Chapter 4 Hazards in Anchorage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SECTION 3 Erosion Control Measures
SECTION 3 Erosion Control Measures 1. SEEDING When • Bare soil is exposed to erosive forces from wind and or water. Why • A cost effective way to prevent erosion by protecting the soil from raindrop impact, flowing water and wind. • Vegetation binds soil particles together with a dense root system, increasing infiltration thereby reducing runoff volume and velocity. Where • On all disturbed areas except where non-vegetative stabilization measures are being used or where seeding would interfere with agricultural activity. Scheduling • During the recommended temporary and permanent seeding dates outlined below. • Dormant seeding is acceptable. How 1. Site Assessment. Determine site physical characteristics including available sunlight, slope, adjacent topography, local climate, proximity to sensitive areas or natural plant communities, and soil characteristics such as natural drainage class, texture, fertility and pH. 2. Seed Selection. Use seed with acceptable purity and germination tests that are viable for the planned seeding date. Seed that has become wet, moldy or otherwise damaged is unacceptable. Select seed depending on, location and intended purpose. A mixture of native species for permanent cover may provide some advantages because they have coevolved with native wildlife and other plants and typically play an important function in the ecosystem. They are also adapted to the local climate and soil if properly selected for site conditions; can dramatically reduce fertilizer, lime and maintenance requirements; and provide a deeper root structure. When re- vegetating natural areas, introduced species may spread into adjacent natural areas, native species should be used. Noxious or aquatic nuisance species shall not be used (see list below). If seeding is a temporary soil erosion control measure select annual, non-aggressive species such as annual rye, wheat, or oats. -
Overview of Northern Cook Inlet Area Sport Fisheries with Proposals Under Consideration by the Alaska Board of Fisheries, February 2008
Fishery Management Report No. 07-65 Overview of Northern Cook Inlet Area Sport Fisheries with Proposals under Consideration by the Alaska Board of Fisheries, February 2008 by Sam Ivey, Chris Brockman, and Dave Rutz December 2007 Alaska Department of Fish and Game Divisions of Sport Fish and Commercial Fisheries Symbols and Abbreviations The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions. Weights and measures (metric) General Measures (fisheries) centimeter cm Alaska Administrative fork length FL deciliter dL Code AAC mideye-to-fork MEF gram g all commonly accepted mideye-to-tail-fork METF hectare ha abbreviations e.g., Mr., Mrs., standard length SL kilogram kg AM, PM, etc. total length TL kilometer km all commonly accepted liter L professional titles e.g., Dr., Ph.D., Mathematics, statistics meter m R.N., etc. all standard mathematical milliliter mL at @ signs, symbols and millimeter mm compass directions: abbreviations east E alternate hypothesis HA Weights and measures (English) north N base of natural logarithm e cubic feet per second ft3/s south S catch per unit effort CPUE foot ft west W coefficient of variation CV gallon gal copyright © common test statistics (F, t, χ2, etc.) inch in corporate suffixes: confidence interval CI mile mi Company Co. -
Death to a Deadbeat Dam ADN 08.02.15 (PDF)
Published on Alaska Dispatch News (http://www.adn.com) Home > Death to a deadbeat dam Rick Sinnott [1] August 2, 2015 Main Image: Eklutna River Dam 04 20150723.jpg1437700565 [2] Main Image Caption: Rick Sinnott peers over the lower Eklutna River dam on Thursday, July 23, 2015. The obsolete 61foot high dam, built in 1929, may soon be dismantled, allowing salmon to return to the river. EKLUTNA In 1929, the Eklutna River was dammed, forever it seemed. A 61foothigh dam impounded the river about 1 1/2 miles upstream of the old AnchoragePalmer highway. And few manmade things appear to be as immutable as a concrete dam. On a recent hike through the Eklutna River canyon, slipping on boulders coated with brown algae, wading back and forth between the banks to avoid sheer cliffs or deep pools, I considered what it would be like to be a salmon growing up in such a river. Imagine overwintering as one of thousands of translucent, orange eggs buried in the gravels of riffles or deep pools. Maybe I’d hatch into an alevin, become a fingerling and survive another year or two in the frigid water, constantly alert to predators like rainbow trout and American dippers. One day, with a little luck, I’d become a silvery smolt and swim downstream to Cook Inlet. Only there are no salmon in Eklutna River above the old hydroelectric diversion dam. The dam decimated the river’s salmon runs. If you’re a salmon, however, help is on the way. -
Recommendations
RECOMMENDATIONS . 7-1 Anchorage Metropolitan Area Transportation Solutions 2035 Metropolitan Transportation Plan 7-2 . A Call to Action . 7-3 Anchorage Metropolitan Area Transportation Solutions 2035 Metropolitan Transportation Plan 7-4 7-5 Anchorage Metropolitan Area Transportation Solutions 2035 Metropolitan Transportation Plan 7-6 Roads Scoring Points Criterion 0 1 3 5 Some preliminary Final engineering design and/or ROW purchased; Project readiness No work started completed or environmental ready to construct nearing completion work complete Needed in short Needed in short term (2011- term—helps to Can wait until Long-term need 2023)— addresses Timing of need complete grid beyond 2035 (2023-2035) major system or improves safety/capacity facility to standards needs Next logical or final Logical sequencing N/A New project N/A phase of an existing road Functional classification Local Collector Arterial/expressway Freeway Number of modes (automobile, pedestrian, bike, transit, freight Single Two Three Four or more or intermodal) 1st quartile Cost/length/AADT 4th quartile 3rd quartile 2nd quartile (highest score) AADT = Annual Average Daily Traffic N/A = not applicable 7-7 Anchorage Metropolitan Area Transportation Solutions 2035 Metropolitan Transportation Plan 7-8 Criterion Scoring Points 2010 Cost Cost/ Project Project Timing of Logical Functional Multi-modal Project Name Project Location Estimate Length/ Total Number Readiness Need Sequencing Classification Function ($ million) AADT Seward Hwy - Dimond Blvd Dimond Blvd to Dowling 101 -
Chester Creek Watershed Plan (Draft)
Prepared for: The Municipal Planning Department and Watershed Management Services 1 Prepared by: Anchorage Waterways Council Rev. 4, September 2014 (Draft) Table of Contents Executive Summary...................................................................................................................................................................................................... 5 Acknowledgements ....................................................................................................................................................................................................... 6 1 Introduction .............................................................................................................................................................................................................. 7 Importance of Watershed Planning .................................................................................................................................................................. 8 Regulations and Plans ....................................................................................................................................................................................... 9 2 Creation of the Plan................................................................................................................................................................................................ 10 History of the Plan and Participants ............................................................................................................................................................... -
Freezing in Naples Underground
THE ARTIFICIAL GROUND FREEZING TECHNIQUE APPLICATION FOR THE NAPLES UNDERGROUND Giuseppe Colombo a Construction Supervisor of Naples underground, MM c Technicalb Director MM S.p.A., via del Vecchio Polit Abstract e Technicald DirectorStudio Icotekne, di progettazione Vico II S. Nicola Lunardi, all piazza S. Marco 1, The extension of the Naples Technical underground Director between Rocksoil Pia S.p.A., piazza S. Marc Direzionale by using bored tunnelling methods through the Neapo Cassania to unusually high heads of water for projects of th , Pietro Lunardi natural water table. Given the extreme difficulty of injecting the mater problem of waterproofing it during construction was by employing artificial ground freezing (office (AGF) district) metho on Line 1 includes 5 stations. T The main characteristics of this ground treatment a d with the main problems and solutions adopted during , Vittorio Manassero aspects of this experience which constitutes one of Italy, of the application of AGF technology. b , Bruno Cavagna e c S.p.A., Naples, Giovanna e a Dogana 9,ecnico Naples 8, Milan ion azi Sta o led To is type due to the presence of the Milan zza Dante and the o 1, Milan ial surrounding thelitan excavation, yellow tuff, the were subject he stations, driven partly St taz Stazione M zio solved for four of the stations un n Università ic e ds. ip Sta io zione Du e omo re presented in the text along the major the project examples, and theat leastsignificant in S t G ta a z r io iibb n a e Centro lldd i - 1 - 1. -
Report 2008/05 Pacific Earthquake Engineering Research Center College of Engineering University of California, Berkeley August 2008
PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER Performance-Based Earthquake Engineering Design Evaluation Procedure for Bridge Foundations Undergoing Liquefaction-Induced Lateral Ground Displacement Christian A. Ledezma and Jonathan D. Bray University of California, Berkeley PEER 2008/05 AUGUST 2008 Performance-Based Earthquake Engineering Design Evaluation Procedure for Bridge Foundations Undergoing Liquefaction-Induced Lateral Ground Displacement Christian A. Ledezma and Jonathan D. Bray, Ph.D., P.E. Department of Civil and Environmental Engineering University of California, Berkeley PEER Report 2008/05 Pacific Earthquake Engineering Research Center College of Engineering University of California, Berkeley August 2008 ABSTRACT Liquefaction-induced lateral ground displacement has caused significant damage to pile foundations during past earthquakes. Ground displacements due to liquefaction can impose large forces on the overlying structure and large bending moments in the laterally displaced piles. Pile foundations, however, can be designed to withstand the displacement and forces induced by lateral ground displacement. Piles may actually “pin” the upper layer of soil that would normally spread atop the liquefied layer below it into the stronger soils below the liquefiable soil layer. This phenomenon is known as the “pile-pinning” effect. Piles have been designed as “pins” across liquefiable layers in a number of projects, and this design methodology was standardized in the U.S. bridge design guidance document MCEER/ATC-49-1. A number of simplifying assumptions were made in developing this design procedure, and several of these assumptions warrant re-evaluation. In this report, some of the key assumptions involved in evaluating the pile-pinning effect are critiqued, and a simplified probabilistic design framework is proposed for evaluating the effects of liquefaction-induced displacement on pile foundations of bridge structures. -
JBT Lecture Paper
JACKED BOX TUNNELLING Using the Ropkins System TM , a non-intrusive tunnelling technique for constructing new underbridges beneath existing traffic arteries DR DOUGLAS ALLENBY, Chief Tunnelling Engineer, Edmund Nuttall Limited JOHN W T ROPKINS, Managing Director, John Ropkins Limited Lecture presented at the Institution of Mechanical Engineers Held at 1 Birdcage Walk, London On Wednesday 17 October 2007 © Institution of Mechanical Engineers 2007 This publication is copyright under the Berne Convention and the International Copyright Convention. All rights reserved. Apart from any fair dealing for the purpose of private study, research, criticism or review, as permitted under the Copyright, Designs and Patent Act, 1988, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means without the prior permission of the copyright owners. Reprographic reproduction is permitted only in accordance with the terms of licenses issued by the Copyright Licensing Agency, 90 Tottenham Court Road, London W1P 9HE. Unlicensed multiple copying of the contents of the publication without permission is illegal. Jacked Box Tunnelling using the Ropkins System TM , a non-intrusive tunnelling technique for constructing new underbridges beneath existing traffic arteries Dr Douglas Allenby BSc(Hons) PhD CEng FICE FIMechE FGS, Chief Tunnelling Engineer, Edmund Nuttall Limited John W T Ropkins BSc CEng MICE, Managing Director, John Ropkins Limited The Ropkins System TM is a non-intrusive tunnelling technique that enables engineers to construct underbridges beneath existing traffic arteries in a manner that avoids the cost and inconvenience of traffic disruption associated with traditional construction techniques. The paper outlines a tunnelling system designed to install large open ended rectangular reinforced concrete box structures at shallow depth beneath existing railway and highway infrastructure. -
Combined Ground Freezing Application for the Excavation of Connection Tunnels for Centrum Nauki Kopernik Station - Warsaw Underground Line II
Combined ground freezing application for the excavation of connection tunnels for Centrum Nauki Kopernik Station - Warsaw Underground Line II Achille Balossi Restelli, Elena Rovetto Studio ingegneria Balossi Restelli e Associati Andrea Pettinaroli Studio Andrea Pettinaroli s.r.l. ABSTRACT The Station “C13” of Warsaw Underground Line II, with tunnel crown 10m below the water table, required the excavation of three connection tunnels, underpassing a six-lane in service road tunnel, working from two lateral shafts. After the collapse occurred while digging the first tunnel, the use of artificial ground freezing was chosen to ensure the excavation under safe conditions. A complex freezing pipe geometry and excavation sequencing was necessary because of the interferences of the overlying road tunnel diaphragm wall foundations, shaft internal structures and previous grouting activities. A combined freezing method was used: nitrogen for freezing the tunnel arches, brine for freezing the intermediate wall and for maintenance stages. Sandy and silty sandy layers were frozen around the crowns and sides. No treatment was necessary for the inverts, lying in clay. A monitoring system of ground temperatures and structure movements allowed for successful completion of work in 8 months. INTRODUCTION The C13 Station of the Warsaw Underground-Line II is located on the West bank of the Vistula River. It consists of two shafts and three connecting tunnels, passing under the Wislostrada (WS) Road tunnel. According to the initial geotechnical investigation, tunnels should have been excavated in high- plasticity clay, but during the first borings non cohesive soil was encountered. Additional investigations were performed on both shafts and a more detailed stratigraphy was reconstructed (Lombardi et al. -
Selection of Shaft Sinking Method for Underground Mining in Khalashpir Coal Field, Khalashpir, Rangpur, Bangladesh
IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684 Volume 3, Issue 5 (Sep-Oct. 2012), PP 15-20 www.iosrjournals.org Selection of Shaft Sinking Method for Underground Mining in Khalashpir Coal Field, Khalashpir, Rangpur, Bangladesh Atikul Haque Farazi1, Chowdhury Quamruzzaman2, Nasim Ferdous3, Md. Abdul Mumin4, Fansab Mustahid5, A.K.M Fayazul Kabir6 1,2,3,4, 5, 6 (Department of Geology, University of Dhaka, Bangladesh) Abstract : Khalashpir coal field is the 3rd largest coal field in Bangladesh, where coal occurs at depths of 257m to 483m below the surface. Considering the Geological, Geo-environment and other related geo- engineering information, underground mining have been selected there to extract the deposit. In this paper, our concern is about shaft sinking method for underground mining. Depths of the coal seams reveal the necessity of a vertical shaft underground which again needs deep excavation. The problem arises with the excavation because of nearly 138m thick Dupitila Sandstone Formation just 6m below the surface in the area. It is loose, water bearing, containing dominantly porous and permeable sandstone and experiences massive water flow. So, the major concern is that any excavation through this will readily collapse and suffer massive water inrush. This will totally disturb the whole mining work progression and cause economic loss as well. By analyzing the ground condition of the Khalashpir cola field, artificial ground freezing has been identified most appropriate as shaft sinking method to control the ground water and to stabilize the loose soil during excavation. Lawfulness of the method and reason of neglecting other two common shaft sinking methods has been pointed out in this paper. -
New Tunnel Construction Starts Across the City
The offi cial publication of the Tunnelling NORTH AMERICAN EDITION Association of Canada October ~ November 2017 MONTREAL AT WORK New tunnel construction starts across the city 001tunNA1017_cover.indd 1 20/09/2017 11:44 TECHNICAL / GEOTECHNICAL ENGINEERING GROUND CONTROL Joseph Sopko, director of ground freezing for Moretrench, discusses the design of frozen Earth structure for cross passage excavation structure, thermal analysis and design, and frost heave and thaw consolidation evaluation. Quite often the geometry of the cross passage relative to the main tunnels requires complex drilling angles, specialised equipment and quality assurance procedures to ensure accurate placement and continuity of the refrigeration Joseph Sopko pipes (Figure 2). Joseph is the director of ground freezing The first component of the design of a frozen cross passage for Moretrench is the evaluation of the material properties of the soil, both in the natural and frozen state. Ground freezing is most applicable in coarse-grained water bearing soils. Other methods such as the sequential excavation method (SEM) are typically well suited HE USE OF GROUND freezing for fine grained clayey or silty clayey soils. The preliminary to provide excavation support evaluation is typically driven by the permeability of soils. If and groundwater control groundwater cannot be controlled by dewatering or grouting for the construction of cross techniques from the surface, freezing becomes an attractive passagesT between two tunnels has option. been used extensively in Europe, Asia The permeability of the soils in the excavation zone is and most recently in North America best evaluated by groundwater pumping tests. However, such on the Port of Miami Tunnel and the tests are rarely available requiring evaluation of the grain Northgate Link Extension in Seattle. -
1964 Great Alaska Earthquake—A Photographic Tour of Anchorage, Alaska
1964 Great Alaska Earthquake—A Photographic Tour of Anchorage, Alaska Open-File Report 2014–1086 U.S. Department of the Interior U.S. Geological Survey Cover: Comparison photographs taken from the same location on 4th Avenue looking east through the intersection with C Street, Anchorage, Alaska. (Top photograph taken by U.S. Army, 1964; bottom photograph taken by Robert G. McGimsey, 2013) 1964 Great Alaska Earthquake—A Photographic Tour of Anchorage, Alaska By Evan E. Thoms, Peter J. Haeussler, Rebecca D. Anderson, and Robert G. McGimsey Open-File Report 2014–1086 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Thoms, E.E., Haeussler, P.J., Anderson, R.D., and McGimsey, R.G., 2014, 1964 Great Alaska Earthquake—A photographic tour of Anchorage, Alaska: U.S. Geological Survey Open-File Report 2014-1086, 48 p., http://dx.doi.org/10.3133/ofr20141086. ISSN 2331-1258 (online) Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S.