Content Core of the Report

Total Page:16

File Type:pdf, Size:1020Kb

Content Core of the Report ANNUAL REPORT 5 Content Core of the report. .............................................................................................................................. 2 2 Project objectives, work progress and achievements, project management ............................... 2 2.1 Project objectives for the period. ........................................................................................ 2 Recommendations from our Scientific Advisory Board ............................................................ 5 2.2 Work progress and achievements for the period. ............................................................... 7 WP1 ................................................................................................................................................ 7 WP2 .............................................................................................................................................. 23 WP3 .............................................................................................................................................. 30 WP4 .............................................................................................................................................. 38 WP5 .............................................................................................................................................. 47 WP6 .............................................................................................................................................. 61 WP7 ............................................................................................................................................ 113 WP8 ............................................................................................................................................ 122 WP9 ............................................................................................................................................ 128 WP10 .......................................................................................................................................... 137 2.3 Project management during the period. .......................................................................... 141 WP11 .......................................................................................................................................... 141 Consortium management tasks and achievements per scientific component: ........................ 141 Networking and Dissemination of the Results ........................................................................ 142 Overall Management of the Project ....................................................................................... 143 Financial management ........................................................................................................... 146 SYSCILIA annual report July 29, 2015 Page 1 ANNUAL REPORT 5 Core of the report. 2 Project objectives, work progress and achievements, project management 2.1 Project objectives for the period. WP1 - Mapping the ciliome O1.2 To identify supramolecular ciliary complexes using a combination of biochemical fractionation, immunoisolation, and proteomic analysis by quantitative mass spectrometry (MS) O1.5 Development of reagents and methods (antibodies, isolation protocols, ligands) for the study of specific complexes that emerged as candidates for disease markers O1.6 Identify protein interactions perturbed in specific ciliary diseases O1.7 Determine the distinct cellular/ciliary distribution of ciliome components WP2 - Central resource for data integration O2.1 To provide a robust, accessible and seamless system for storing, querying and updating data generated in the project O2.2 To provide systems biology read data to produce a model of the ciliary system and its relation to human pathology and disease O2.4 To integrate literature data with new finding that arise from experiments performed in the project O2.5 To analyse interactome data using socioaffinity and related concepts in order to derive accurate complex and interaction sets for feeding into WP3 and WP4 O2.6 To provide a forum for dissemination of data within the consortium and to the external scientific community WP3 - Construction, comparison and application of ciliary interactomes O3.1 Generate large scale systems biology ready interaction and reaction information O3.2 Assemble ciliary interactomes, functional networks, and pathways O3.3 Apply comparative evolutionary analysis to ciliary function and disease O3.4 Make molecular models and predictions for experimental testing SYSCILIA annual report July 29, 2015 Page 2 ANNUAL REPORT 5 WP4 - Integrative modelling and predictions of ciliary system behavior O4.1 To integrate outcome from all WPs into a network view of core ciliary processes O4.2 To partition this network into functional modules O4.3 To model and simulate modular ciliary processes with explanatory or predictive purposes WP5 - Assay systems to study functional ciliary modules O5.1 Quantifying ciliary transport O5.2 Assaying ciliary polarization O5.3 Measuring ciliary signaling WP6 - Assays to distort Ciliopathy-Associated Modules (CAMs) O6.1 Employ a semi high-throughput approach in mammalian cell culture and C. elegans to validate and further interrogate the roles of candidate CAM components (informed from WP1-4, 7 and 8) in cilium formation, maintenance, function, signaling and trafficking. O6.2 Establish and functionally assess animal models (zebrafish, Xenopus, mice) of individual candidate and known CAM components, employing systematic integrated and strategic methodologies (e.g. ciliary transport, polarity, signaling) developed in WP5 and elsewhere O6.3 Employ animal models (C. elegans, zebrafish, mice) to determine the genetic interrelationships between known/candidate components of individual and different CAMs WP7 - Systematic RNAi screens to distort and identify ciliopathy-associated modules O7.1 to distort the expression of known CAM genes in small- and medium-scale ciliome-wide screens O7.2 to confirm known and to identify novel CAM genes using large-scale genome-wide screens O7.3 integrate a high confidence list of validated known and novel CAM genes with other WPs to prioritize targets of interest O7.4 integrate RNAi screening data with outputs from other WPs and the central SYSCILIA resource to create a public database of validated CAM genes WP8 - Assessment of the involvement of the predicted ciliary molecular machines in the pathogenesis of ciliopathies O8.4 To integrate data on functional sequence variants and clinical information with information on CAMs to come to a system model for explaining and predicting phenotypes and their variability WP9 - Translational systems biology: ciliotherapeutics O9.3 Lead compound characterization SYSCILIA annual report July 29, 2015 Page 3 ANNUAL REPORT 5 WP10 - Dissemination and translation of knowledge O10.1 Coordinate training activities – workshops, webinars, etc. - inside the project to ensure more efficient collaborations. O10.2 Manage outreach in the form of external conferences, to ensure efficient dissemination of knowledge, impact and intellectual property to the external scientific community and relevant industries in Europe O10.3 Dissemination and outreach to the scientific community of SYSCILIA results, methods, standards and models O10.4 Translation of results and knowledge to industrial application O10.5 Monitor intellectual property rights (IPR) issues as they arise O10.6 Stipulate and update internal confidentiality agreements and external know-how agreements O10.8 Determine the appropriate time point for the dissemination of result from the consortium to the public O10.9 Assist in identifying of and liasing with industrial partners for the further exploitation of results WP11 - Overall Management of the Project O11.1 Proper conductance of the RTD specifically steering the conductance of the detailed implementation plan O11.2 Financial management O11.3 Managing seamless integration of all WP activities O11.4 Communication and progress monitoring, O11.5 Organisation of training activities, committee meetings, retreats O11.6 Management and delivery of progress reports to the commission O11.7 Management of Conflict resolution O11.8 Quality assurance and control O11.9 Risk Management O11.10 Dissemination and translation of results SYSCILIA annual report July 29, 2015 Page 4 ANNUAL REPORT 5 Recommendations from our Scientific Advisory Board April 23, 2015, Pozzuoli, Italy Scientific Advisory Board (SAB) on the 2015 meeting of the SYSCILIA consortium SAB members present: Alfred Wittinghofer, Martijn H. Breuning and Erich E. Wanker The fifth annual meeting of the SYSCILIA consortium was held from 22-24 April at the TIGEM in Pozzuoli, Italy. It was the fourth meeting at which SAB members were present. Once again we were impressed with the constructive atmosphere, the enormous enthusiasm of all participants, the readiness to share ideas, data and tools, and the willingness to collaborate closely in order to realise project goals. After having experienced several EU-funded projects, the SAB members find SYSCILIA exceptional. The consortium is highly integrated and clearly follows a common research goal. In previous meetings, research plans and future experiments were presented. Now, in this final meeting many researchers reported very interesting results at a very mature stage. This includes the mapping of the ciliome, the sequencing of patient DNAs, and the
Recommended publications
  • The Ciliated Cell Transcriptome A
    THE CILIATED CELL TRANSCRIPTOME A DISSERTATION SUBMITTED TO THE DEPARTMENT OF BIOLOGICAL SCIENCES AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Ramona Hoh March 2010 ! © 2010 by Ramona Amy Hoh. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/sk794dv5857 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Timothy Stearns, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Mark Krasnow I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Maxence Nachury I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. William Nelson Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives.
    [Show full text]
  • Genome-Wide Association Study for Circulating Fibroblast Growth Factor
    www.nature.com/scientificreports OPEN Genome‑wide association study for circulating fbroblast growth factor 21 and 23 Gwo‑Tsann Chuang1,2,14, Pi‑Hua Liu3,4,14, Tsui‑Wei Chyan5, Chen‑Hao Huang5, Yu‑Yao Huang4,6, Chia‑Hung Lin4,7, Jou‑Wei Lin8, Chih‑Neng Hsu8, Ru‑Yi Tsai8, Meng‑Lun Hsieh9, Hsiao‑Lin Lee9, Wei‑shun Yang2,9, Cassianne Robinson‑Cohen10, Chia‑Ni Hsiung11, Chen‑Yang Shen12,13 & Yi‑Cheng Chang2,9,12* Fibroblast growth factors (FGFs) 21 and 23 are recently identifed hormones regulating metabolism of glucose, lipid, phosphate and vitamin D. Here we conducted a genome‑wide association study (GWAS) for circulating FGF21 and FGF23 concentrations to identify their genetic determinants. We enrolled 5,000 participants from Taiwan Biobank for this GWAS. After excluding participants with diabetes mellitus and quality control, association of single nucleotide polymorphisms (SNPs) with log‑transformed FGF21 and FGF23 serum concentrations adjusted for age, sex and principal components of ancestry were analyzed. A second model additionally adjusted for body mass index (BMI) and a third model additionally adjusted for BMI and estimated glomerular fltration rate (eGFR) were used. A total of 4,201 participants underwent GWAS analysis. rs67327215, located within RGS6 (a gene involved in fatty acid synthesis), and two other SNPs (rs12565114 and rs9520257, located between PHC2-ZSCAN20 and ARGLU1-FAM155A respectively) showed suggestive associations with serum FGF21 level (P = 6.66 × 10–7, 6.00 × 10–7 and 6.11 × 10–7 respectively). The SNPs rs17111495 and rs17843626 were signifcantly associated with FGF23 level, with the former near PCSK9 gene and the latter near HLA-DQA1 gene (P = 1.04 × 10–10 and 1.80 × 10–8 respectively).
    [Show full text]
  • Controls Homeostatic Splicing of ARGLU1 Mrna Stephan P
    Published online 28 November 2016 Nucleic Acids Research, 2017, Vol. 45, No. 6 3473–3486 doi: 10.1093/nar/gkw1140 An Ultraconserved Element (UCE) controls homeostatic splicing of ARGLU1 mRNA Stephan P. Pirnie, Ahmad Osman, Yinzhou Zhu and Gordon G. Carmichael* Department of Genetics and Genome Sciences, UCONN Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA Received January 13, 2016; Revised October 25, 2016; Editorial Decision October 28, 2016; Accepted October 31, 2016 ABSTRACT or inhibit the usage of a particular splice site (1,2). The ex- pression of trans-acting factors in a developmental and tis- Arginine and Glutamate-Rich protein 1 (ARGLU1) is sue specific manner results in regulated splicing that isof- a protein whose function is poorly understood, but ten cell specific. Most notably, trans-acting proteins such as may act in both transcription and pre-mRNA splicing. the NOVA (3–6), the RBFOX (7) and SR protein (8–11) We demonstrate that the ARGLU1 gene expresses families, and a number of hnRNP (12,13) proteins compete at least three distinct RNA splice isoforms – a fully to bind nascent RNAs at specific motifs and drive regula- spliced isoform coding for the protein, an isoform tion of alternative splicing in a tissue and developmentally containing a retained intron that is detained in the specific manner. Alternative splicing is an important pro- nucleus, and an isoform containing an alternative cess that is seen in at least 95% of multi-exon genes in the exon that targets the transcript for nonsense medi- human transcriptome (14). Furthermore, alternative splic- ated decay.
    [Show full text]
  • Reconstructing Cell Cycle Pseudo Time-Series Via Single-Cell Transcriptome Data—Supplement
    School of Natural Sciences and Mathematics Reconstructing Cell Cycle Pseudo Time-Series Via Single-Cell Transcriptome Data—Supplement UT Dallas Author(s): Michael Q. Zhang Rights: CC BY 4.0 (Attribution) ©2017 The Authors Citation: Liu, Zehua, Huazhe Lou, Kaikun Xie, Hao Wang, et al. 2017. "Reconstructing cell cycle pseudo time-series via single-cell transcriptome data." Nature Communications 8, doi:10.1038/s41467-017-00039-z This document is being made freely available by the Eugene McDermott Library of the University of Texas at Dallas with permission of the copyright owner. All rights are reserved under United States copyright law unless specified otherwise. File name: Supplementary Information Description: Supplementary figures, supplementary tables, supplementary notes, supplementary methods and supplementary references. CCNE1 CCNE1 CCNE1 CCNE1 36 40 32 34 32 35 30 32 28 30 30 28 28 26 24 25 Normalized Expression Normalized Expression Normalized Expression Normalized Expression 26 G1 S G2/M G1 S G2/M G1 S G2/M G1 S G2/M Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage CCNE1 CCNE1 CCNE1 CCNE1 40 32 40 40 35 30 38 30 30 28 36 25 26 20 20 34 Normalized Expression Normalized Expression Normalized Expression 24 Normalized Expression G1 S G2/M G1 S G2/M G1 S G2/M G1 S G2/M Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Supplementary Figure 1 | High stochasticity of single-cell gene expression means, as demonstrated by relative expression levels of gene Ccne1 using the mESC-SMARTer data. For every panel, 20 sample cells were randomly selected for each of the three stages, followed by plotting the mean expression levels at each stage.
    [Show full text]
  • S41467-020-18249-3.Pdf
    ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible.
    [Show full text]
  • Methods in and Applications of the Sequencing of Short Non-Coding Rnas" (2013)
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2013 Methods in and Applications of the Sequencing of Short Non- Coding RNAs Paul Ryvkin University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, Genetics Commons, and the Molecular Biology Commons Recommended Citation Ryvkin, Paul, "Methods in and Applications of the Sequencing of Short Non-Coding RNAs" (2013). Publicly Accessible Penn Dissertations. 922. https://repository.upenn.edu/edissertations/922 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/922 For more information, please contact [email protected]. Methods in and Applications of the Sequencing of Short Non-Coding RNAs Abstract Short non-coding RNAs are important for all domains of life. With the advent of modern molecular biology their applicability to medicine has become apparent in settings ranging from diagonistic biomarkers to therapeutics and fields angingr from oncology to neurology. In addition, a critical, recent technological development is high-throughput sequencing of nucleic acids. The convergence of modern biotechnology with developments in RNA biology presents opportunities in both basic research and medical settings. Here I present two novel methods for leveraging high-throughput sequencing in the study of short non- coding RNAs, as well as a study in which they are applied to Alzheimer's Disease (AD). The computational methods presented here include High-throughput Annotation of Modified Ribonucleotides (HAMR), which enables researchers to detect post-transcriptional covalent modifications ot RNAs in a high-throughput manner. In addition, I describe Classification of RNAs by Analysis of Length (CoRAL), a computational method that allows researchers to characterize the pathways responsible for short non-coding RNA biogenesis.
    [Show full text]
  • Landscape Genomic Approach to Investigate Genetic Adaptation in South African Indigenous Goat Populations by Khanyisile Mdladla
    Landscape genomic approach to investigate genetic adaptation in South African indigenous goat populations by Khanyisile Mdladla Submitted in fulfilment of the academic requirements of Doctor of Philosophy in Genetics School of Life Sciences College of Agriculture, Engineering and Science University of KwaZulu-Natal Pietermaritzburg South Africa December 2016 PREFACE The research contained in this thesis was completed by the candidate while based in the Biotechnology Platform, Agricultural Research Council and the Discipline of Genetics, School of Life Sciences of the College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa. The research was financially supported by University of KwaZulu-Natal, National Research Foundation-Department of Science and Technology (NRF-DST) and the Agricultural Research Council. The contents of this work have not been submitted in any form to another university and, except where the work of others is acknowledged in the text, the results reported are due to investigations by the candidate. _________________________ Signed: Edgar Farai Dzomba Date: _________________________ Signed: Farai Catherine Muchadeyi Date: i DECLARATION 1: PLAGIARISM Note that two declaration sections are required if there are papers emanating from the dissertation/thesis. The first (obligatory) declaration concerns plagiarism and the second declaration specifies your role in the published papers. I, Khanyisile Mdladla declare that: (i) the research reported in this dissertation, except where otherwise indicated or acknowledged, is my original work; (ii) this dissertation has not been submitted in full or in part for any degree or examination to any other university; (iii) this dissertation does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons; (iv) this dissertation does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers.
    [Show full text]
  • Ce Document Est Le Fruit D'un Long Travail Approuvé Par Le Jury De Soutenance Et Mis À Disposition De L'ensemble De La Communauté Universitaire Élargie
    AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm Ecole Doctorale BioSE (Biologie-Santé-Environnement) Thèse Présentée et soutenue publiquement pour l’obtention du titre de DOCTEUR DE l’UNIVERSITE DE LORRAINE Mention : « Sciences de la Vie et de la Santé » Par Andréa GEOFFROY Conséquences d’une carence en donneurs de méthyles sur la différenciation neuronale et la plasticité : influence d’une supplémentation périnatale sur le développement cérébral. Le 08 Septembre 2015 Membres du jury : Rapporteurs : Pr. Marie-Laure Kottler PU-PH, U1075 INSERM, Caen, France Dr. Patrick Anglard DR, U7364 CNRS, Strasbourg, France Examinateurs : Dr. Hervé Moine DR, CNRS 7104 / INSERM U964, Strasbourg, France Pr. Jean-Louis Guéant PU-PH, U954 INSERM, Nancy, France Dr. Jean-Luc Daval DR, U954 INSERM, Nancy, France Directeur de thèse Dr. Carine Bossenmeyer-Pourié MCU, U954 INSERM, Nancy, France, Co-directeur de thèse Membres invités: Pr. Bruno Charpentier PR, U7365 CNRS, Nancy, France _________________________________________________________________________________ UMR 954 INSERM – «Nutrition, génétique et exposition aux risques environnementaux» 9 avenue de la Forêt de Haye-Faculté de Médecine - 54500 Vandoeuvre-lès-Nancy REMERCIEMENTS Je transmets mes sincères remerciements : A Madame le Professeur Marie-Laure Kottler et à Monsieur le Docteur Patrick Anglard pour avoir accepté d’être rapporteurs pour ma soutenance de thèse.
    [Show full text]
  • Assembly of Centrosomal Proteins and Microtubule Organization Depends on PCM-1
    JCBArticle Assembly of centrosomal proteins and microtubule organization depends on PCM-1 Alexander Dammermann and Andreas Merdes Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, UK he protein PCM-1 localizes to cytoplasmic granules treatment of cells with the microtubule inhibitor nocodazole. known as “centriolar satellites” that are partly enriched Inhibition or depletion of PCM-1 function further disrupted T around the centrosome. We inhibited PCM-1 function the radial organization of microtubules without affecting using a variety of approaches: microinjection of antibodies microtubule nucleation. Loss of microtubule organization into cultured cells, overexpression of a PCM-1 deletion was also observed after centrin or ninein depletion. Our mutant, and specific depletion of PCM-1 by siRNA. All data suggest that PCM-1–containing centriolar satellites are Downloaded from approaches led to reduced targeting of centrin, pericentrin, involved in the microtubule- and dynactin-dependent recruit- and ninein to the centrosome. Similar effects were seen ment of proteins to the centrosome, of which centrin and upon inhibition of dynactin by dynamitin, and after prolonged ninein are required for interphase microtubule organization. jcb.rupress.org Introduction Microtubule organization is essential for directional intra- the centrosomal surface or subsequently released and anchored cellular transport, for the modulation of cell morphology in other places of the cell (Mogensen, 1999). The initial step and locomotion, and for the formation of the spindle apparatus of microtubule nucleation is dependent on the function of during cell division. With the exception of plants, most cells 25S ring complexes of the protein ␥-tubulin and associated on December 31, 2017 organize their microtubule network using specialized structures, proteins (Zheng et al., 1995).
    [Show full text]
  • Specialized Cilia in Mammalian Sensory Systems
    Cells 2015, 4, 500-519; doi:10.3390/cells4030500 OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Review Specialized Cilia in Mammalian Sensory Systems Nathalie Falk, Marlene Lösl, Nadja Schröder and Andreas Gießl * Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; E-Mails: [email protected] (N.F.); [email protected] (M.L.); [email protected] (A.G.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-9131-85-28055; Fax: +49-9131-85-28060. Academic Editors: Gang Dong and William Tsang Received: 18 May 2015 / Accepted: 9 September 2015 / Published: 11 September 2015 Abstract: Cilia and flagella are highly conserved and important microtubule-based organelles that project from the surface of eukaryotic cells and act as antennae to sense extracellular signals. Moreover, cilia have emerged as key players in numerous physiological, developmental, and sensory processes such as hearing, olfaction, and photoreception. Genetic defects in ciliary proteins responsible for cilia formation, maintenance, or function underlie a wide array of human diseases like deafness, anosmia, and retinal degeneration in sensory systems. Impairment of more than one sensory organ results in numerous syndromic ciliary disorders like the autosomal recessive genetic diseases Bardet-Biedl and Usher syndrome. Here we describe the structure and distinct functional roles of cilia in sensory organs like the inner ear, the olfactory epithelium, and the retina of the mouse. The spectrum of ciliary function in fundamental cellular processes highlights the importance of elucidating ciliopathy-related proteins in order to find novel potential therapies.
    [Show full text]
  • Centrosome Cohesion: Functions of C-NAP1
    Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title Centrosome cohesion: functions of C-NAP1 Author(s) Flanagan, Anne-Marie Publication Date 2016-01-07 Item record http://hdl.handle.net/10379/5458 Downloaded 2021-09-25T13:41:15Z Some rights reserved. For more information, please see the item record link above. Centrosome Cohesion: Functions of C-NAP1 Anne-Marie Flanagan Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway A thesis submitted to the National University of Ireland, Galway for the degree of Doctor of Philosophy September 2015 Supervisor: Prof. Ciaran Morrison Table of Contents Table of Contents ....................................................................................ii List of figures ........................................................................................... v List of tables ......................................................................................... viii Abreviations ............................................................................................ ix Acknowledgements ................................................................................xii Abstract ................................................................................................ xiii 1. Introduction .................................................................................... 14 1.1 Cell cycle overview ....................................................................................
    [Show full text]
  • Regulation of Centriolar Satellite Integrity and Its Physiology
    Cell. Mol. Life Sci. DOI 10.1007/s00018-016-2315-x Cellular and Molecular Life Sciences REVIEW Regulation of centriolar satellite integrity and its physiology 1,2 1,3 Akiko Hori • Takashi Toda Received: 19 May 2016 / Revised: 14 July 2016 / Accepted: 21 July 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Centriolar satellites comprise cytoplasmic gran- Keywords Cellular stress Á Centriole Á Ciliogenesis Á ules that are located around the centrosome. Their MSD1/SSX2IP Á Microtubule Á PCM1 Á PLK4 Á molecular identification was first reported more than a Phosphorylation Á Ubiquitylation quarter of a century ago. These particles are not static in the cell but instead constantly move around the centrosome. Abbreviations Over the last decade, significant advances in their molec- CS Centriolar satellites ular compositions and biological functions have been c-TuC c-Tubulin complex achieved due to comprehensive proteomics and genomics, HU Hydroxyurea super-resolution microscopy analyses and elegant genetic IR Ionising radiation manipulations. Centriolar satellites play pivotal roles in MCPH Microcephaly centrosome assembly and primary cilium formation MT Microtubule through the delivery of centriolar/centrosomal components MTOC Microtubule-organising centre from the cytoplasm to the centrosome. Their importance is PCM Pericentriolar material further underscored by the fact that mutations in genes SPB Spindle pole body encoding satellite components and regulators lead to vari- UV Ultraviolet ous human disorders such as ciliopathies. Moreover, the most recent findings highlight dynamic structural remod- elling in response to internal and external cues and unexpected positive feedback control that is exerted from Introduction the centrosome for centriolar satellite integrity.
    [Show full text]