensory pathway suppresses aortic inflammation and the formation of abdominal aortic aneurysms Yuanyuan Zhang1, Evelyn Hutterer1, Sara Hultin1, Otto Bergman2, Maria J. Forteza2, Zorana Andonovic1, Daniel F.J. Ketelhuth2,3, Joy Roy4, Per Eriksson2 and Lars Holmgren1*. 1Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden. 2Department of Medicine Solna, BioClinicum, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden. 3Department of Cardiovascular and Renal Research, Institutet of Molecular Medicine, Univ. of Southern Denmark, Odense, Denmark 4Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm,
    [Show full text]
  • 1 the Nucleoporin ELYS Regulates Nuclear Size by Controlling NPC
    bioRxiv preprint doi: https://doi.org/10.1101/510230; this version posted January 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The nucleoporin ELYS regulates nuclear size by controlling NPC number and nuclear import capacity Predrag Jevtić1,4, Andria C. Schibler2,4, Gianluca Pegoraro3, Tom Misteli2,*, Daniel L. Levy1,* 1 Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071 2 National Cancer Institute, NIH, Bethesda, MD, 20892 3 High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIH, Bethesda, MD, 20892 4 Co-first authors *Corresponding authors: Daniel L. Levy Tom Misteli University of Wyoming National Cancer Institute, NIH Department of Molecular Biology Center for Cancer Research 1000 E. University Avenue 41 Library Drive, Bldg. 41, B610 Laramie, WY, 82071 Bethesda, MD, 20892 Phone: 307-766-4806 Phone: 240-760-6669 Fax: 307-766-5098 Fax: 301-496-4951 E-mail: [email protected] E-mail: [email protected] Running Head: ELYS is a nuclear size effector Abbreviations: NE, nuclear envelope; NPC, nuclear pore complex; ER, endoplasmic reticulum; Nup, nucleoporin; FG-Nup, phenylalanine-glycine repeat nucleoporin 1 bioRxiv preprint doi: https://doi.org/10.1101/510230; this version posted January 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • PAX3-FOXO1 Candidate Interactors
    Supplementary Table S1: PAX3-FOXO1 candidate interactors Total number of proteins: 230 Nuclear proteins : 201 Exclusive unique peptide count RH4 RMS RMS RMS Protein name Gen name FLAG#1 FLAG#2 FLAG#3 FLAG#4 Chromatin regulating complexes Chromatin modifying complexes: 6 Proteins SIN 3 complex Histone deacetylase complex subunit SAP18 SAP18 2664 CoRESt complex REST corepressor 1 RCOR1 2223 PRC1 complex E3 ubiquitin-protein ligase RING2 RNF2/RING1B 1420 MLL1/MLL complex Isoform 14P-18B of Histone-lysine N-methyltransferase MLL MLL/KMT2A 0220 WD repeat-containing protein 5 WDR5 2460 Isoform 2 of Menin MEN1 3021 Chromatin remodelling complexes: 22 Proteins CHD4/NuRD complex Isoform 2 of Chromodomain-helicase-DNA-binding protein 4 CHD4 3 21 6 0 Isoform 2 of Lysine-specific histone demethylase 1A KDM1A/LSD1a 3568 Histone deacetylase 1 HDAC1b 3322 Histone deacetylase 2 HDAC2b 96710 Histone-binding protein RBBP4 RBBP4b 10 7 6 7 Histone-binding protein RBBP7 RBBP7b 2103 Transcriptional repressor p66-alpha GATAD2A 6204 Metastasis-associated protein MTA2 MTA2 8126 SWI/SNF complex BAF SMARCA4 isoform SMARCA4/BRG1 6 13 10 0 AT-rich interactive domain-containing protein 1A ARID1A/BAF250 2610 SWI/SNF complex subunit SMARCC1 SMARCC1/BAF155c 61180 SWI/SNF complex subunit SMARCC2 SMARCC2/BAF170c 2200 Isoform 2 of SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 1 SMARCD1/BAF60ac 2004 Isoform 2 of SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 3 SMARCD3/BAF60cc 7209
    [Show full text]
  • Effects of Hyperthermia on Chromatin Condensation and Nucleoli
    (CANCER RESEARCH 49, 1254-1260. March 1. 1989] Effects of Hyperthermia on Chromatin Condensation and Nucleoli Disintegration as Visualized by Induction of Premature Chromosome Condensation in Interphase Mammalian Cells1 George E. Iliakis and Gabriel E. Pantelias2 Thomas Jefferson University Hospital, Department of Radiation Oncology and Nuclear Medicine, Philadelphia, Pennsylvania 19107 [G. E. I., G. E. P.]; and the National Research Center for Physical Sciences "Demokritos", Aghia Paraskevi Attikis, Athens, Greece [G. E. P.] ABSTRACT nuclei (13), in chromatin (14-17), and in nuclear matrices (18, 19), and it was proposed that disruption of important nuclear The effects of hyperthermia on chromatin condensation and nucleoli processes by this nuclear protein binding may be the reason for disintegration, as visualized by induction of premature chromosome con cell killing (17). Beyond cell killing the excess nuclear proteins densation in interphase mammalian cells, was studied in exponentially have been implicated in the inhibition of DNA synthesis (5, 6) growing and plateau phase Chinese hamster ovary cells. Exposure to heat reduced the ability of interphase chromatin to condense and the and the inhibition of DNA repair following both ionizing (20, ability of the nucleolar organizing region to disintegrate under the influ 21) and uv (22) irradiation. It is thought that inhibition of ence of factors provided by mitotic cells when fused to interphase cells. these cellular functions may be due to alterations induced in Based on these effects treated cells were classified in three categories. chromatin conformation and in particular to restriction of DNA Category 1 contained cells able to condense their chromatin and disinte supercoiling changes as a result of protein addition to the grate the nucleolar organizing region.
    [Show full text]
  • Aprataxin Localizes to Mitochondria and Preserves Mitochondrial Function
    Aprataxin localizes to mitochondria and preserves mitochondrial function Peter Sykora, Deborah L. Croteau, Vilhelm A. Bohr1, and David M. Wilson III1,2 Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 Edited* by James E. Cleaver, University of California, San Francisco, CA, and approved March 23, 2011 (received for review January 4, 2011) Ataxia with oculomotor apraxia 1 is caused by mutation in the APTX and flap endonuclease 1 (FEN1), has confirmed that BER in the gene, which encodes the DNA strand-break repair protein apra- mitochondria has many, if not all, proteins and pathways active in taxin. Aprataxin exhibits homology to the histidine triad superfam- nuclear BER (26–29). These facts led us to speculate that apra- ily of nucleotide hydrolases and transferases and removes 5′- taxin might have a significant role in the maintenance of mtDNA. adenylate groups from DNA that arise from aborted ligation reac- This hypothesis is also supported by similarities between AOA1 tions. We report herein that aprataxin localizes to mitochondria and diseases associated with mitochondrial dysfunction, such as in human cells and we identify an N-terminal amino acid sequence FA (30). Like AOA1, FA patients are not susceptible to cancer that targets certain isoforms of the protein to this intracellular but frequently present with peripheral neuropathy and pro- compartment. We also show that transcripts encoding this unique gressive ataxia. FA and AOA1 patients are also reported to be fi N-terminal stretch are expressed in the human brain, with highest de cient in coenzyme Q10, an essential component of the elec- tron transport chain and potent antioxidant within the mito- production in the cerebellum.
    [Show full text]