Gene Loci Associated with Insulin Secretion in Islets from Nondiabetic Mice
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Novel Binding Partners of PBF in Thyroid Tumourigenesis
NOVEL BINDING PARTNERS OF PBF IN THYROID TUMOURIGENESIS By Neil Sharma A thesis presented to the College of Medical and Dental Sciences at the University of Birmingham for the Degree of Doctor of Philosophy Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine August 2013 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. SUMMARY Thyroid cancer is the most common endocrine cancer, with a rising incidence. The proto-oncogene PBF is over-expressed in thyroid tumours, and the degree of over-expression is directly linked to patient survival. PBF causes transformation in vitro and tumourigenesis in vivo, with PBF-transgenic mice developing large, macro-follicular goitres, effects partly mediated by the internalisation and repression of the membrane-bound transporters NIS and MCT8. NIS repression leads to a reduction in iodide uptake, which may negatively affect the efficacy of radioiodine treatment, and therefore prognosis. Work within this thesis describes the use of tandem mass spectrometry to produce a list of potential binding partners of PBF. This will aid further research into the pathophysiology of PBF, not just in relation to thyroid cancer but also other malignancies. -
Renalase — a New Marker Or Just a Bystander in Cardiovascular Disease: Clinical and Experimental Data
Kardiologia Polska 2016; 74, 9: 937–942; DOI: 10.5603/KP.a2016.0095 ISSN 0022–9032 ARTYKUŁ SPECJALNY / STATE-OF-THE-ART REVIEW Renalase — a new marker or just a bystander in cardiovascular disease: clinical and experimental data Dominika Musiałowska, Jolanta Małyszko 2nd Department of Nephrology, Medical University of Bialystok, Bialystok, Poland Dominika Musiałowska was born in 1985 in Bialystok. She graduated the Medical University of Bialystok in 2010 with the average grade of very good. During her studies she was awarded a scholarship from the Minister of Health for her academic results. She successfully completed a short-term fellowship supported by the European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) in modulation of sympathetic nerve activity by renal denerva- tion in hypertensive renal transplant patients in the Nephrology Department in Heinrich Heine Universitat Duesseldorf, Germany (October 1, 2012 – March 29, 2013). She became a Doctor of Philosophy in 2014 after a public defence of her manuscript Renalase concentration in hypertensive patients. She works in 2nd Department of Nephrology at the Medical University of Bialystok, Poland. Jolanta Małyszko graduated with merit from the Medical University of Bialystok, Poland. She is a full Professor (2002) and from 2013 a chairman of 2nd Department on Nephrology, Medical University, Bialystok, Poland. Her clinical training was performed in the Intensive Care Unit and Nephrology Department, CHU Rouen, France, Nephrology Department, Heinrich-Heine Uni- versity, Dusseldorf, Germany (ERA-EDTA clinical scholarship), McKennon Hospital, Sioux Falls, South Dakota, United States (invasive cardiology), Kings’ College, London, United Kingdom, and Sourasky Hospital, Israel. During a Japanese Ministry of Education scholarship at Hamamatsu University School of Medicine she defended her PhD thesis on the role of FK 506 in transplanta- tion in 1995. -
Genetic Drivers of Pancreatic Islet Function
| INVESTIGATION Genetic Drivers of Pancreatic Islet Function Mark P. Keller,*,1 Daniel M. Gatti,†,1 Kathryn L. Schueler,* Mary E. Rabaglia,* Donnie S. Stapleton,* Petr Simecek,† Matthew Vincent,† Sadie Allen,‡ Aimee Teo Broman,§ Rhonda Bacher,§ Christina Kendziorski,§ Karl W. Broman,§ Brian S. Yandell,** Gary A. Churchill,†,2 and Alan D. Attie*,2 *Department of Biochemistry, §Department of Biostatistics and Medical Informatics, and **Department of Horticulture, University of Wisconsin–Madison, Wisconsin 53706-1544, †The Jackson Laboratory, Bar Harbor, Maine 06409, and ‡Maine School of Science and Mathematics, Limestone, Maine 06409, ORCID IDs: 0000-0002-7405-5552 (M.P.K.); 0000-0002-4914-6671 (K.W.B.); 0000-0001-9190-9284 (G.A.C.); 0000-0002-0568-2261 (A.D.A.) ABSTRACT The majority of gene loci that have been associated with type 2 diabetes play a role in pancreatic islet function. To evaluate the role of islet gene expression in the etiology of diabetes, we sensitized a genetically diverse mouse population with a Western diet high in fat (45% kcal) and sucrose (34%) and carried out genome-wide association mapping of diabetes-related phenotypes. We quantified mRNA abundance in the islets and identified 18,820 expression QTL. We applied mediation analysis to identify candidate causal driver genes at loci that affect the abundance of numerous transcripts. These include two genes previously associated with monogenic diabetes (PDX1 and HNF4A), as well as three genes with nominal association with diabetes-related traits in humans (FAM83E, IL6ST, and SAT2). We grouped transcripts into gene modules and mapped regulatory loci for modules enriched with transcripts specific for a-cells, and another specific for d-cells. -
WO 2018/102612 Al 07 June 2018 (07.06.2018) W !P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/102612 Al 07 June 2018 (07.06.2018) W !P O PCT (51) International Patent Classification: Published: CI2N 15/66 (2006.01) — with international search report (Art. 21(3)) (21) International Application Number: — before the expiration of the time limit for amending the PCT/US20 17/064075 claims and to be republished in the event of receipt of amendments (Rule 48.2(h)) (22) International Filing Date: — with sequence listing part of description (Rule 5.2(a)) 30 November 20 17 (30. 11.201 7) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/429,709 02 December 20 16 (02.12.20 16) US (71) Applicant: JUNO THERAPEUTICS, INC. [US/US]; 400 Dexter Ave. North, Suite 1200, Seattle, WA 98109 (US). (72) Inventor: LEVITSKY, Hyam I.; 400 Dexter Ave. North, Suite 1200, Seattle, WA 98109 (US). (74) Agent: AIKEN, Charity et al; Morrison & Foerster LLP, 12531 High Bluff Drive, Suite 100, San Diego, CA 92130-2040 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
NATURAL KILLER CELLS, HYPOXIA, and EPIGENETIC REGULATION of HEMOCHORIAL PLACENTATION by Damayanti Chakraborty Submitted to the G
NATURAL KILLER CELLS, HYPOXIA, AND EPIGENETIC REGULATION OF HEMOCHORIAL PLACENTATION BY Damayanti Chakraborty Submitted to the graduate degree program in Pathology and Laboratory Medicine and the Graduate Faculty of the University of Kansas in partial fulfillment ofthe requirements for the degree of Doctor of Philosophy. ________________________________ Chair: Michael J. Soares, Ph.D. ________________________________ Jay Vivian, Ph.D. ________________________________ Patrick Fields, Ph.D. ________________________________ Soumen Paul, Ph.D. ________________________________ Michael Wolfe, Ph.D. ________________________________ Adam J. Krieg, Ph.D. Date Defended: 04/01/2013 The Dissertation Committee for Damayanti Chakraborty certifies that this is the approved version of the following dissertation: NATURAL KILLER CELLS, HYPOXIA, AND EPIGENETIC REGULATION OF HEMOCHORIAL PLACENTATION ________________________________ Chair: Michael J. Soares, Ph.D. Date approved: 04/01/2013 ii ABSTRACT During the establishment of pregnancy, uterine stromal cells differentiate into decidual cells and recruit natural killer (NK) cells. These NK cells are characterized by low cytotoxicity and distinct cytokine production. In rodent as well as in human pregnancy, the uterine NK cells peak in number around mid-gestation after which they decline. NK cells associate with uterine spiral arteries and are implicated in pregnancy associated vascular remodeling processes and potentially in modulating trophoblast invasion. Failure of trophoblast invasion and vascular remodeling has been shown to be associated with pathological conditions like preeclampsia syndrome, hypertension in mother and/or fetal growth restriction. We hypothesize that NK cells fundamentally contribute to the organization of the placentation site. In order to study the in vivo role of NK cells during pregnancy, gestation stage- specific NK cell depletion was performed in rats using anti asialo GM1 antibodies. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Abstract Renalase Is a Flavoprotein Recently Discovered in Humans
Abstract Renalase is a flavoprotein recently discovered in humans, which is ubiquitous in vertebrates and conserved in some other phyla. In 2005, it was identified within a project aimed to determine novel proteins secreted by the kidney, whose defect could explain the high incidence of cardiovascular complications in patients with chronic kidney disease (Xu et al., 2005). The protein is preferentially expressed in the renal proximal tubules and heart, and it’s secreted in blood and urine. Genetic, epidemiological, clinical studies and animal experimental models have constantly accumulated evidence of the important role played by renalase in lowering blood pressure, decreasing the catecholaminergic tone and control heart function. A renalase knockout mouse model resulted in increased levels of catecholamines in plasma and heart, cardiac ischemia and myocardial necrosis more severe than WT littermates (Wu et al., 2011). However, the possible molecular mechanism, the nature of the in vivo catalyzed reaction and the identity of renalase substrate(s) are still unclear. Based on these premises, the main aim of the project was to provide a detailed biochemical and structural characterization of renalase in order to better elucidate its physiological function. We solved the crystallographic structure of recombinant human renalase at 2.5 Å resolution. The general fold classified it as a member of the p- hydroxybenzoate hydroxylase family. Renalase contains non-covalently bound FAD with redox features suggestive of a oxidase or NAD(P)H- dependent monooxygenase activity (Milani et al., 2011), in contrast with the - proposed activity of catecholamine degradation via a superoxide (O2 )- dependent mechanism (Farzaneh-Far et al., 2010). -
1 Supplemental Methods in Vivo Mouse Studies
Supplemental Methods In vivo mouse studies – A subset of WT and qv4J animals were administered the STAT3 inhibitor S3I-201 in-vivo at 20mg/kg daily intraperitoneal for 14 days (1). Transaortic constriction (TAC) was performed on a subset of WT mice for 6 weeks to induce chronic pressure-overload and heart failure, as described (1, 2). Cardiac performance was assessed prior to surgery and at 6 weeks post TAC using Vevo 2100 (Visualsonics). Specifically, cardiac function was determined using the MS-400 transducer in the short axis M-mode. For heart extractions, mice were anesthetized with 2.5% gaseous isoflurane and oxygen and sacrificed with confirmation by the absence of response to probing of the lower extremities. Immunoblot analysis – Primary ventricular cardiac fibroblast lysate was analyzed using SDS-PAGE and immunoblotting, as described (1, 3, 4). Briefly, equal protein loading was achieved using standard BCA protein assay protocols and verified by Ponceau staining of immunoblots. The following antibodies were used for immunoblotting: Total STAT3 (1:1000, Cell Signaling, Catalog #: 4904), vimentin (1:1000, Abcam, Catalog # ab92547:) and GAPDH (1:5000, Fitzgerald, Catalog #: 10R-G109A). Immunofluorescence – Cardiac fibroblasts were seeded in 35 mm Matex glass bottom dishes until ~50-70% confluency. Cells were then fixed in 4% paraformaldehyde and permeabilized with TritonX-100 for 10 mins. Non-specific binding was blocked using blocking buffer comprised of 1.5% bovine serum albumin (BSA), 3% goat serum in 1xPBS ° (Invitrogen) overnight at 4 C. Primary antibodies [βIV-spectrin (1:100, Millipore, Clone# N393/76), total STAT3 (1:100, Cell Signaling, Catalog#: 4904), plakoglobin/anti-gamma catenin (1:400, Abcam, Catalog #: ab15153)] were prepared in blocking buffer and added for overnight incubation at 4°C. -
Genetic Variation of the Serine Acetyltransferase Gene Family for Sulfur Assimilation in Maize
G C A T T A C G G C A T genes Article Genetic Variation of the Serine Acetyltransferase Gene Family for Sulfur Assimilation in Maize Zhixuan Zhao 1, Shuai Li 1, Chen Ji 2 , Yong Zhou 2, Changsheng Li 2 and Wenqin Wang 1,* 1 School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; [email protected] (Z.Z.); [email protected] (S.L.) 2 National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; [email protected] (C.J.); [email protected] (Y.Z.); [email protected] (C.L.) * Correspondence: [email protected]; Tel.: +86-21-34206942 Abstract: Improving sulfur assimilation in maize kernels is essential due to humans and animals’ inability to synthesize methionine. Serine acetyltransferase (SAT) is a critical enzyme that controls cystine biosynthesis in plants. In this study, all SAT gene members were genome-wide characterized by using a sequence homology search. The RNA-seq quantification indicates that they are highly expressed in leaves, other than root and seeds, consistent with their biological functions in sulfur assimilation. With the recently released 25 genomes of nested association mapping (NAM) founders representing the diverse maize stock, we had the opportunity to investigate the SAT genetic variation comprehensively. The abundant transposon insertions into SAT genes indicate their driving power in terms of gene structure and genome evolution. We found that the transposon insertion into exons could change SAT gene transcription, whereas there was no significant correlation between transposable element (TE) insertion into introns and their gene expression, indicating that other Citation: Zhao, Z.; Li, S.; Ji, C.; Zhou, regulatory elements such as promoters could also be involved. -
WO2011085347A2.Pdf
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 14 July 2011 (14.07.2011) WO 2011/085347 A2 (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, C12N 15/113 (2010.01) A61K 48/00 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, A61K 31/7088 (2006.01) C12N 15/63 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (21) International Application Number: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, PCT/US201 1/020768 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (22) International Filing Date: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, 11 January 201 1 ( 11.01 .201 1) SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 61/293,739 11 January 2010 ( 11.01 .2010) US ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (71) Applicant (for all designated States except US): OPKO EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, CURNA, LLC [US/US]; 440 Biscayne Boulevard, Mia LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, mi, FL 33 137 (US). -
Secretory Signal Peptide Modification for Optimized Antibody-Fragment Expression-Secretion in Leishmania Tarentolae Stephan Klatt1,2 and Zoltán Konthur1*
Klatt and Konthur Microbial Cell Factories 2012, 11:97 http://www.microbialcellfactories.com/content/11/1/97 RESEARCH Open Access Secretory signal peptide modification for optimized antibody-fragment expression-secretion in Leishmania tarentolae Stephan Klatt1,2 and Zoltán Konthur1* Abstract Background: Secretory signal peptides (SPs) are well-known sequence motifs targeting proteins for translocation across the endoplasmic reticulum membrane. After passing through the secretory pathway, most proteins are secreted to the environment. Here, we describe the modification of an expression vector containing the SP from secreted acid phosphatase 1 (SAP1) of Leishmania mexicana for optimized protein expression-secretion in the eukaryotic parasite Leishmania tarentolae with regard to recombinant antibody fragments. For experimental design the online tool SignalP was used, which predicts the presence and location of SPs and their cleavage sites in polypeptides. To evaluate the signal peptide cleavage site as well as changes of expression, SPs were N-terminally linked to single-chain Fragment variables (scFv’s). The ability of L. tarentolae to express complex eukaryotic proteins with highly diverse post-translational modifications and its easy bacteria-like handling, makes the parasite a promising expression system for secretory proteins. Results: We generated four vectors with different SP-sequence modifications based on in-silico analyses with SignalP in respect to cleavage probability and location, named pLTEX-2 to pLTEX-5. To evaluate their functionality, we cloned four individual scFv-fragments into the vectors and transfected all 16 constructs into L. tarentolae. Independently from the expressed scFv, pLTEX-5 derived constructs showed the highest expression rate, followed by pLTEX-4 and pLTEX-2, whereas only low amounts of protein could be obtained from pLTEX-3 clones, indicating dysfunction of the SP. -
Fibroblasts from the Human Skin Dermo-Hypodermal Junction Are
cells Article Fibroblasts from the Human Skin Dermo-Hypodermal Junction are Distinct from Dermal Papillary and Reticular Fibroblasts and from Mesenchymal Stem Cells and Exhibit a Specific Molecular Profile Related to Extracellular Matrix Organization and Modeling Valérie Haydont 1,*, Véronique Neiveyans 1, Philippe Perez 1, Élodie Busson 2, 2 1, 3,4,5,6, , Jean-Jacques Lataillade , Daniel Asselineau y and Nicolas O. Fortunel y * 1 Advanced Research, L’Oréal Research and Innovation, 93600 Aulnay-sous-Bois, France; [email protected] (V.N.); [email protected] (P.P.); [email protected] (D.A.) 2 Department of Medical and Surgical Assistance to the Armed Forces, French Forces Biomedical Research Institute (IRBA), 91223 CEDEX Brétigny sur Orge, France; [email protected] (É.B.); [email protected] (J.-J.L.) 3 Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000 Evry, France 4 INSERM U967, 92260 Fontenay-aux-Roses, France 5 Université Paris-Diderot, 75013 Paris 7, France 6 Université Paris-Saclay, 78140 Paris 11, France * Correspondence: [email protected] (V.H.); [email protected] (N.O.F.); Tel.: +33-1-48-68-96-00 (V.H.); +33-1-60-87-34-92 or +33-1-60-87-34-98 (N.O.F.) These authors contributed equally to the work. y Received: 15 December 2019; Accepted: 24 January 2020; Published: 5 February 2020 Abstract: Human skin dermis contains fibroblast subpopulations in which characterization is crucial due to their roles in extracellular matrix (ECM) biology.