Novel Materials and Processes for Gate Dielectrics on Silicon Carbide
Total Page:16
File Type:pdf, Size:1020Kb
FACULTAT DE CIÈNCIES Departament de Física Novel materials and processes for gate dielectrics on Silicon carbide A dissertation submitted to the department of physics and the committee on graduate studies of Universitat Autònoma de Barcelona in partial fulfilment of the requirements for the degree of doctor of philosophy by: Amador Pérez Tomás Power Devices and Systems Group Centre Nacional de Microelectrònica Consejo Superior de Investigaciones Científicas Supervised by Dr. Philippe Godignon Assigned Tutor: Prof. Jordi Pascual i Gainza Bellaterra, June 9th, 2005 El Professor Jordi Pascual i Gainza, Catedràtic de la Facultat de Ciències de la UAB i Tutor del present treball de Tesis CERTIFICA El treball que duu per títol “Novel materials and processes for gate dielectrics on Silicon carbide”, presentat per Amador Pérez Tomás que constitueix el treball de Tesis del programa de Tercer Cicle de Ciències de Materials, ha estat realitzat sota la direcció de Philippe Godignon, Científic Titular del CSIC. Bellaterra, Juny de 2005 Dr. Philippe Godignon Tutor: Prof. Jordi Pascual i Gainza A Sílvia, Amador i Núria. (…) οὐ σέ γ᾽ ἔπειτα ἔολπα τελευτήσειν, ἃ µενοινᾷς. παῦροι γάρ τοι παῖδες ὁµοῖοι πατρὶ πέλονται, οἱ πλέονες κακίους, παῦροι δέ τε πατρὸς ἀρείους. ἀλλ᾽ ἐπεὶ οὐδ᾽ ὄπιθεν κακὸς ἔσσεαι οὐδ᾽ ἀνοήµων, οὐδέ σε πάγχυ γε µῆτις Ὀδυσσῆος προλέλοιπεν, (…) Ὁµήρου Ὀδύσσεια Ραψωδία βʹ, 275 – 280 Acknowledgements Four years do go very far. After all this time, I've quite a long list of people who contributed in some way to this thesis, for which I would like to express my gratitude. First the filthy lucre. This work was partially supported by the Comisión Interministerial de Ciencia y Tecnología (CICYT) under project nº TIC2000-1403-C03-01. I would like to acknowledge the careful supervision and not only follow-up but also brilliant ideas and a lot of experimental work of Dr. Philippe Godignon during the development of this work. In addition, I would like to acknowledge the “parallel-but- not-politic” supervision, orientation and encouraging of Dr. Narcís Mestres from ICMAB. I'm also grateful with the CNM people, Prof. José Millán, Dr. Xavier Jordà, Dr. Josep Montserrat, Monica Sarrión, Dr. José Rebollo, Dr. Salvador Hidalgo, Dr. Miquel Vellvehí and Dr. David Flores for their advice and collaboration throughout this investigation. Different people from several institutions from Europe have collaborated throughout this thesis as regards specializing physical characterization or supplying high quality SiC epitaxial layers: J. Stoemenos (Aristotele University of Thessaloniki, Greece), P. Vennegues (CRHEA-CNRS, France), J. Camassel (UM2-CNRS, France) and V. Soulière (LMI, France). I would like to thank all my colleagues for their help, comradeship and endless patience, Raúl Pérez, Dr. Francesc Madrid, Dr. Jaume Roig, Jesus Urresti, Xavier Perpinyà, Jose Luis Gálvez, Ignasi Cortés, Dr. Riccardo Rurali, Dr. Servane Blanqué, Dr. Dominique Tournier, Marcel Placidí, Pierre Brosselard, Juan Ramírez, Rachel Fly and others. I am grateful for the wholehearted support that my parents, my sisters, my partner who seems not interested in SiC of all, my friends and the rest of my family have given to me throughout. An especial mention with admiration and respect to Ramon and Frank whose memory will live on with us. Bellaterra, Catalunya, June 2005 CONTENTS · Contents Notation v List of Acronyms ix I. Introduction 1.1. Motivation ………………………………………………………………….1 1.2. Outline of the thesis ……………………………………………………..…3 II. Why Silicon carbide? 2.1. Physical and electrical properties of SiC ………………………………….5 2.2. SiC material growth ……………………………………………………….8 2.3. SiC Technology and applications ……………………………………..….10 2.4. Yes, but … The SiO2/SiC interface problem …………………..…………13 2.5. Conclusions ……………………………………………………...………..16 III. Characterization methods of metal-insulator-semiconductor structures 3.1. Physical characterization methods ………………………………………..19 3.1.1. AFM: Atomic Force Microscope …………………………………………………..……20 3.1.2. EDX: Energy Dispersive X-Ray Analysis …………………………………………..….22 3.1.3. RBS: Rutherford Backscattering Spectrometry ………………………………………..23 3.1.4. SEM: Scanning Electron Microscope …………………………………………………..25 3.1.5. SIMS: Secondary Ion Mass Spectroscopy ……………………………………………...27 i CONTENTS · 3.1.6. TEM: Transmission Electron Microscopy ………………………………………..……29 3.1.7. XRD: X-Ray Diffraction Analysis ……………………………………………………….31 3.2. Electrical characterization methods ………………………………………34 3.2.1. Electrostatic MIS theory and C-V behavior ……………………………………….…..35 3.2.2. Interface and insulator charge ……………………………………………..……………41 3.2.2.1. Flat-band Voltage: Insulator Charge ……………………………………….……41 3.2.2.2. Interface traps …………………………………………………..…………………..43 3.2.3. I-V measurements …………………………………………………………………..……..49 3.3. Conclusions …………………………………………………………..……50 IV. Thermal oxidation of SiC 4.1. Thermal oxidation in O2 …………………………………………..………55 4.1.1. Dry O2 oxidation. The standard thermal oxidation ………………………………...…56 4.1.2. Other oxidation conditions ……………………………………………………..………..61 4.1.3. Post oxidation treatments ………………………………………………………...………62 4.2. NO or N2O nitridation ………………………………………...…………..63 4.2.1. Nitridation versus oxidation ……………………………………………………………..63 4.2.2. Oxides grown or annealed in NO ………………………………………………...……..64 4.2.3. Oxides grown or annealed in N2O ………………………………………………..…….64 4.3. MOSFET fabrication ………………………………………………..……66 4.3.1. The CNM SiC MOSFETs with thermally grown gate oxide …………………..……..68 4.3.2. The SiC MOSFETs state-of-the-art ………………………………………………..……73 4.4. Conclusions …………………………………………………………...…..76 V. Deposited a-SiOx as gate dielectric 5.1. a-SiOx layers from PECVD with SiH4 and N2O as precursors ……...……81 5.1.1. The CNM PECVD with SiH4 and N2O as precursors - Experimental Details ...….83 5.1.2. MOS Physical and Electrical characteristics ……………………………………..…..84 5.2. a-SiOx layers from TEOS as source material …………………..…………86 5.2.1. The CNM PECVD with TEOS as source material - Experimental Details ….……86 5.2.2. MOS Physical and Electrical characteristics …………………………..……………..88 5.2.3. 4H-SiC SiO2-TEOS MOSFETs fabrication ……………………….……………………92 5.3. a-SiOx layers from RTCVD Si layer oxidized in diluted N2O ……...……97 5.3.1. The CNM Si RTCVD oxidized in diluted N2O - Experimental Details ………….....97 5.3.2. MOS Physical and Electrical characteristics ………………………..………………..98 5.4. Conclusions ………………………………………………………………101 ii CONTENTS · VI. Alternative high-k gate dielectrics 6.1. Ta2Si thermal oxidation, a simple route to a high-k gate dielectric on SiC……………………………………………………………...…..…….105 6.1.1. Experimental Details ……………………………………………...……………………106 6.1.2. Physical Characterization ………………………………………………………………106 6.1.3. Insulating Properties ……………………………………………………………………113 6.1.4. Capacitance Properties …………………………………………………………………117 6.1.5. 4H-SiC Ta2Si MOSFETs fabrication ………………………………………………….124 6.2. Stacked structures based on SiO2/O-Ta2Si ………………………………130 6.2.1. O-Ta2Si on standard thermal SiO2 (T-SiO2) ………………………………………….130 6.2.2. O-Ta2Si on low temperature thermally grown SiO2 (LT-SiO2) …….………………133 6.3. Ta2Si oxidized in N2O ……………………………………………………135 6.4. TaSi2 thermal oxidation, the oxidation of the common Tantalum silicide to form dielectric layers on SiC ……………………………….……………140 6.5. Conclusions ………………………………………………………………145 VII. Field-effect mobility model with high traps density in the interface 7.1. Interface traps Coulomb scattering modeling on the effective channel mobility in 4H-SiC MOSFET devices …………..…………………...…..151 7.1.1. Lombardi mobility model with traps coulomb scattering …………………………..152 7.1.2. 4H-SiC MOSFETs 2-D simulations ………………………...…………………………154 7.1.3. The inversion and the field effect mobility in MOSFETS with a large density of interface states ……………………………………………………………………………157 7.1.4. The charging and the scattering of electrons in interface traps …………………...161 7.1.5. The profile of interface traps dependence ……………………………………….……163 7.1.6. Substrate impurity concentration dependence ………………………………...…….167 7.1.7. Temperature dependence …………………………………………………...………….169 7.2. Anomalous mobility enhancement on 4H-SiC MOSFETS due to gate leakage inversion carriers injection …………………….………………..172 7.2.1. Anomalous mobility enhancement ……………………………………………………..172 7.3. Conclusions ……………………………………….……………………..176 iii CONTENTS · VIII. Conclusions and future work 8.1. General conclusions ………………………….………………………….181 8.2. Suggestions for future work ……………………………….…………….184 Publication List of the Author 187 iv NOTATION . Notation Symbol Description A Effective Richardson constant ADG Deal-Grove linear rate constant Agate Gate Area B Fitting parameter for the acoustic-phonon scattering (1) b' Direct tunneling constant BDG Deal-Grove parabolic rate constant C Capacitance C1 Fitting parameter for the acoustic-phonon scattering (2) C fb Flat band capacitance CHF High Frequency capacitance CI Insulator capacitance Cit Interface traps capacitance CLF Low Frequency capacitance Cm Measured capacitance cn Interface trap electron capture probability c p Interface trap hole capture probability Cs Semiconductor capacitance D Fitting parameter for the surface roughness scattering (1) Dit Interface states/traps density Er , E Electric Field EB Activation energy for Deal-Grove parabolic rate EB / A Activation energy for Deal-Grove linear rate Ebd Electric breakdown field Ecr Semiconductor critical electric field EC Conduction band energy v NOTATION . EF Fermi energy Eg Energy of band gap Ei Intrinsic level energy Eins Electrical