Veterinary Microbiology and Preventive Medicine (V MPM) 1

Total Page:16

File Type:pdf, Size:1020Kb

Veterinary Microbiology and Preventive Medicine (V MPM) 1 Veterinary Microbiology and Preventive Medicine (V MPM) 1 V MPM 388: Public Health and the Role of the Veterinary Profession VETERINARY MICROBIOLOGY (3-0) Cr. 3. S. AND PREVENTIVE MEDICINE Prereq: Second-year classification in veterinary medicine Fundamental epidemiology, zoonotic diseases, occupational health, food (V MPM) safety, other public health topics. Any experimental courses offered by V MPM can be found at: V MPM 390: Topics in Veterinary History registrar.iastate.edu/faculty-staff/courses/explistings/ (http:// (1-0) Cr. 1. F.S. www.registrar.iastate.edu/faculty-staff/courses/explistings/) An overview of the history of veterinary medicine focused primarily on disease-specific events. A review of the historical aspects of the Courses primarily for professional curriculum students: veterinary profession's accomplishments in the discovery of the V MPM 360: Global Health etiological origins of disease and their subsequent control will provide (Cross-listed with GLOBE, MICRO). (3-0) Cr. 3. F. students with insights that are applicable to understanding and solving Prereq: BIOL 211 today's animal and human health challenges. Explores human health across the world with particular emphasis V MPM 428: Principles of Epidemiology and Population Health on low- and lower-middle-income countries. Attention is given to the (Dual-listed with V MPM 528). (Cross-listed with MICRO, VDPAM). (3-0) Cr. interconnectedness of health determinants, problems, and solutions 3. S. found in global health, including the role of animals and the environment. Epidemiology of disease in populations. Disease causality, observational Broad in scope, highlighting different cultures and the historical study design and approaches to epidemiologic investigations. This foundations of global health. Topics include colonialism, poverty, course is available on campus and by distance. emerging diseases, climate change, biodiversity, one health, maternal and child health, HIV, malaria, urbanization, noncommunicable diseases and V MPM 437: Infectious Diseases and Preventive Medicine more. Current events will be a feature of all class meetings. (3-0) Cr. 3. S. Prereq: Third-year classification in veterinary medicine V MPM 378: Case Study IV Etiology, epidemiology, laboratory diagnosis, regulatory control and (2-0) Cr. 2. S. preventive medicine aspects of the infectious diseases of swine, sheep, Prereq: Second-year classification in veterinary medicine goats, cattle and horses. Case-based applied learning that relates to the basic science courses. Emphasis on early integration of basic and clinical science concepts. V MPM 486: Laboratory in Public Health Cr. 2. Repeatable. F.S.SS. V MPM 380: Veterinary Immunology Prereq: Fourth-year classification in veterinary medicine (2-0) Cr. 2. S. Discussions, lectures, exercises and field trips related to veterinary public Prereq: First-year classification in veterinary medicine health. Structure and function of the immune system in animals. V MPM 490: Independent Study V MPM 386: Veterinary Microbiology Cr. arr. Repeatable. F.S.SS. (3-5) Cr. 5. F. Prereq: Permission of instructor and department chair Prereq: Second-year classification in veterinary medicine Bacteria and fungi of veterinary importance with emphasis on V MPM 491: CDC Epidemiology Elective Preceptorship mechanisms of disease production and laboratory diagnostic Cr. 6. F.S.SS. procedures. Prereq: Written permission of instructor Introduction to preventive medicine, public health and the principles of V MPM 387: Veterinary Virology applied epidemiology within the working atmosphere of the Centers for (3-0) Cr. 3. S. Disease Control and Prevention. Prereq: Second-year classification in veterinary medicine Basic principles of animal virology. Pathogenesis of viral infections. The nature and ecology of viruses of veterinary and zoonotic importance. 2 Veterinary Microbiology and Preventive Medicine (V MPM) V MPM 496: International Preceptorship V MPM 525: Intestinal Microbiology Cr. 1-12. Repeatable. F.S.SS. (Cross-listed with MICRO). Cr. 3. Alt. S., offered even-numbered years. Prereq: Second-year classification in veterinary medicine Prereq: Micro 302, BIOL 313 International Preceptorships and Study Abroad group programs. This Overview of commensal microbiota in the health and well-being of course will provide opportunities for students to be involved in applied vertebrates. Topics include diversity of intestinal structure, microbial clinical, production, and/or research experiences in international diversity/function, innate immune development, community interactions locations. The course consists of 40 hour per week experiential learning and metabolic diseases associated with alterations of the intestinal opportunities. microbiome. Courses primarily for graduate students, open to qualified V MPM 528: Principles of Epidemiology and Population Health undergraduates: (Dual-listed with V MPM 428). (Cross-listed with VDPAM). (3-0) Cr. 3. S. Epidemiology of disease in populations. Disease causality, observational V MPM 501: Basic Principles of Microbiology study design and approaches to epidemiologic investigations. This Cr. 3. F. course is available on campus and by distance. Prereq: Admittance into the Master of Science in Biomedical Sciences (one- year, non-thesis) or permission of the instructor. V MPM 536: Zoonoses and Environmental Health The general principles of bacteriology, immunology and virology will (3-0) Cr. 3. Alt. S., offered odd-numbered years. be discussed. The structure and function of bacteria and viruses, the Prereq: V MPM 386, VMPM 387 and V MPM 388 or equivalent or permission mechanisms of pathogenesis, and the host response to infectious agents of instructor will be reviewed. Vaccines, their failures, and new developments in Pathogensis and control of zoonotic diseases. Factors influencing vaccine development will be explored. transmission and survival of pathogenic microorganisms in the environment. V MPM 502: Microbial Genetics and Genomics (Cross-listed with MICRO). (3-0) Cr. 3. Alt. F., offered even-numbered V MPM 540: Livestock Immunogenetics years. (Cross-listed with AN S, MICRO). (2-0) Cr. 2. Alt. S., offered odd-numbered Prereq: MICRO 302, Biol 313 years. The fundamental concepts of bacterial and bacteriophage genetics Prereq: AN S 561 or MICRO 575 or V MPM 520 including mutagenesis, mechanisms of vertical and horizontal genetic Basic concepts and contemporary topics in genetic regulation of information transfer and gene regulation are covered, along with livestock immune response and disease resistance. genetic and genomic-based approaches to study these and other V MPM 542: Introduction to Molecular Biology Techniques cellular processes of microorganisms. Review and discussion of (Cross-listed with B M S, EEOB, FS HN, GDCB, HORT, NREM, NUTRS, research literature to examine experimental design, methodology, and VDPAM). Cr. 1. Repeatable. F.S.SS. interpretation of both historical and contemporary relevance to microbial Sessions in basic molecular biology techniques and related procedures. genetics and genomics. Offered on a satisfactory-fail basis only. V MPM 517: Gut Microbiome: Implications for Health and Diseases V MPM 542A: Introduction to Molecular Biology Techniques: DNA (Cross-listed with AN S, FS HN, MICRO). Cr. 3. Techniques Prereq: 2-3 credits in microbiology and/or immunology. (Cross-listed with B M S, BBMB, EEOB, FS HN, GDCB, HORT, NREM, Explore current research on gut microbiome including modern tools NUTRS, VDPAM). Cr. 1. Repeatable. F.S. used to study the gut microbiome. Examine the linkages between Includes genetic engineering procedures, sequencing, PCR, and gut microbiome and health status, diseases, and manipulation of gut genotyping. Offered on a satisfactory-fail basis only. microbiome to improve health. V MPM 542C: Introduction to Molecular Biology Techniques: Cell V MPM 520: Principles of Immunology Techniques (3-0) Cr. 3. F. (Cross-listed with B M S, BBMB, EEOB, FS HN, GDCB, HORT, NREM, Prereq: MICRO 310 or V MPM 386, 3 credits in biochemistry NUTRS, VDPAM). Cr. 1. Repeatable. F.S. Nature of the immune system and its role in health and disease. Credit for Includes: immunophenotyping, ELISA, flow cytometry, microscopic either V MPM 520 or 575, but not both may be applied toward graduation. techniques, image analysis, confocal, multiphoton and laser capture microdissection. Offered on a satisfactory-fail basis only. Veterinary Microbiology and Preventive Medicine (V MPM) 3 V MPM 542D: Introduction to Molecular Biology Techniques: Plant V MPM 587: Animal Virology Transformation (4-0) Cr. 4. (Cross-listed with B M S, BBMB, EEOB, FS HN, GDCB, HORT, NREM, Prereq: Permission of instructor NUTRS, VDPAM). Cr. 1. Repeatable. S. Principles of animal virology. Biology of viruses associated with diseases Includes: Agrobacterium and particle gun-mediated transformation of of veterinary importance, including mechanisms of pathogenesis. tobacco, Arabidopsis, and maize, and analysis of tranformants. Offered V MPM 590: Special Topics on a satisfactory-fail basis only. Cr. 1-5. Repeatable. F.S.SS. V MPM 542E: Introduction to Molecular Biology Techniques: Proteomics Prereq: Permission of instructor (Cross-listed with B M S, BBMB, EEOB, FS HN, GDCB, HORT, NREM, V MPM 599: Creative Component NUTRS, VDPAM). Cr. 1. Repeatable. F. Cr. arr. Includes: two-dimensional electrophoresis, laser scanning, mass Prereq: Nonthesis M.S. Option only spectrometry, and database searching. Offered on a satisfactory-fail A written report based on laboratory
Recommended publications
  • Guide for Common Viral Diseases of Animals in Louisiana
    Sampling and Testing Guide for Common Viral Diseases of Animals in Louisiana Please click on the species of interest: Cattle Deer and Small Ruminants The Louisiana Animal Swine Disease Diagnostic Horses Laboratory Dogs A service unit of the LSU School of Veterinary Medicine Adapted from Murphy, F.A., et al, Veterinary Virology, 3rd ed. Cats Academic Press, 1999. Compiled by Rob Poston Multi-species: Rabiesvirus DCN LADDL Guide for Common Viral Diseases v. B2 1 Cattle Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 2 Deer and Small Ruminants Please click on the principle system involvement Generalized viral disease Respiratory viral disease Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 3 Swine Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 4 Horses Please click on the principle system involvement Generalized viral diseases Neurological viral diseases Respiratory viral diseases Enteric viral diseases Abortifacient/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 5 Dogs Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Back to the Beginning DCN LADDL Guide for Common Viral Diseases v.
    [Show full text]
  • VMC 321: Systematic Veterinary Virology Retroviridae Retro: from Latin Retro,"Backwards”
    VMC 321: Systematic Veterinary Virology Retroviridae Retro: from Latin retro,"backwards” - refers to the activity of reverse RETROVIRIDAE transcriptase and the transfer of genetic information from RNA to DNA. Retroviruses Viral RNA Viral DNA Viral mRNA, genome (integrated into host genome) Reverse (retro) transfer of genetic information Usually, well adapted to their hosts Endogenous retroviruses • RNA viruses • single stranded, positive sense, enveloped, icosahedral. • Distinguished from all other RNA viruses by presence of an unusual enzyme, reverse transcriptase. Retroviruses • Retro = reversal • RNA is serving as a template for DNA synthesis. • One genera of veterinary interest • Alpharetrovirus • • Family - Retroviridae • Subfamily - Orthoretrovirinae [Ortho: from Greek orthos"straight" • Genus -. Alpharetrovirus • Genus - Betaretrovirus Family- • Genus - Gammaretrovirus • Genus - Deltaretrovirus Retroviridae • Genus - Lentivirus [ Lenti: from Latin lentus, "slow“ ]. • Genus - Epsilonretrovirus • Subfamily - Spumaretrovirinae • Genus - Spumavirus Retroviridae • Subfamily • Orthoretrovirinae • Genus • Alpharetrovirus Alpharetrovirus • Species • Avian leukosis virus(ALV) • Rous sarcoma virus (RSV) • Avian myeloblastosis virus (AMV) • Fujinami sarcoma virus (FuSV) • ALVs have been divided into 10 envelope subgroups - A , B, C, D, E, F, G, H, I & J based on • host range Avian • receptor interference patterns • neutralization by antibodies leukosis- • subgroup A to E viruses have been divided into two groups sarcoma • Noncytopathic (A, C, and E) • Cytopathic (B and D) virus (ALV) • Cytopathic ALVs can cause a transient cytotoxicity in 30- 40% of the infected cells 1. The viral envelope formed from host cell membrane; contains 72 spiked knobs. 2. These consist of a transmembrane protein TM (gp 41), which is linked to surface protein SU (gp 120) that binds to a cell receptor during infection. 3. The virion has cone-shaped, icosahedral core, Structure containing the major capsid protein 4.
    [Show full text]
  • Para Influenza Virus 3 Infection in Cattle and Small Ruminants in Sudan
    Journal of Advanced Veterinary and Animal Research ISSN 2311-7710 (Electronic) http://doi.org/10.5455/ javar.2016.c160 September 2016 A periodical of the Network for the Veterinarians of Bangladesh (BDvetNET) Vol 3 No 3, Pages 236-241. Original Article Para influenza virus 3 infection in cattle and small ruminants in Sudan Intisar Kamil Saeed, Yahia Hassan Ali, Khalid Mohammed Taha, Nada ElAmin Mohammed, Yasir Mehdi Nouri, Baraa Ahmed Mohammed, Osama Ishag Mohammed, Salma Bushra Elmagboul and Fahad AlTayeb AlGhazali • Received: March 24, 2016 • Revised: April 26, 2016 • Accepted: April 29, 2016 • Published Online: May 2, 2016 AFFILIATIONS ABSTRACT Intisar Saeed Objective: This study was aimed at elucidating the association between Para Yahia Ali influenza virus 3 (PIV3) and respiratory infections in domestic ruminants in Baraa Ahmed Virology Department, Veterinary Research different areas of Sudan. Institute, P.O. Box 8067, Al Amarat, Materials and methods: During 2010-2013, five hundred sixty five lung samples Khartoum, Sudan. #Current address: with signs of pneumonia were collected from cattle (n=226), sheep (n=316) and Northern Border University, Faculty of Science and Arts, Rafha, Saudi Arabia. goats (n=23) from slaughter houses in different areas in Sudan. The existence of PIV3 antigen was screened in the collected samples using ELISA and Fluorescent Khalid Taha antibody technique. PIV3 genome was detected by PCR, and sequence analysis was Atbara Veterinary Research Laboratory, P.O. Box 121 Atbara, River Nile State, conducted. Sudan. Results: Positive results were found in 29 (12.8%) cattle, 31 (9.8%) sheep and 11 (47.8%) goat samples. All the studied areas showed positive results.
    [Show full text]
  • Monitoring of Activity and Spread by Using Dead Bird Surveillance in Austria, 2003–2005 S
    Monitoring of activity and spread by using dead bird surveillance in Austria, 2003–2005 S. Chvala, T. Bakonyi, C. Bukovsky, T. Meister, K. Brugger, F. Rubel, N. Nowotny, H. Weissenböck To cite this version: S. Chvala, T. Bakonyi, C. Bukovsky, T. Meister, K. Brugger, et al.. Monitoring of activity and spread by using dead bird surveillance in Austria, 2003–2005. Veterinary Microbiology, Elsevier, 2007, 122 (3-4), pp.237. 10.1016/j.vetmic.2007.01.029. hal-00532203 HAL Id: hal-00532203 https://hal.archives-ouvertes.fr/hal-00532203 Submitted on 4 Nov 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: Monitoring of Usutu Virus activity and spread by using dead bird surveillance in Austria, 2003–2005 Authors: S. Chvala, T. Bakonyi, C. Bukovsky, T. Meister, K. Brugger, F. Rubel, N. Nowotny, H. Weissenbock¨ PII: S0378-1135(07)00066-1 DOI: doi:10.1016/j.vetmic.2007.01.029 Reference: VETMIC 3583 To appear in: VETMIC Received date: 25-10-2006 Revised date: 26-1-2007 Accepted date: 31-1-2007 Please cite this article as: Chvala, S., Bakonyi, T., Bukovsky, C., Meister, T., Brugger, K., Rubel, F., Nowotny, N., Weissenbock,¨ H., Monitoring of Usutu Virus activity and spread by using dead bird surveillance in Austria, 2003–2005, Veterinary Microbiology (2007), doi:10.1016/j.vetmic.2007.01.029 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Editorial Note on Medical Microbiology & Diagnosis – Clinical
    Manuscript no.- JMMD-2021-5 Article type- Editorial Received date- 20-01-2021 Accepted- 20-01-2021 Publish date-23-01-2021 Editorial Note on Medical Microbiology & Diagnosis – Clinical Microbial Pathology Tirpude RJ Defence Institute of Physiology and Allied Sciences Address for Correspondence: Tirpude RJ, Defence Institute of Physiology and Allied Sciences, Delhi - 110054, India. Tel-9869217101, E-mail: [email protected] Editorial Clinical pathology is concerned with the diagnosis of disease based on laboratory analysis of body fluids like urine and blood. It deals with the tools of microbiology like macroscopic, microscopic, analyzers and cultures. It covers microbiology, host-pathogen interaction and immunology related to infectious agents, including bacteria, fungi, viruses and protozoa. It also accepts papers in the field of clinical microbiology, with the exception of case reports. The pathogenesis of a disease is the biological mechanism that leads to the diseased state. It also describes the origin and development of the disease, and whether it is acute, chronic, or recurrent. Medical microbiology involves the identification of microorganisms for the diagnosis of infectious diseases and the assessment of likely response to specific therapeutic interventions. Major categories of organisms include bacteria, mycobacteria, fungi, viruses, and parasites. Microbiological methods combined with clinical symptoms, additional laboratory tests, and imaging techniques are used in combination to distinguish a true disease- associated infection from colonization with normal flora or other conditions, such as malignancies, inflammatory disorders, or autoimmune disorders, all of which have unique therapies and prognoses for the patient. Laboratories combine the use of traditional microscopy and culture methods, with a rapidly evolving set of molecular and proteomic techniques.
    [Show full text]
  • Anika Anthony, Associate Dean of Academic Affairs, Graduate School
    TO: Randy Smith, Vice Provost for Academic Programs FROM: Anika Anthony, Associate Dean of Academic Affairs, Graduate School DATE: January 21,2021 RE: Proposal for a new Master of Science in Immunology ad Microbial Pathogenesis, College of Medicine The College of Medicine is proposing a new Master of Science in Immunology and Microbial Pathogenesis. The proposal was received by the Graduate School on November 6, 2020. The combined GS/CAA subcommittee first reviewed the proposal on November 17, 2020 and requested revisions. Revisions were received on December 2, 2020. GS/CAA conducted a second review of the proposal and recommended it for approval by the Graduate Council on December 9. The proposal was approved by the Graduate Council on January 11, 2021. Mark E. Drew Assistant Professor Director of Graduate Education Department of Microbial Infection and Immunity OSU College of Medicine December 2, 2020 GS/CAA curricular subcommittee Ohio State University Re: Master of Science (MS) in Immunology and Microbial Pathogenesis Dear Members of the Subcommittee, Thank you for your kind and positive review of our proposal to offer a new Master of Science in Immunology and Microbial Pathogenesis program at OSU. Your comments and suggestions were extremely helpful in refining the proposal. Specifically, in response to your comments, we have made the following changes: 1. “Clarity on which courses are new vs. those that are already existing.” Page 34 of the proposal now includes brief descriptions of the three courses under development to support this program in our expectation of its approval. The complete syllabi are being developed by four key program faculty (Drew, Deora, Root, Novias) with planned entry into the new course portal on or before January 1, 2021.
    [Show full text]
  • Complete Nucleotide Sequence, Molecular Analysis and Genome Structure of Bacteriophage A118 of Listeria Monocytogenes : Implications for Phage Evolution
    Molecular Microbiology (2000) 35(2), 324±340 Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes : implications for phage evolution Martin J. Loessner,1* Ross B. Inman,2 Peter Lauer3 local, but sometimes extensive, similarities to a num- and Richard Calendar3 ber of phages spanning a broader phylogenetic range 1Institut fuÈr Mikrobiologie, FML Weihenstephan, of various low GC host bacteria, which implies rela- Technische UniversitaÈtMuÈnchen, Weihenstephaner tively recent exchange of genes or genetic modules. Berg 3, 85350 Freising, Germany. We have also identi®ed the A118 attachment site 2Institute for Molecular Virology, University of attP and the corresponding attB in Listeria monocyto- Wisconsin at Madison, 1525 Linden Drive, Madison, genes, and show that site-speci®c integration of the Wisconsin 53706, USA. A118 prophage by the A118 integrase occurs into a 3Department of Molecular and Cell Biology, host gene homologous to comK of Bacillus subtilis, University of California at Berkeley, 401 Barker Hall, an autoregulatory gene specifying the major compe- Berkeley, California 94720-3202, USA. tence transcription factor. Summary Introduction A118 is a temperate phage isolated from Listeria Listeria monocytogenes is a non-spore-forming, opportu- monocytogenes. In this study, we report the entire nistic Gram-positive pathogen, responsible for severe nucleotide sequence and structural analysis of its infections in both animals and humans, which is almost 40 834 bp DNA. Electron microscopic and enzymatic exclusively transmitted via contaminated food. Recurrent analyses revealed that the A118 genome is a linear, outbreaks of Listeriosis (CDC, 1998; Slutsker and Schuchat, circularly permuted, terminally redundant collection 1999) have emphasized the need for a better understand- of double-stranded DNA molecules.
    [Show full text]
  • Virology Techniques
    Chapter 5 - Lesson 4 Virology Techniques Introduction Virology is a field within microbiology that encom- passes the study of viruses and the diseases they cause. In the laboratory, viruses have served as useful tools to better understand cellular mechanisms. The purpose of this lesson is to provide a general overview of laboratory techniques used in the identification and study of viruses. A Brief History In the late 19th century the independent work of Dimitri Ivanofsky and Martinus Beijerinck marked the begin- This electron micrograph depicts an influenza virus ning of the field of virology. They showed that the agent particle or virion. CDC. responsible for causing a serious disease in tobacco plants, tobacco mosaic virus, was able to pass through filters known to retain bacteria and the filtrate was able to cause disease in new plants. In 1898, Friedrich Loef- fler and Paul Frosch applied the filtration criteria to a disease in cattle known as foot and mouth disease. The filtration criteria remained the standard method used to classify an agent as a virus for nearly 40 years until chemical and physical studies revealed the structural basis of viruses. These attributes have become the ba- sis of many techniques used in the field today. Background All organisms are affected by viruses because viruses are capable of infecting and causing disease in all liv- ing species. Viruses affect plants, humans, and ani- mals as well as bacteria. A virus that infects bacteria is known as a bacteriophage and is considered the Bacteriophage. CDC. Chapter 5 - Human Health: Real Life Example (Influenza) 1 most abundant biological entity on the planet.
    [Show full text]
  • Virus Replication Cycles
    © Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION A scanning electron micrograph of Ebola virus particles. Ebola virus contains an RNA genome. It causes Ebola hemorrhagic fever, which is a severe and often fatal disease in hu- mans and nonhuman primates. CHAPTER Virus Replication Cycles OUTLINE 3.1 One-Step Growth Curves 3.3 The Error-Prone RNA Polymerases: 3 3.2 Key Steps of the Viral Replication Genetic Diversity Cycle 3.4 Targets for Antiviral Therapies In the struggle for survival, the ■ 1. Attachment (Adsorption) ■ RNA Virus Mutagens: A New Class “ ■ 2. Penetration (Entry) of Antiviral Drugs? fi ttest win out at the expense of ■ 3. Uncoating (Disassembly and Virus File 3-1: How Are Cellular Localization) their rivals because they succeed Receptors Used for Viral Attachment ■ 4. Types of Viral Genomes and Discovered? in adapting themselves best to Their Replication their environment. ■ 5. Assembly Refresher: Molecular Biology ” ■ 6. Maturation Charles Darwin ■ 7. Release 46 229329_CH03_046_069.indd9329_CH03_046_069.indd 4466 11/18/08/18/08 33:19:08:19:08 PPMM © Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION CASE STUDY The campus day care was recently closed during the peak of the winter fl u season because many of the young children were sick with a lower respiratory tract infection. An email an- nouncement was sent to all students, faculty, and staff at the college that stated the closure was due to a metapneumovirus outbreak. The announcement briefed the campus com- munity with information about human metapneumonoviruses (hMPVs). The announcement stated that hMPV was a newly identifi ed respiratory tract pathogen discovered in the Netherlands in 2001.
    [Show full text]
  • Dissertation Bats As Reservoir Hosts
    DISSERTATION BATS AS RESERVOIR HOSTS: EXPLORING NOVEL VIRUSES IN NEW WORLD BATS Submitted by Ashley Malmlov Department of Microbiology, Immunology, and Pathology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Spring 2018 Doctoral Committee: Advisor: Tony Schountz Richard Bowen Page Dinsmore Kristy Pabilonia Copyright by Ashley Malmlov 2018 All Rights Reserved ABSTRACT BATS AS RESERVOIR HOSTS: EXPLORING NOVEL VIRUSES IN NEW WORLD BATS Order Chiroptera is oft incriminated for their capacity to serve as reservoirs for many high profile human pathogens, including Ebola virus, Marburg virus, severe acute respiratory syndrome coronavirus, Nipah virus and Hendra virus. Additionally, bats are postulated to be the original hosts for such virus families and subfamilies as Paramyxoviridae and Coronavirinae. Given the perceived risk bats may impart upon public health, numerous explorations have been done to delineate if in fact bats do host more viruses than other animal species, such as rodents, and to ascertain what is unique about bats to allow them to maintain commensal relationships with zoonotic pathogens and allow for spillover. Of particular interest is data that demonstrate type I interferons (IFN), a first line defense to invading viruses, may be constitutively expressed in bats. The constant expression of type I IFNs would hamper viral infection as soon as viral invasion occurred, thereby limiting viral spread and disease. Another immunophysiological trait that may facilitate the ability to harbor viruses is a lack of somatic hypermutation and affinity maturation, which would decrease antibody affinity and neutralizing antibody titers, possibly facilitating viral persistence.
    [Show full text]
  • Molecular Virology Module Specification 2020-21
    MODULE SPECIFICATION Academic Year (student cohort covered by 2020-21 specification) Module Code 3140 Module Title Molecular Virology Module Organiser(s) Dr David Allen, Professor Martin Hibberd and Dr Michael Gaunt Faculty Infectious & Tropical Diseases FHEQ Level Level 7 Credit Value CATS: 15 ECTS: 7.5 HECoS Code 100345:100265:100948 (1:1:1) Term of Delivery Term 2 Mode of Delivery For 2020-21 this module is delivered online. Teaching will comprise a combination of live and interactive activities (synchronous learning) as well as recorded or self- directed study (asynchronous learning). Mode of Study Full-time Language of Study English Pre-Requisites Students should have a basic understanding of biochemistry and genetics. Accreditation by None Professional Statutory and Regulatory Body Module Cap (Maximum 15-20 (numbers may be capped due to limitations in facilities or number of students) staffing) Target Audience For students with a basic background in both virology and molecular biology (i.e. have attended the Virology (in Bacteriology & Virology) and Molecular Biology modules in Term 1 or have equivalent training). Module Description This module explores the molecular-level mechanisms by which viruses interact with their hosts. Teaching and learning on this module use lectures and classroom-based sessions in parallel with computer laboratory sessions to understand the drivers of virus evolution and emergence, particularly in the context of applications towards virus surveillance, countermeasures, and disease control. Duration 5 weeks
    [Show full text]
  • Microbiology (MICROB) 1
    Microbiology (MICROB) 1 Credit Hours: 3 Microbiology (MICROB) Recommended: MICROB 3200 or BIOCHM 4270 or MICROB 2800 MICROB 2800: Microbiology for Nursing and Health Professions MICROB 7101: Structure and Synthesis of Macro Molecules This course will provide basic principles for understanding microbial This multiple-instructor course is designed to provide students with growth, function, and control. This includes a survey of microbial cellular a detailed understanding of the structure, function, and biophysical structure/functions, immunology concepts, epidemiology, specimen properties of bio-molecules. Principles and techniques of molecular handling, and causes of microbial disease (bacterial, viral, and parasitic). biology related to the study of recombinant DNA and genetic analysis, Material is presented in lecture and corresponding laboratory exercises protein structure, function and basic immunological principles will be that will allow students to explore the microbial world around them. covered. Admission is dependent on approval by course director. Credit Hours: 4 Credit Hours: 2 Prerequisites: The overall content is "restricted to Freshman and Prerequisites: consent required sophomore Nursing and Health Related Professional students only". Other inquires contact department MICROB 8050: Graduate Student Survival Skills This course is an introduction to inform new graduate students about the MICROB 3200: Medical Microbiology and Immunology Microbiology program and provide them with the knowledge to access Focus on medically important viruses, bacteria, fungi and parasites resources and information needed for a successful transition into their with emphasis on their disease causing potential and mechanisms. course work and research. The course will also focus on guidelines Introduction to cells and molecules of the immune system with emphasis in selecting mentors and their relationships, time management, good on their role in fighting infectious diseases.
    [Show full text]