A Weight of Evidence Approach to Causal Inference

Total Page:16

File Type:pdf, Size:1020Kb

A Weight of Evidence Approach to Causal Inference Journal of Clinical Epidemiology 62 (2009) 270e277 A weight of evidence approach to causal inference Gerard Swaena,*, Ludovic van Amelsvoortb aEpidemiology Department, the Dow Chemical Company, The Netherlands bEpidemiology Department, School for Public health and Primary Care (CAPHRI), Maastricht University, The Netherlands Accepted 24 June 2008 Abstract Objective: The Bradford Hill criteria are the best available criteria for causal inference. However, there is no information on how the criteria should be weighed and they cannot be combined into one probability estimate for causality. Our objective is to provide an empirical basis for weighing the Bradford Hill criteria and to develop a transparent method to estimate the probability for causality. Study Design and Setting: All 159 agents classified by International Agency for Research of Cancer as category 1 or 2A carcinogens were evaluated by applying the nine Bradford Hill criteria. Discriminant analysis was used to estimate the weights for each of the nine Bradford Hill criteria. Results: The discriminant analysis yielded weights for the nine causality criteria. These weights were used to combine the nine criteria into one overall assessment of the probability that an association is causal. The criteria strength, consistency of the association and exper- imental evidence were the three criteria with the largest impact. The model correctly predicted 130 of the 159 (81.8%) agents. Conclusion: The proposed approach enables using the Bradford Hill criteria in a quantitative manner resulting in a probability estimate of the probability that an association is causal. Ó 2008 Published by Elsevier Inc. Keywords: Causal inference; Bradford Hill criteria; Epidemiology; Risk assessment; Methodology; Epistemology 1. Introduction criteria formulated in a landmark surgeon general’s report on smoking and health. These causality criteria are widely One of the main objectives of epidemiological research accepted and only marginal changes have been proposed is to identify causes of disease. A cause of a disease can be since they were first published. They are not only used in defined as a factor that affects its incidence. Elimination of epidemiology. Guzelian et al. proposed a framework for ev- the causal factor would result in a change in disease inci- idence-based toxicology which heavily relies on the Brad- dence. There is no universal consensus on the definition ford Hill criteria for causal inference [5]. of a cause and several types of definitions have been The rigid use of strict causality criteria has been chal- described [1,2]. lenged. Kundi for instance pointed out that causality crite- Causal inference from epidemiological studies is com- ria can be used to falsely postpone public health action plex and has been the subject of extensive debate. For many under the pretext that the available evidence does not fulfill associations between risk factors and health effects there is the criteria [1]. Kundi proposed to use a pragmatic ap- still some room for doubt about their causality. Perhaps the proach for assessing causal inference based on prior knowl- most realistic conclusion on causal inference was drawn by edge, epidemiology, animal studies, and in vitro studies. Weed who stated that the purpose of epidemiology is not to Kundi proposed that temporal relation, association, and en- prove causeeeffect relationships but to acquire knowledge vironmental and population equivalence would suffice for about the determinants and distribution of disease and to a verdict of potential causation. apply that knowledge to improve public health [3]. From the papers published on this topic, it is clear that Bradford Hill has formulated a set of criteria to assess the Bradford Hill criteria still remain key components to causality [4]. Hill’s criteria were an expansion of a set of causal inference. However, there is no agreement on what weight should be given to each individual criterion and per- haps trying to draw absolute conclusions on causality is too far fetched. A more fruitful and practical approach would * Corresponding author. Tel.: 31 (0)433626042; Fax: 31 (0)115674164. Epidemiology Department, The Dow Chemical Company, P.O. Box 444, be to use the Bradford Hill criteria to estimate the likeli- Terneuzen, Zeeland, The Netherlands. hood that an association is causal. The outcome of such E-mail address: [email protected] (G. Swaen). a probabilistic approach could be an estimate of the 0895-4356/09/$ e see front matter Ó 2008 Published by Elsevier Inc. doi: 10.1016/j.jclinepi.2008.06.013 G. Swaen, L. van Amelsvoort / Journal of Clinical Epidemiology 62 (2009) 270e277 271 the overall causality assessment. It is obvious that not all What is new? criteria equally contribute to the overall evidence for cau- The Bradford Hill criteria offer the best guidance sality and some may argue that the strength of evidence for causal inference. contributes more than plausibility for instance. Swaen et al. for instance reported that a doseeresponse relation- However, there is no empirical information on how ship or biological gradient decreased the chance of a false to weigh the criteria against each other. positive finding [8]. Again, this weight of evidence can be This paper provides an original and empirically regarded as being a matter of expert judgment, but prefer- based approach to causal inference. ably it would be based on empirical data. The Bradford Hill criteria usually are not applied in The outcome of the approach is a probability esti- a very systematic manner. On occasion the criteria that mate that the association is causal. are thought to be met are listed and a conclusion on causal- The approach is tested on examples and seems to ity is drawn. A more systematic and predetermined weight work well and should be further tested in future of evidence approach would have the advantage that the causal inference studies. overall assessment of causality becomes a more transparent and reproducible approach. A more systematic approach could also improve validity and reproducibility compared to the nonsystematic approach commonly used. The purpose of our analysis is to develop a weight of ev- probability that the association is causal. The estimate of idence approach to causal inference resulting in an estimate the likelihood that an association is causal should be based of the overall probability that an association is causal. We on all nine Bradford Hill criteria and some criteria might be have applied a weight of evidence approach to 159 chemi- more useful than others. However, the weight of evidence cals or agents evaluated by International Agency for that each single criterion contributes to the overall probabil- Research of Cancer (IARC) as category 1 or 2A carcino- ity is not specified and a matter of subjective interpretation, gens. Taking the IARC classification as the gold standard, or ‘‘expert judgment.’’ Hill did not believe that any hard- we estimated the optimal weights for each criterion. and-fast rules of evidence could be laid down and he em- phasized that his nine ‘‘viewpoints’’ were neither necessary nor sufficient for causation [6]. Weed evaluated two 2. The causality criteria accounts of the use of the Bradford Hill criteria and The best and most recent description of Hill’s causality concluded that the criteria of consistency, strength, dosee criteria is given by Rothman and Greenland [9]. In short, response, and biological plausibility but not often temporal- Rothman and Greenland list the following nine causality ity were used when judging weak associations [7]. criteria: In a weight of evidence approach to causal inference, two aspects need to be quantified. First, the probability that 1 Strength of the association, the stronger the associa- a certain criterion is met needs to be estimated based on the tion the more likely that the association is causal. available (epidemiological and other) evidence. In most 2 Consistency, if more studies find similar results, the cases, the available evidence in support of a particular cau- more likely it is that the association is causal. sality criterion will not be evaluated to be 100%. For in- 3 Specificity, a specific exposure should exert a specific stance, the available evidence for the consistency may be effect. There are causal associations that are not assessed to be 75% in a situation that three out of four stud- specific, for example, cigarette smoking, asbestos ies report an association and the fourth does not. Or the ev- exposure, which are associated with multiple carcino- idence for the plausibility criterion can be estimated to be genic effects. met by a probability of 60% if only one animal study has 4 Temporality, the causal exposure should precede the found similar results, which essentially is an arbitrary esti- caused disease in time. mate but must be seen in the perspective of a most com- 5 Biological gradient or doseeresponse. If a dosee plete data set of animal in vivo, in vitro experiments, and response is seen, it is more likely that the association mechanistic supportive information which would receive is causal. a 1,005 probability if all evidence were in support of the 6 Plausibility depends on the current knowledge of the association. The analogy criterion can be estimated to be etiology of the disease. For instance, is it known that met for 0% if well-designed studies on a similar compound the agent or metabolite reaches the target organ, are are negative. Such estimates of the probability of the crite- studies in animal models positive? rion being met need to be made for each of the nine 7 Coherence, refers to other observed biological effects criteria. possibly relevant in the etiologic pathway that make Second, a weight must be given to each of the nine cri- a causal association more likely, for example, histo- teria expressing the relative importance of each criterion for logical changes in the target organ. 272 G.
Recommended publications
  • Judging the Evidence 2018 Contents World Cancer Research Fund Network 3 1
    Judging the evidence 2018 Contents World Cancer Research Fund Network 3 1. Introduction 5 2. Randomised controlled trials 6 3. Epidemiological evidence 6 3.1 Cohort studies 9 3.2 Case-control studies 10 3.3 Other study designs 10 4. Meta-analysis 11 5. Experimental evidence 16 5.1 Human studies 16 5.2 Live animal models 16 5.3 In vitro studies 17 6. Methods of assessment 17 6.1 Foods, drinks and nutrients 17 6.2 Nutrition status 18 6.3 Physical activity 19 6.4 Cancer outcomes 20 7. Evidence collated for the Continuous Update Project 21 8. The grading criteria 22 8.1 Context for using the criteria 26 8.2 Food-based approach 27 8.3 CUP matrices 28 8.4 Levels and types of judgement 29 9. Conclusions 29 Acknowledgements 30 Abbreviations 34 Glossary 35 References 39 Our Cancer Prevention Recommendations 42 WORLD CANCER RESEARCH FUND NETWORK Our Vision We want to live in a world where no one develops a preventable cancer. Our Mission We champion the latest and most authoritative scientific research from around the world on cancer prevention and survival through diet, weight and physical activity, so that we can help people make informed choices to reduce their cancer risk. As a network, we influence policy at the highest level and are trusted advisors to governments and to other official bodies from around the world. Our Network World Cancer Research Fund International is a not-for-profit organisation that leads and unifies a network of cancer charities with a global reach, dedicated to the prevention of cancer through diet, weight and physical activity.
    [Show full text]
  • Could Low Grade Bacterial Infection Contribute to Low Back Pain? a Systematic Review
    Urquhart et al. BMC Medicine (2015) 13:13 DOI 10.1186/s12916-015-0267-x RESEARCH ARTICLE Open Access Could low grade bacterial infection contribute to low back pain? A systematic review Donna M Urquhart1*, Yiliang Zheng1, Allen C Cheng1, Jeffrey V Rosenfeld2,3, Patrick Chan2,3, Susan Liew2,4, Sultana Monira Hussain1 and Flavia M Cicuttini1 Abstract Background: Recently, there has been both immense interest and controversy regarding a randomised, controlled trial which showed antibiotics to be effective in the treatment of chronic low back pain (disc herniation with Modic Type 1 change). While this research has the potential to result in a paradigm shift in the treatment of low back pain, several questions remain unanswered. This systematic review aims to address these questions by examining the role of bacteria in low back pain and the relationship between bacteria and Modic change. Methods: We conducted electronic searches of MEDLINE and EMBASE and included studies that examined the relationship between bacteria and back pain or Modic change. Studies were rated based on their methodological quality, a best-evidence synthesis was used to summarise the results, and Bradford Hill’s criteria were used to assess the evidence for causation. Results: Eleven studies were identified. The median (range) age and percentage of female participants was 44.7 (41–46.4) years and 41.5% (27–59%), respectively, and in 7 of the 11 studies participants were diagnosed with disc herniation. Nine studies examined the presence of bacteria in spinal disc material and all identified bacteria, with the pooled estimate of the proportion with positive samples being 34%.
    [Show full text]
  • Building a Better Mousetrap: Patenting Biotechnology in the European
    THE BRADFORD HILL CRITERIA: THE FORGOTTEN PREDICATE Dr. Frank C. Woodside, III* & Allison G. Davis** Table of Contents I. INTRODUCTION ....................................................................... 104 II. EPIDEMIOLOGY, DAUBERT, AND ESTABLISHING ASSOCIATION .................................................................... 107 A. Background on the Field of Epidemiology ...................... 107 B. Establishing Association .................................................. 108 C. Daubert and Its Progeny .................................................. 111 III. CAUSATION: THE NINE CRITERIA .................................... 112 A. Strength of Association ................................................... 113 B. Consistency ...................................................................... 114 C. Specificity of the Association .......................................... 116 * Frank C. Woodside, III is of counsel to the law firm of Dinsmore & Shohl. Dr. Woodside is a nationally-known trial lawyer representing manufacturers of pharmaceutical and medical devices, chemicals and flavorings, as well as producers of consumer products. Over a period of more than 40 years, he has tried 80-plus cases to verdict or judgment, serving as primary trial counsel in medical malpractice, product liability, and mass tort cases. Dr. Woodside’s clients include Fortune 500 companies, health care providers, and hospitals. His background to practice Medicine and Surgery for nearly 40 years affords him added knowledge and insight he uses to his
    [Show full text]
  • Does Sufficient Evidence Exist to Support a Causal Association Between Vitamin D Status and Cardiovascular Disease Risk?
    Nutrients 2014, 6, 3403-3430; doi:10.3390/nu6093403 OPEN ACCESS nutrients ISSN 2072-6643 www.mdpi.com/journal/nutrients Review Does Sufficient Evidence Exist to Support a Causal Association between Vitamin D Status and Cardiovascular Disease Risk? An Assessment Using Hill’s Criteria for Causality Patricia G. Weyland 1,*, William B. Grant 2 and Jill Howie-Esquivel 1 1 Department of Physiological Nursing, School of Nursing, University of California, San Francisco (UCSF), #2 Koret Way Box 0610, San Francisco, CA 94143, USA; E-Mail: [email protected] 2 Sunlight, Nutrition, and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-831-420-7324. Received: 22 May 2014; in revised form: 31 July 2014 / Accepted: 18 August 2014 / Published: 2 September 2014 Abstract: Serum 25-hydroxyvitamin D (25(OH)D) levels have been found to be inversely associated with both prevalent and incident cardiovascular disease (CVD) risk factors; dyslipidemia, hypertension and diabetes mellitus. This review looks for evidence of a causal association between low 25(OH)D levels and increased CVD risk. We evaluated journal articles in light of Hill’s criteria for causality in a biological system. The results of our assessment are as follows. Strength of association: many randomized controlled trials (RCTs), prospective and cross-sectional studies found statistically significant inverse associations between 25(OH)D levels and CVD risk factors. Consistency of observed association: most studies found statistically significant inverse associations between 25(OH)D levels and CVD risk factors in various populations, locations and circumstances.
    [Show full text]
  • Medicine in 18Th and 19Th Century Britain, 1700-1900
    Medicine in 18th and 19th century Britain, 1700‐1900 The breakthroughs th 1798: Edward Jenner – The development of How had society changed to make medical What was behind the 19 C breakthroughs? Changing ideas of causes breakthroughs possible? vaccinations Jenner trained by leading surgeon who taught The first major breakthrough came with Louis Pasteur’s germ theory which he published in 1861. His later students to observe carefully and carry out own Proved vaccination prevented people catching smallpox, experiments proved that bacteria (also known as microbes or germs) cause diseases. However, this did not put an end The changes described in the Renaissance were experiments instead of relying on knowledge in one of the great killer diseases. Based on observation and to all earlier ideas. Belief that bad air was to blame continued, which is not surprising given the conditions in many the result of rapid changes in society, but they did books – Jenner followed these methods. scientific experiment. However, did not understand what industrial towns. In addition, Pasteur’s theory was a very general one until scientists begun to identify the individual also build on changes and ideas from earlier caused smallpox all how vaccination worked. At first dad bacteria which cause particular diseases. So, while this was one of the two most important breakthroughs in ideas centuries. The flushing toilet important late 19th C invention wants opposition to making vaccination compulsory by law about what causes disease and illness it did not revolutionise medicine immediately. Scientists and doctors where the 1500s Renaissance – flushing system sent waste instantly down into – overtime saved many people’s lives and wiped‐out first to be convinced of this theory, but it took time for most people to understand it.
    [Show full text]
  • Bradford Hill Criteria for Causal Inference Based on a Presentation at the 2015 ANZEA Conference
    Bradford Hill Criteria for Causal Inference Based on a presentation at the 2015 ANZEA Conference Julian​ King Director,​ Julian King & Associates – a member of the Kinnect Group www.julianking.co.nz​ | www.kinnect.co.nz 2015 We think we’re good at determining causality, but we suck at it One​ of the great At​ one level, this is an Unfortunately,​ though, the challenges in evaluation is everyday, common sense way we are wired does not determining whether the task. As a species we’ve predispose us to logical results we’re seeing are been making judgments thinking. We are inclined because of the program about causation for a to be led astray by all sorts we’re evaluating, some million years or so. of biases and heuristics. other influences out there in the big world, or random chance. The​ Kinnect Group www.kinnect.co.nz 2 Along came logic Eventually,​ after a very long time, we evolved into philosophers who invented formal logic. Thanks to scientific method, our species has recently triumphed to the extent that we now have cars that drive themselves and flying drones that deliver pizza (don’t confuse this with progress – we still suck at ethics but that’s a story for another day). 3 But we’re still not great at causation Over​ time, the rocket But​ deep down we’re still Such​ a rigid view is not science for dealing with biased, heuristical beings much use in the real causation has become and not very good at world, where there are all more sophisticated – a thinking things through.
    [Show full text]
  • Medical Bacteriology
    LECTURE NOTES Degree and Diploma Programs For Environmental Health Students Medical Bacteriology Abilo Tadesse, Meseret Alem University of Gondar In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education September 2006 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2006 by Abilo Tadesse, Meseret Alem All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. PREFACE Text book on Medical Bacteriology for Medical Laboratory Technology students are not available as need, so this lecture note will alleviate the acute shortage of text books and reference materials on medical bacteriology.
    [Show full text]
  • Molecular Pathological Epidemiology in Diabetes Mellitus and Risk of Hepatocellular Carcinoma
    Submit a Manuscript: http://www.wjgnet.com/esps/ World J Hepatol 2016 September 28; 8(27): 1119-1127 Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx ISSN 1948-5182 (online) DOI: 10.4254/wjh.v8.i27.1119 © 2016 Baishideng Publishing Group Inc. All rights reserved. REVIEW Molecular pathological epidemiology in diabetes mellitus and risk of hepatocellular carcinoma Chun Gao Chun Gao, Department of Gastroenterology, China-Japan logy and epidemiology, and investigates the relationship Friendship Hospital, Ministry of Health, Beijing 100029, China between exogenous and endogenous exposure factors, tumor molecular signatures, and tumor initiation, progres- Author contributions: Gao C conceived the topic, performed sion, and response to treatment. Molecular epidemiology research, retrieved concerned literatures and wrote the paper. broadly encompasses MPE and conventional-type mole- cular epidemiology. Hepatocellular carcinoma (HCC) Supported by Beijing NOVA Programme of Beijing Municipal is the third most common cause of cancer-associated Science and Technology Commission, No. Z13110.7000413067. death worldwide and remains as a major public health Conflict-of-interest statement: No conflict of interest. challenge. Over the past few decades, a number of epidemiological studies have demonstrated that diabetes Open-Access: This article is an open-access article which was mellitus (DM) is an established independent risk factor selected by an in-house editor and fully peer-reviewed by external for HCC. However, how DM affects the occurrence and
    [Show full text]
  • 9. Causal Inference*
    9. Causal inference* The desire to act on the results of epidemiologic studies frequently encounters vexing difficulties in obtaining definitive guides for action. Weighing epidemiologic evidence in forming judgments about causation. "The world is richer in associations than meanings, and it is the part of wisdom to differentiate the two." — John Barth, novelist. "Who knows, asked Robert Browning, but the world may end tonight? True, but on available evidence most of us make ready to commute on the 8.30 next day." — A. B. Hill Historical perspective Our understanding of causation is so much a part of our daily lives that it is easy to forget that the nature of causation is a central topic in the philosophy of science and that in particular, concepts of disease causation have changed dramatically over time. In our research and clinical practice, we largely act with confidence that 21st century science has liberated us from the misconceptions of the past, and that the truths of today will lead us surely to the truths of tomorrow. However, it is a useful corrective to observe that we are not the first generation to have thought this way. In the 1950s, medical and other scientists had achieved such progress that, according to Dubos (1965:163), most clinicians, public health officers, epidemiologists, and microbiologists could proclaim that the conquest of infectious diseases had been achieved. Deans and faculties began the practice of appointing, as chairs of medical microbiology, biochemists and geneticists who were not interested in the mechanisms of infectious processes. As infectious disease epidemiology continues to surge in popularity, we can only shake our heads in disbelief at the shortsightedness of medical and public health institutions in dismantling their capabilities to study and control infectious diseases, whose epidemics have repeatedly decimated populations and even changed the course of history.
    [Show full text]
  • Foundations of Epidemiology
    66221_CH01_5398.qxd 6/19/09 11:16 AM Page 1 © Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION CHAPTER 1 Foundations of Epidemiology OBJECTIVES After completing this chapter, you will be able to: ■ Define epidemiology. ■ Define descriptive epidemiology. ■ Define analytic epidemiology. ■ Identify some activities performed in epidemiology. ■ Explain the role of epidemiology in public health practice and individual decision making. ■ Define epidemic, endemic, and pandemic. ■ Describe common source, propagated, and mixed epidemics. ■ Describe why a standard case definition and adequate levels of reporting are important in epidemiologic investigations. ■ Describe the epidemiology triangle for infectious disease. ■ Describe the advanced epidemiology triangle for chronic diseases and behavioral disorders. ■ Define the three levels of prevention used in public health and epidemiology. ■ Understand the basic vocabulary used in epidemiology. 66221_CH01_5398.qxd 6/19/09 11:16 AM Page 2 © Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION 2 CHAPTER 1 ■ Foundations of Epidemiology In recent years, the important role of epidemiology has become increasingly recognized. Epidemiology is a core subject required in public health and health education programs; it is a study that provides information about public health problems and the causes of those problems. This information is then used to improve the health and social conditions of people. Epidemiology has a population focus in that epidemiologic investigations are concerned with the collective health of the people in a community or population under study. In contrast, a clinician is concerned for the health of an individual. The clinician focuses on treating and caring for the patient, whereas the epidemiologist focuses on iden- tifying the source or exposure of disease, disability or death, the number of persons exposed, and the potential for further spread.
    [Show full text]
  • Molecular Pathological Epidemiology Gives Clues to Paradoxical Findings
    Molecular Pathological Epidemiology Gives Clues to Paradoxical Findings The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Nishihara, Reiko, Tyler J. VanderWeele, Kenji Shibuya, Murray A. Mittleman, Molin Wang, Alison E. Field, Edward Giovannucci, Paul Lochhead, and Shuji Ogino. 2015. “Molecular Pathological Epidemiology Gives Clues to Paradoxical Findings.” European Journal of Epidemiology 30 (10): 1129–35. https://doi.org/10.1007/ s10654-015-0088-4. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41392032 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP HHS Public Access Author manuscript Author Manuscript Author ManuscriptEur J Epidemiol Author Manuscript. Author Author Manuscript manuscript; available in PMC 2016 October 07. Published in final edited form as: Eur J Epidemiol. 2015 October ; 30(10): 1129–1135. doi:10.1007/s10654-015-0088-4. Molecular Pathological Epidemiology Gives Clues to Paradoxical Findings Reiko Nishiharaa,b,c, Tyler J. VanderWeeled,e, Kenji Shibuyac, Murray A. Mittlemand,f, Molin Wangd,e,g, Alison E. Fieldd,g,h,i, Edward Giovannuccia,d,g, Paul Lochheadi,j, and Shuji Oginob,d,k aDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Ave., Boston, Massachusetts 02115 USA bDepartment of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Boston, Massachusetts 02215 USA cDepartment of Global Health Policy, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan dDepartment of Epidemiology, Harvard T.H.
    [Show full text]
  • HIV and AIDS: a Module for Cnas and Hhas
    HIV AND AIDS: A Module for CNAs AND HHAs INTRODUCTION The human immunodeficiency virus (HIV) is a virus that is transmitted through sexual contact or contact with infected blood. HIV causes an illness called acquired immune deficiency syndrome - AIDS. AIDS was first diagnosed in New York City and San Francisco in 1981. However, there is evidence that HIV has actually been infecting people for many, many years before it was recognized and isolated cases of AIDS had occurred many years before the epidemic started. The cause of AIDS, HIV, was finally isolated in 1983. There are now over 33 million people in the world who are infected with HIV. A large number of them will develop AIDS, and AIDS is an enormous public health problem in the United States and worldwide. Modern medications have now allowed many people infected with HIV to avoid developing AIDS. However, there is no cure for HIV infection - the virus cannot be eliminated or eradicated - and there is still no vaccine available that can prevent the spread of HIV. Learning Break: Many people use the terms HIV and AIDS interchangeably, but it is important to remember that they are two different things. HIV is the virus that causes AIDS. AIDS is the disease - or group of diseases - that are caused by infection with HIV. Someone can be infected with HIV but not have AIDS. OBJECTIVES When the student has finished this module, he/she will be able to: 1. Identify a definition of HIV. 2. Identify a definition of AIDS. 3. Identify the basic defense mechanism the body uses against infections.
    [Show full text]