Anchorage Wetlands Management Plan Public Hearing Draft March 2012
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Overview of Northern Cook Inlet Area Sport Fisheries with Proposals Under Consideration by the Alaska Board of Fisheries, February 2008
Fishery Management Report No. 07-65 Overview of Northern Cook Inlet Area Sport Fisheries with Proposals under Consideration by the Alaska Board of Fisheries, February 2008 by Sam Ivey, Chris Brockman, and Dave Rutz December 2007 Alaska Department of Fish and Game Divisions of Sport Fish and Commercial Fisheries Symbols and Abbreviations The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions. Weights and measures (metric) General Measures (fisheries) centimeter cm Alaska Administrative fork length FL deciliter dL Code AAC mideye-to-fork MEF gram g all commonly accepted mideye-to-tail-fork METF hectare ha abbreviations e.g., Mr., Mrs., standard length SL kilogram kg AM, PM, etc. total length TL kilometer km all commonly accepted liter L professional titles e.g., Dr., Ph.D., Mathematics, statistics meter m R.N., etc. all standard mathematical milliliter mL at @ signs, symbols and millimeter mm compass directions: abbreviations east E alternate hypothesis HA Weights and measures (English) north N base of natural logarithm e cubic feet per second ft3/s south S catch per unit effort CPUE foot ft west W coefficient of variation CV gallon gal copyright © common test statistics (F, t, χ2, etc.) inch in corporate suffixes: confidence interval CI mile mi Company Co. -
Death to a Deadbeat Dam ADN 08.02.15 (PDF)
Published on Alaska Dispatch News (http://www.adn.com) Home > Death to a deadbeat dam Rick Sinnott [1] August 2, 2015 Main Image: Eklutna River Dam 04 20150723.jpg1437700565 [2] Main Image Caption: Rick Sinnott peers over the lower Eklutna River dam on Thursday, July 23, 2015. The obsolete 61foot high dam, built in 1929, may soon be dismantled, allowing salmon to return to the river. EKLUTNA In 1929, the Eklutna River was dammed, forever it seemed. A 61foothigh dam impounded the river about 1 1/2 miles upstream of the old AnchoragePalmer highway. And few manmade things appear to be as immutable as a concrete dam. On a recent hike through the Eklutna River canyon, slipping on boulders coated with brown algae, wading back and forth between the banks to avoid sheer cliffs or deep pools, I considered what it would be like to be a salmon growing up in such a river. Imagine overwintering as one of thousands of translucent, orange eggs buried in the gravels of riffles or deep pools. Maybe I’d hatch into an alevin, become a fingerling and survive another year or two in the frigid water, constantly alert to predators like rainbow trout and American dippers. One day, with a little luck, I’d become a silvery smolt and swim downstream to Cook Inlet. Only there are no salmon in Eklutna River above the old hydroelectric diversion dam. The dam decimated the river’s salmon runs. If you’re a salmon, however, help is on the way. -
COURSE NAME CITY STATE ALBERTVILLE GOLF & COUNTRY CLUB Albertville Alabama MOUNTAIN VIEW GOLF COURSE Alden Alabama LAKEWINDS
COURSE NAME CITY STATE ALBERTVILLE GOLF & COUNTRY CLUB Albertville Alabama MOUNTAIN VIEW GOLF COURSE Alden Alabama LAKEWINDS GOLF COURSE Alex City Alabama WILLOW POINT COUNTRY CLUB Alex City Alabama ALPINE BAY GOLF CLUB Alpine Alabama WHIPPORWHILL GOLF COURSE Altoona Alabama ANDALUSIA COUNTRY CLUB Andalusia Alabama EVANS BARNES GOLF COURSE Andalusia Alabama ANDERSON CREEK GOLF COURSE Anderson Alabama ANNISTON COUNTRY CLUB Anniston Alabama ANNISTON MUNICIPAL GOLF COURSE Anniston Alabama B & J GOLF CENTER Anniston Alabama CANE CREEK GOLF COURSE Anniston Alabama CIDER RIDGE GOLF CLUB Anniston Alabama INDIAN OAKS GOLF CLUB Anniston Alabama PINE HILL COUNTRY CLUB Anniston Alabama BROOKSIDE GOLF COURSE Arab Alabama TWIN LAKES GOLF CLUB Arab Alabama UNION SPRINGS COUNTRY CLUB Armstrong Alabama CLAY COUNTY PUBLIC GOLF COURSE Ashland Alabama ATHENS GOLF & COUNTRY CLUB Athens Alabama CANEBRAKE GOLF CLUB Athens Alabama CHRISWOOD GOLF COURSE Athens Alabama SOUTHERN GALES GOLF CLUB Athens Alabama WOODLAND GOLF COURSE Athens Alabama ATMORE COUNTRY CLUB Atmore Alabama WILLS CREEK COUNTRY CLUB Attalla Alabama AUBURN LINKS AT MILL CREEK Auburn Alabama INDIAN PINES RECREATIONAL AUTHORITY Auburn Alabama MOORE'S MILL GOLF CLUB Auburn Alabama MOORE'S MILL GOLF CLUB Auburn Alabama PIN OAKS GOLF CLUB Auburn Alabama EUFAULA COUNTRY CLUB Bakerhill Alabama LAKEPOINT RESORT GOLF COURSE Bakerhill Alabama RED EAGLE GOLF COURSE Bakerhill Alabama WARRIOR POINT GOLF CLUB Barney Alabama HOLLY HILLS COUNTRY CLUB Bay Minette Alabama BENT BROOK GOLF COURSE Bess Alabama -
Assessment on Peatlands, Biodiversity and Climate Change: Main Report
Assessment on Peatlands, Biodiversity and Climate change Main Report Published By Global Environment Centre, Kuala Lumpur & Wetlands International, Wageningen First Published in Electronic Format in December 2007 This version first published in May 2008 Copyright © 2008 Global Environment Centre & Wetlands International Reproduction of material from the publication for educational and non-commercial purposes is authorized without prior permission from Global Environment Centre or Wetlands International, provided acknowledgement is provided. Reference Parish, F., Sirin, A., Charman, D., Joosten, H., Minayeva , T., Silvius, M. and Stringer, L. (Eds.) 2008. Assessment on Peatlands, Biodiversity and Climate Change: Main Report . Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen. Reviewer of Executive Summary Dicky Clymo Available from Global Environment Centre 2nd Floor Wisma Hing, 78 Jalan SS2/72, 47300 Petaling Jaya, Selangor, Malaysia. Tel: +603 7957 2007, Fax: +603 7957 7003. Web: www.gecnet.info ; www.peat-portal.net Email: [email protected] Wetlands International PO Box 471 AL, Wageningen 6700 The Netherlands Tel: +31 317 478861 Fax: +31 317 478850 Web: www.wetlands.org ; www.peatlands.ru ISBN 978-983-43751-0-2 Supported By United Nations Environment Programme/Global Environment Facility (UNEP/GEF) with assistance from the Asia Pacific Network for Global Change Research (APN) Design by Regina Cheah and Andrey Sirin Printed on Cyclus 100% Recycled Paper. Printing on recycled paper helps save our natural -
Muskeg (Global Rank G4G5; State Rank S4)
Muskeg (Global Rank G4G5; State Rank S4) Overview: Distribution, Abundance, times present, and these may be ringed by narrow aprons of Environmental Setting, Ecological Processes Poor Fen where the vegetation has direct contact with sur- “Muskeg” is a term of Algonquian origin translating roughly face waters and Muskeg (or conifer swamp) farther from the to “grassy bog” or “moss bog.” It does not have a precise sci- water’s edge. Stands of Muskeg vary in size from a few acres entific meaning, but as defined here it is an ombrotrophic to huge peatland complexes encompassing thousands of acres or very weakly minerotrophic acid peatland community and are most often associated with landforms such as glacial characterized by a substrate of moss hummocks and a thin outwash or lakebeds and sometimes ground moraine. scattering of stunted swamp conifers. Muskeg is floristically As peat accumulates, the plant community is increasingly similar to Open Bog but differs structurally in the greater isolated from mineral-enriched groundwater, and conditions presence and higher cover of conifers. Extensive openings favorable for the persistence of more nutrient-demanding devoid of trees are absent. This basic structural difference vascular herbs and tree growth decline. Unless site hydrology plays an important role in providing preferred habitat for is significantly altered, highly acidic sphagnum peat increases many animals, for example, birds and invertebrates. Shading while tree cover is likely to very slowly diminish. See Crum is higher in Muskeg than in Open Bog or in any of the open (1988) for a detailed discussion of fen to bog succession. Few northern fen communities, which affects the proportions data from Wisconsin are available on water chemistry and of the plant species comprising the community. -
USGS Professional Paper 545-A, Text
Effects on Transportation and Utilities Eklutna Power Project GEOLOGICAL SURVEY PROFESSIONAL PAPER 545-A This page intentionally left blank THE ALASKA EARTHQUAKE, MARCH 27, 1964: EFFECTS ON TRANSPORTATION, COMMUNICATIONS, AND UTILITIES Effect of the Earthquake Of March 27, 1964, on The Eklutna Hydroelectric Project, Anchorage, Alaska By MALCOLM H. LOGAN With a Section on TELEVISION EXAMINATION OF EARTHQUAKE DAMAGE TO UNDERGROUND COMMUNICATION AND ELECTRICAL SYSTEMS IN ANCHORAGE ByLYNN R. BURTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 545-A APR 11 1991 UNITED STATES DEPARTMENT OF THE INTERIOR STEW ART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1967 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402- Price 35 cents (paper cover) THE ALASKA EARTHQUAKE SERIES The U.S. Geological Survey is publishing the results of its investigations of the Alaska earthquake of March 27, 1964, in a series of six professional papers. Professional Paper 545 describes the effects of the earthquake on transportation, communications, and utilities. Where needed to complete the record, reports by individuals from organizations other than the Geological Survey are included in the series. Thus, this description of the Eklutna Hydroelectric Project-a key part of south-central Alaska's power system-was requested from the U.S. Bureau of Reclamation; so, too, was the section on the use of television for investigating damaged under ground utility lines. Additional chapters in Professional Paper 545 will describe the effects of the earthquake on The Alaska Railroad and on highways, airports, utilities, and communications. Other professional papers describe the field investigations and reconstruction and the effects of the earthquake on com munities, on regions, and on the hydrologic regimen. -
Glossary of Landscape and Vegetation Ecology for Alaska
U. S. Department of the Interior BLM-Alaska Technical Report to Bureau of Land Management BLM/AK/TR-84/1 O December' 1984 reprinted October.·2001 Alaska State Office 222 West 7th Avenue, #13 Anchorage, Alaska 99513 Glossary of Landscape and Vegetation Ecology for Alaska Herman W. Gabriel and Stephen S. Talbot The Authors HERMAN w. GABRIEL is an ecologist with the USDI Bureau of Land Management, Alaska State Office in Anchorage, Alaskao He holds a B.S. degree from Virginia Polytechnic Institute and a Ph.D from the University of Montanao From 1956 to 1961 he was a forest inventory specialist with the USDA Forest Service, Intermountain Regiono In 1966-67 he served as an inventory expert with UN-FAO in Ecuador. Dra Gabriel moved to Alaska in 1971 where his interest in the description and classification of vegetation has continued. STEPHEN Sa TALBOT was, when work began on this glossary, an ecologist with the USDI Bureau of Land Management, Alaska State Office. He holds a B.A. degree from Bates College, an M.Ao from the University of Massachusetts, and a Ph.D from the University of Alberta. His experience with northern vegetation includes three years as a research scientist with the Canadian Forestry Service in the Northwest Territories before moving to Alaska in 1978 as a botanist with the U.S. Army Corps of Engineers. or. Talbot is now a general biologist with the USDI Fish and Wildlife Service, Refuge Division, Anchorage, where he is conducting baseline studies of the vegetation of national wildlife refuges. ' . Glossary of Landscape and Vegetation Ecology for Alaska Herman W. -
Making Wetlands Work in Your Municipality a GUIDE to MUNICIPAL WETLAND CONSERVATION in ALBERTA
ALBERTA NAWMP PARTNERSHIP DECEMBER 2016 YOUR GUIDE TO Making Wetlands Work in Your Municipality A GUIDE TO MUNICIPAL WETLAND CONSERVATION IN ALBERTA Contents ABOUT THE ALBERTA NAWMP PARTNERSHIP 3 INTRODUCTION 4 Welcome! 4 Municipalities & Wetlands In Alberta 5 How To Use This Guide 5 Module 1. UNDERSTANDING WETLAND 7 DEFINITIONS & DESCRIPTIONS Module 2. UNDERSTANDING WETLAND 10 POLICY & LEGISLATION Module 3. UNDERSTANDING WETLANDS 13 IN THE WATERSHED Module 4. FINDING RESOURCES FOR 16 WETLAND CONSERVATION Module 5. COMMUNICATING & 18 COLLABORATING WITH OTHERS Module 6. IDENTIFYING WETLAND VALUES 24 & SETTING OBJECTIVES Module 7. INTEGRATING WETLANDS INTO 28 MUNICIPAL PLANNING Module 8. PROMOTING WETLAND 30 STEWARDSHIP & EDUCATION Module 9. THE ROLE OF MUNICIPALITES 33 IN PROVINCIAL WETLAND MITIGATION Module 10. THE IMPORTANCE OF 36 MEASURING PROGRESS CONCLUSION 38 ALBERTA NAWMP PARTNERSHIP 2016 About the Alberta Nawmp Partnership The North American Waterfowl Management Plan (NAWMP) was established to protect wetland habitat and associated wildlife species across North America. Since 1986, the Alberta NAWMP Partnership has worked to conserve Alberta’s wetlands and associated upland habitat to help achieve the goals of the plan. The Alberta NAWMP Partnership is a collaboration of federal, provincial and municipal governments, non-governmental organizations, private companies and many individuals; all working towards achieving better wetland habitat for the benefit of waterfowl, wildlife and people. Core partners include: � Alberta Agriculture and Forestry � Alberta Environment and Parks � Ducks Unlimited Canada � Environment and Climate Change Canada � The Nature Conservancy of Canada The enduring success of the North American Waterfowl Management Plan in Alberta can be directly attributed to the commitment and support of the Alberta NAWMP partner organizations and their grassroots approach. -
Wes Hudson -- Ph.D
Forested wetland restoration: Development of structure, biomass and carbon storage through tree planting Wes Hudson -- Ph.D. Candidate Dr. Jim Perry -- Advisor 2015 Friends of Dragon Run May 13 – General Meeting Outline • What are wetlands? – Why are they important? • What is ecological restoration? – Why are wetlands restored? • Tree research in restored wetlands • Friends of Dragon Run Historically, what was thought of wetlands? What is a wetland? “Those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support…a prevalence of vegetation typically adapted for life in saturated soil conditions” (33 CFR 328.3(b);1984) 3 parameter approach Hydrology Soil Vegetation Wetland Hydrology • Saturation in the upper 12 inches of the soil column for long periods of time – Water forces air out of the pore spaces in the soil – Anaerobic (low oxygen) conditions • Physical and chemical changes in the soil • Changes vegetation composition • Indicators • Surface water • High water table • Water marks on trees and leaves Hydric Soil • Soils that formed under anaerobic (low oxygen) conditions that have particular physical and chemical characteristics • Indicators – Muck or Peat – Reduced color • Iron when exposed to air will rust • In anaerobic conditions iron will be a grey color Hydrophytic Vegetation • Anaerobic soil conditions lead to a unique assemblage of vegetation with particular adaptations • Hydrophytes are plants that are adapted to wetland conditions • Bald cypress (Taxodium distichum) -
PMSD Wetlands Curriculum
WWEETTLLAANNDDSS CCUURRRRIICCUULLUUMM POCONO MOUNTAIN SCHOOL DISTRICT ACKNOWLEDGMENTS This curriculum was funded through a grant from Pennsylvania’s Growing Greener Program administered through the Pennsylvania Department of Environmental Protection. The grant was awarded to the Tobyhanna Creek/Tunkhannock Creek Watershed Association to support ongoing watershed resource protection. The views herein are those of the author(s) and do not necessarily reflect the views of the Pennsylvania Department of Environmental Protection. Special appreciation is extended to the Pocono Mountain School District, especially Mr. Thomas Knorr, Science Supervisor, and Dr. David Krauser, Superintendent of Schools for their support of and commitment to this project. Project partners responsible for this project include: a Pocono Mountain School District a Tobyhanna Creek/Tunkhannock Creek Watershed Association a Pennsylvania Department of Environmental Protection a The Nature Conservancy Science Office a Monroe County Planning Commission a F. X. Browne, Inc. TABLE OF CONTENTS PAGE INTRODUCTION 1 WETLANDS – WHAT ARE THY EXACTLY? 2 WETLAND TYPES 4 WETLANDS CLASSIFICATION 7 PENNSYLVANIA WETLANDS 13 THE THREE H’S: HYDROLOGY, HYDRIC SOILS, AND HYDROPHYTES 15 ARE WETLANDS IMPORTANT? 19 THE FUNCTIONS AND VALUES OF WETLANDS 20 WETLANDS PROTECTION 22 DETERMINING THE WETLANDS BOUNDARY 26 TOBYHANNA CREEK/TUNKANNOCK CREEK WATERSHED ASSOCIATION 28 REFERENCES 30 HOMEWORK ASSIGNMENT #1 – TEST YOUR WETLAND IQ: WHAT DO YOU KNOW ABOUT WETLANDS????? HOMEWORK ASSIGNMENT #2 – USING PLANT IDENTIFICATION GUIDES HOMEWORK ASSIGNMENT #3 – POSITION PAPER FIELD STUDY #1 – FORESTED WETLANDS FIELD STUDY #2 – THE BOG APPENDIX A – PLANT PHOTOGRAPHS – BOG SITE APPENDIX B – PLANT KEYS – BOG SITE APPENDIX C – WETLANDS DELINEATION FIELD DATA SHEETS APPENDIX D – BOG SITE FIELD DATA SHEETS APPENDIX E – GLOSSARY OF TERMS INTRODUCTION Wetlands have not always been a subject of study. -
Section 905(B) (WRDA 86) Analysis Eklutna Watershed Study Eklutna, Alaska
Section 905(b) (WRDA 86) Analysis Eklutna Watershed Study Eklutna, Alaska 1. STUDY AUTHORITY This General Investigations study is authorized by the House Public Works Committee Resolution for Rivers and Harbors in Alaska adopted 2 December 1970. The resolution states: Resolved by the Committee on Public Works of the House of Representatives, United States, that the Board of Engineers for River and Harbors is hereby requested to review the report of the Chief of Engineers on Rivers and Harbors in Alaska, published as House Document Number 414, 83d Congress, 2d Session; … and other pertinent reports, with a view to determine whether any modifications of the recommendations contained therein are advisable at the present time. Funding for this section 905(b) Eklutna Watershed Study was established in the 2003 fiscal year Omnibus Appropriations (PL 108-7). 2. STUDY PURPOSE The purpose of this study is to determine whether there is a Federal interest in conducting feasibility level watershed studies of the Eklutna River Watershed. ER 1105-2-100, 22 April 2000 states: “Watershed studies are planning initiatives that have a multi-purpose and multi-objective scope and that accommodate flexibility and collaboration in the formulation and evaluation process. Possible areas of investigation for a watershed study include water supply, natural resource preservation, ecosystem restoration, environmental infrastructure, recreation, navigation, flood management activities, and regional economic development. The outcome of a watershed study will generally be a watershed resources management plan which identifies the combination of recommended actions to be undertaken by various partners and stakeholders in order to achieve the needs and opportunities identified in the study.” A Federal interest in the resolution of identified water resource problems is contingent upon there being probable environmentally acceptable and technically feasible solutions to identified water resources problems. -
Boreal Wetlands Marsh
Fen Boreal Wetlands Marsh j 85 per cent of Canada’s wetlands are located in the boreal forest. j Canada’s boreal forest is water dominated. More than two-thirds is covered by aquatic systems including wetlands, lakes, rivers and deltas. What are Boreal Wetlands? j Areas that are seasonally or permanently waterlogged, up to 2 meters in depth Bog j Plants and trees adapted to wet conditions j May be covered with trees, shrubs, grass, sedge, moss & lichen j Often highly connected aquatic systems moving water and nutrients over long distances, making them vulnerable to developments that blocks their natural flow “Land that is saturated with water long enough to promote wetland or aquatic processes as indicated by poorly drained soils, hydrophytic vegetation and various kinds of biological activity which are adapted to a wet environment.” (official definition: Canadian Wetland Classification System, National Wetlands Working Group (1987)). Swamp Types of Boreal Wetlands Organic wetlands (bogs, fens) j Deep organic deposits (> 40cm) j Known as peatlands and sometimes called muskeg j Vegetation characteristics: open (no woody vegetation), shrubby (dwarf shrubs) or treed (stunted trees) j Most common wetlands in Canada’s boreal forest Mineral wetlands (swamps, marshes, open water) j Shallow organic deposits (<40cm) j Contain nutrient-rich soils and water j Vegetation characteristics: ranges from robust submerged plants and emergent reeds to tall shrubs and trees Open Water ducks.ca boreal wetlands Patterned fen Wetland Density by Ecodistrict Water Movement j Wetlands are often connected with each other j Water levels and flows may fluctuate j Water may flow laterally across the landscape between wetlands, at or below the surface j Water tables may rise and fall seasonally or after precipitation j Infrastructure such as roads may block the movement of water, damming it upstream while impacting road grades and drying downstream wetlands Environmental & Social Benefits map source Environment Canada (1997).