G3: Genes|Genomes|Genetics Early Online, published on May 16, 2019 as doi:10.1534/g3.118.201012 Global shifts in gene expression profiles accompanied with environmental changes in cnidarian-dinoflagellate endosymbiosis Yuu Ishii*, Shinichiro Maruyama*, Hiroki Takahashi†,‡, Yusuke Aihara§, Takeshi Yamaguchi†, Katsushi Yamaguchi**, Shuji Shigenobu**, Masakado Kawata*, Naoto Ueno†,‡, Jun Minagawa‡,§ * Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan † Division of Morphogenesis, National Institute for Basic Biology, Okazaki, Aichi, Japan ‡ Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan § Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Aichi, Japan ** Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan. Sequence data are available at GenBank with the accession number: PRJDB7145 1 © The Author(s) 2013. Published by the Genetics Society of America. Running Title: Cnidarian-algal symbiosis transcriptomes Key Words: Symbiosis, Symbiodiniaceae, Cnidarians, RNAseq, Lysosome. Corresponding authors Shinichiro Maruyama
[email protected] Masakado Kawata
[email protected] Biology Building, Tohoku University 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan TEL&FAX +81 (0) 22-795-6689 2 Abstract Stable endosymbiotic relationships between cnidarian animals and dinoflagellate algae are vital for sustaining coral reef ecosystems. Recent studies have shown that elevated seawater temperatures can cause the collapse of their endosymbiosis, known as ‘bleaching’, and result in mass mortality. However, the molecular interplay between temperature responses and symbiotic states still remains unclear. To identify candidate genes relevant to the symbiotic stability, we performed transcriptomic analyses under multiple conditions using the symbiotic and apo-symbiotic (symbiont free) Exaiptasia diaphana, an emerging model sea anemone.