GATA2 Deficiency NIAID

Total Page:16

File Type:pdf, Size:1020Kb

GATA2 Deficiency NIAID National Institute of Allergy and Infectious Diseases | health information GATA2 Deficiency NIAID GATA2 deficiency is a rare disorder of the immune system with wide-ranging effects. First identified in 2011, the disorder is char- acterized by immunodeficiency, myelodys- plastic syndrome (a condition characterized by ineffective blood cell production), lung dis- ease, and problems of the vascular/lymphatic system. GATA2 deficiency is diagnosed based on clinical findings, laboratory tests, and Genetics primer: All the cells in the body contain instructions on how to do their job. These instructions are packaged into genetic testing. Early diagnosis is critical for chromosomes, each of which contains many genes. Genes are optimal disease management, prevention of units of inheritance that are made up of DNA and encode proteins. An error, or mutation, in a gene can cause disorders such as severe complications, treatment, and evalua- GATA2 deficiency. Credit: NIAID tion of at-risk relatives. Genetics and Function GATA2 deficiency is caused by germline mutations in the GATA2 gene. Germline means that the mutation is present in every cell in the body, not just the immune system cells. The GATA2 gene produces a protein called a transcription factor. Transcription factors regulate when other genes are turned on. The GATA2 transcription factor helps regu- late blood cell differentiation, the process by which blood stem cells give rise to special- ized types of blood cells. When this process does not work properly, people are at risk of developing a wide range of symptoms. Stem cells in the bone marrow produce the many types of blood Everyone has two copies of the GATA2 and immune system cells through a process called differentiation. GATA2 helps regulate the early steps in this process. Credit: © 2007 gene—one inherited from the mother and Terese Winslow. U.S. Govt. has certain rights. U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Allergy and Infectious Diseases one from the father. The mechanism underlying GATA2 deficiency is called “haploinsufficiency.” This means that having one mutated copy of GATA2 and one working copy of GATA2 is insufficient for normal functioning of the hematopoietic, or blood- making, system. Many different germline GATA2 mutations have been reported. These can broadly be categorized as missense, null, and regulator mutations (see Glossary). Approximately 5 percent of people with the clinical symptoms A schematic of the GATA2 gene and protein. In panel A, the five protein-coding parts (exons) of the gene are shown as dark boxes, and the non-protein-coding of GATA2 deficiency have no detect- parts are the interspersed lines. The exons are stitched together and translated able GATA2 mutations, suggesting into the protein shown in panel B. Panel C contains an enlargement of the protein’s ZF-2 region. Null mutations are shown in red, regulator mutations are an important role for undiscovered shown in blue, and missense mutations are shown in green. Credit: NIAID regulatory regions. Inheritance GATA2 deficiency is inherited in an autosomal dominant manner, which means that a person needs only one abnormal GATA2 gene copy to have GATA2 deficiency. Dominant inheritance usually means that relatives from the side of the family with the mutation also have symp- toms of GATA2 deficiency. These symptoms are typically not present at birth but develop over time. By age 20, about 50 percent of people with a GATA2 mutation have symptoms. By age 60, however, only about 5 percent of people remain symptom-free. This phenomenon is called “incomplete penetrance.” In a family with a parent who has a GATA2 mutation, each child has a 50 percent, or 1 in 2, chance of inheriting the mutated GATA2 gene. Importantly, the chance of one child inheriting the mutation is independent of whether In this example, a man with an autosomal his or her siblings have the mutation. In other words, dominant disorder has two affected children and if the first three children in a family have the mutation, two unaffected children. Women also can pass on the mutation. Credit: U.S. National Library of the fourth child still has a 50 percent chance of inheriting Medicine it. Children who do not inherit the abnormal gene will not develop GATA2 deficiency or pass on the mutation. Often, the initial diagnosis in a family will initiate a cascade of genetic testing in relatives who are at risk for having inherited the mutation. NIAID 2 Some GATA2 mutations are not inherited but rather arise spontaneously, or de novo, in the patient. De novo mutations are the result of a mutation in the parent’s sperm or egg or in the fertilized egg itself. Everyone is born with de novo mutations throughout their genomes, but people usually only find out about mutations that occur in important genes such as GATA2. Clinical Features The clinical features of GATA2 deficiency are wide-ranging both in type and severity. For exam- ple, one person may have severe viral infections causing recalcitrant warts; another may develop acute myeloid leukemia; and another’s only symp- tom may be hearing loss. This variation in how GATA2 deficiency manifests in each person, called “variable expressivity,” can be striking, even in the same family. Generally, the disease has a progres- sive course. The main clinical features of GATA2 deficiency include the following: • Hematologic: Cytopenias, or reductions in the number of blood cells (cyto meaning cell, penia meaning too few), are common and can affect several cell types, including B cells, natural killer cells, monocytes, and T cells. The results of this can be profound. Sometimes the prob- lems with these cells progress to the point that they are formally called “myelodysplastic syndrome.” In a subset of patients, this can evolve into cancers of the blood, such as acute myeloid leukemia (AML) or chronic myelo- monocytic leukemia (CMML). Progressively worsening cytopenias are associated with other major complications of GATA2 deficiency, Clinical features of GATA2 deficiency by organ system. Common including lung problems and infections. clinical problems are indicated in bold. Credit: NIAID • Infectious: The majority of patients with GATA2 deficiency eventually develop major viral, bacterial, or fungal infections. Viral infections are the most common and may include human papillomavirus (HPV), which causes warts; severe herpesvirus; persistent Epstein-Barr virus (EBV) viremia; or molluscum contagiosum (see Glossary for more details about these infections). • Pulmonary: The main pulmonary feature of GATA2 is the development of pulmonary alveolar proteinosis (PAP). This is a rare lung disease in which a type of protein builds up in the air sacs (alveoli) of the lungs, making breathing difficult. A subset of patients with PAP go on to develop a serious type of high blood pressure that affects the arteries in the lungs and heart, called pulmonary arterial hypertension. NIAID NIAID 3 • Dermatologic: The main dermatologic symptoms are caused by the underlying immunodeficiency or hematologic problems. Persistent warts are the most common skin issue in people with GATA2 deficiency, and typically these warts are not helped by cauterization, cryotherapy, topical treatments, or laser treatments (see Glossary for more details). Chronic skin infections increase the risk of skin cancers, including squamous cell carcinoma. Skin problems due to bacteria, fungus, or lymph problems also have been reported in people with GATA2 deficiency. • Neoplastic: In addition to blood cancers, solid tumors—most commonly skin cancers—also may occur in people with GATA2 deficiency. A number of other types of tumors have been seen, although their occurrence is rare and their association with the underlying GATA2 deficiency is unclear. • Vascular/lymphatic: A minority of patients with GATA2 deficiency may experience chronic lymphedema, swelling in an arm or leg caused by a lymphatic system blockage. • Other: Hearing loss, increased risk of miscarriage, and hypothyroidism also may be part of the clinical spectrum of GATA2 deficiency. Because GATA2 deficiency is a rare disorder, current knowledge is based on the careful study of several dozen families affected by GATA2 deficiency. As research continues, understanding of the clinical spectrum, disease course, and underlying biology will be refined. Laboratory Findings Laboratory findings can vary widely in this disease, although they typically include low levels of certain blood cells, especially B cells, natural killer cells, monocytes, and dendritic cells. Management and Treatment Treatment for GATA2 deficiency is based on a person’s clinical condition and may include medications and other strategies for managing specific infections, cytopenias, and pulmo- nary or vascular issues. Doctors may recommend the prophylactic, or preventive, use of antimicrobial drugs to prevent infections. A bone marrow transplant, also Illustration depicting a bone marrow, or hematopoietic stem cell, transplant. called a hematopoietic stem cell Credit: © 2011 Terese Winslow LLC. U.S. Govt. has certain rights. transplant, is the best long-term treatment option for many serious genetic immunodeficiency diseases. This therapy has been used to manage patients with GATA2 deficiency, and it can resolve most of their clinical symptoms and laboratory abnormalities. In this procedure, stem cells are removed from a donor, the patient receives treatment to destroy his or her own blood-forming cells, and
Recommended publications
  • Increased Burden of Deleterious Variants in Essential Genes in Autism Spectrum Disorder
    Increased burden of deleterious variants in essential genes in autism spectrum disorder Xiao Jia,b, Rachel L. Kemberb, Christopher D. Brownb,1, and Maja Bucanb,c,1 aGenomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; bDepartment of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and cDepartment of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Edited by Eugene V. Koonin, National Institutes of Health, Bethesda, MD, and approved November 7, 2016 (received for review August 9, 2016) Autism spectrum disorder (ASD) is a heterogeneous, highly heritable and deleterious mutations, the functional impact of EGs is neurodevelopmental syndrome characterized by impaired social reflected by haploinsufficiency that is commonly observed in interaction, communication, and repetitive behavior. It is estimated heterozygous mutations (11, 15). In addition to their role in that hundreds of genes contribute to ASD. We asked if genes with a defining a “minimal gene set” (16, 17), EGs tend to play im- strong effect on survival and fitness contribute to ASD risk. Human portant roles in protein interaction networks (18). Therefore, orthologs of genes with an essential role in pre- and postnatal one may consider that EGs are involved in rate-limiting steps development in the mouse [essential genes (EGs)] are enriched for that affect a range of disease pathways (19). disease genes and under strong purifying selection relative to human Recently, three large-scale screens (gene trap and CRISPR- orthologs of mouse genes with a known nonlethal phenotype Cas9) have been performed to assess the effect of single-gene [nonessential genes (NEGs)].
    [Show full text]
  • The Title of the Dissertation
    UNIVERSITY OF CALIFORNIA SAN DIEGO Novel network-based integrated analyses of multi-omics data reveal new insights into CD8+ T cell differentiation and mouse embryogenesis A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioinformatics and Systems Biology by Kai Zhang Committee in charge: Professor Wei Wang, Chair Professor Pavel Arkadjevich Pevzner, Co-Chair Professor Vineet Bafna Professor Cornelis Murre Professor Bing Ren 2018 Copyright Kai Zhang, 2018 All rights reserved. The dissertation of Kai Zhang is approved, and it is accept- able in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California San Diego 2018 iii EPIGRAPH The only true wisdom is in knowing you know nothing. —Socrates iv TABLE OF CONTENTS Signature Page ....................................... iii Epigraph ........................................... iv Table of Contents ...................................... v List of Figures ........................................ viii List of Tables ........................................ ix Acknowledgements ..................................... x Vita ............................................. xi Abstract of the Dissertation ................................. xii Chapter 1 General introduction ............................ 1 1.1 The applications of graph theory in bioinformatics ......... 1 1.2 Leveraging graphs to conduct integrated analyses .......... 4 1.3 References .............................. 6 Chapter 2 Systematic
    [Show full text]
  • 5045.Full.Pdf
    IFN Consensus Sequence Binding Protein (Icsbp) Is Critical for Eosinophil Development This information is current as Maja Milanovic, Grzegorz Terszowski, Daniela Struck, of September 28, 2021. Oliver Liesenfeld and Dirk Carstanjen J Immunol 2008; 181:5045-5053; ; doi: 10.4049/jimmunol.181.7.5045 http://www.jimmunol.org/content/181/7/5045 Downloaded from References This article cites 47 articles, 33 of which you can access for free at: http://www.jimmunol.org/content/181/7/5045.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology IFN Consensus Sequence Binding Protein (Icsbp) Is Critical for Eosinophil Development1 Maja Milanovic,2* Grzegorz Terszowski,2† Daniela Struck,2‡ Oliver Liesenfeld,‡ and Dirk Carstanjen3* IFN consensus sequence binding protein (Icsbp) (IFN response factor-8) is a hematopoietic transcription factor with dual functions in myelopoiesis and immunity.
    [Show full text]
  • Loss of One Allele of ARF Rescues Mdm2 Haploinsufficiency Effects On
    Oncogene (2004) 23, 8931–8940 & 2004 Nature Publishing Group All rights reserved 0950-9232/04 $30.00 www.nature.com/onc Loss of one allele of ARF rescues Mdm2 haploinsufficiency effects on apoptosis and lymphoma development Christine M Eischen*,1,2, Jodi R Alt1,2 and Peng Wang1 1Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; 2Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA The tumor suppressor p19ARF inhibits Mdm2, which ARF or p53is inactivated in over half of these tumors restricts the activity of p53. Complicated feedback and (Eischen et al., 1999). In addition, in lymphomas that control mechanisms regulate ARF, Mdm2, and p53 emerge in ARF þ /À or p53 þ /ÀEm-myc transgenics, the interactions. Here we report that ARF haploinsufficiency second allele of ARF or p53 is deleted in 77 or 100% of completely rescued the p53-dependent effects of Mdm2 these tumors, respectively (Eischen et al., 1999; Schmitt haploinsufficiency on B-cell development, survival, and et al., 1999). Therefore, ARF and p53guard against transformation. In contrast to Mdm2 þ /À B cells, Mdm2 þ /À oncogene-initiated tumorigenesis by activating apoptosis B cells deficient in ARF were similar to wild-type B cells in and consequently, are frequently targeted for inactiva- their rates of growth and apoptosis and activation of p53. tion in lymphomas that overexpress oncogenes. Consequently, the profoundly reduced numbers of B cells Mdm2 is a key intermediary in the ARF–p53tumor in Mdm2 þ /ÀEl-myc transgenic mice were restored to suppressor pathway.
    [Show full text]
  • GATA2 Regulates the Erythropoietin Receptor in T(12;21) ALL
    GATA2 regulates the erythropoietin receptor in t(12;21) ALL Gaine, M. E., Sharpe, D. J., Smith, J. S., Colyer, H., Hodges, V. M., Lappin, T. R., & Mills, K. I. (2017). GATA2 regulates the erythropoietin receptor in t(12;21) ALL. Oncotarget, 8(39), 66061-66074. https://doi.org/10.18632/oncotarget.19792 Published in: Oncotarget Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2017 The Authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:04. Oct. 2021 www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 39), pp: 66061-66074 Research Paper GATA2 regulates the erythropoietin receptor in t(12;21) ALL Marie E.
    [Show full text]
  • Haploinsufficiency of Autism Spectrum Disorder Candidate Gene NUAK1 Impairs Cortical Development and Behavior in Mice
    ARTICLE DOI: 10.1038/s41467-018-06584-5 OPEN Haploinsufficiency of autism spectrum disorder candidate gene NUAK1 impairs cortical development and behavior in mice Virginie Courchet1, Amanda J. Roberts2, Géraldine Meyer-Dilhet1, Peggy Del Carmine1, Tommy L. Lewis Jr 3, Franck Polleux 3 & Julien Courchet 1 fi 1234567890():,; Recently, numerous rare de novo mutations have been identi ed in patients diagnosed with autism spectrum disorders (ASD). However, despite the predicted loss-of-function nature of some of these de novo mutations, the affected individuals are heterozygous carriers, which would suggest that most of these candidate genes are haploinsufficient and/or lead to expression of dominant-negative forms of the protein. Here, we tested this hypothesis with the candidate ASD gene Nuak1 that we previously identified for its role in the development of cortical connectivity. We report that Nuak1 is haploinsufficient in mice with regard to its function in cortical development. Furthermore Nuak1+/− mice show a combination of abnormal behavioral traits ranging from defective spatial memory consolidation, defects in social novelty (but not social preference) and abnormal sensorimotor gating. Overall, our results demonstrate that Nuak1 haploinsufficiency leads to defects in the development of cortical connectivity and a complex array of behavorial deficits. 1 Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008 Lyon, France. 2 Department of Neurosciences, The Scripps Research Institute, La Jolla, CA 92037, USA. 3 Department of Neuroscience, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA. Correspondence and requests for materials should be addressed to F.P.
    [Show full text]
  • Table of Contents Neurology.Org/Ng  Online ISSN: 2376-7839 Volume 3, Number 3, June 2017
    Table of Contents Neurology.org/ng Online ISSN: 2376-7839 Volume 3, Number 3, June 2017 THE HELIX e151 HSP and deafness: Neurocristopathy caused by e157 Collaboration, workshops, and symposia a novel mosaic SOX10 mutation S.M. Pulst S. Donkervoort, D. Bharucha-Goebel, P. Yun, Y. Hu, P. Mohassel, A. Hoke, W.M. Zein, D. Ezzo, A.M. Atherton, A.C. Modrcin, M. Dasouki, A.R. Foley, and C.G. Bönnemann EDITORIAL e159 ARHGEF9 mutations cause a specific recognizable X-linked intellectual disability e155 Genetic analysis of age at onset variation in syndrome spinocerebellar ataxia type 2 P. Striano and F. Zara K.P. Figueroa, H. Coon, N. Santos, L. Velazquez, Companion article, e148 L.A. Mederos, and S.M. Pulst ARTICLES e158 Previously unrecognized behavioral phenotype in e148 ARHGEF9 disease: Phenotype clarification and Gaucher disease type 3 genotype-phenotype correlation M. Abdelwahab, M. Potegal, E.G. Shapiro, and M.Alber,V.M.Kalscheuer,E.Marco,E.Sherr, I. Nestrasil G. Lesca, M. Till, G. Gradek, A. Wiesener, C. Korenke, S. Mercier, F. Becker, T. Yamamoto, S.W. Scherer, C.R. Marshall, S. Walker, U.R. Dutta, A.B. Dalal, e160 Intramyocellular lipid excess in the mitochondrial V. Suckow, P. Jamali, K. Kahrizi, H. Najmabadi, and disorder MELAS: MRS determination at 7T B.A. Minassian S. Golla, J. Ren, C.R. Malloy, and J.M. Pascual Editorial, e159 e149 Clinicopathologic and molecular spectrum of CLINICAL/SCIENTIFIC NOTES RNASEH1-related mitochondrial disease e147 Camptocormia and shuffling gait due to a novel E. Bugiardini, O.V. Poole, A. Manole, A.M. Pittman, MT-TV mutation: Diagnostic pitfalls A.
    [Show full text]
  • The Genetics and Clinical Manifestations of Telomere Biology Disorders Sharon A
    REVIEW The genetics and clinical manifestations of telomere biology disorders Sharon A. Savage, MD1, and Alison A. Bertuch, MD, PhD2 3 Abstract: Telomere biology disorders are a complex set of illnesses meric sequence is lost with each round of DNA replication. defined by the presence of very short telomeres. Individuals with classic Consequently, telomeres shorten with aging. In peripheral dyskeratosis congenita have the most severe phenotype, characterized blood leukocytes, the cells most extensively studied, the rate 4 by the triad of nail dystrophy, abnormal skin pigmentation, and oral of attrition is greatest during the first year of life. Thereafter, leukoplakia. More significantly, these individuals are at very high risk telomeres shorten more gradually. When the extent of telo- of bone marrow failure, cancer, and pulmonary fibrosis. A mutation in meric DNA loss exceeds a critical threshold, a robust anti- one of six different telomere biology genes can be identified in 50–60% proliferative signal is triggered, leading to cellular senes- of these individuals. DKC1, TERC, TERT, NOP10, and NHP2 encode cence or apoptosis. Thus, telomere attrition is thought to 1 components of telomerase or a telomerase-associated factor and TINF2, contribute to aging phenotypes. 5 a telomeric protein. Progressively shorter telomeres are inherited from With the 1985 discovery of telomerase, the enzyme that ex- generation to generation in autosomal dominant dyskeratosis congenita, tends telomeric nucleotide repeats, there has been rapid progress resulting in disease anticipation. Up to 10% of individuals with apparently both in our understanding of basic telomere biology and the con- acquired aplastic anemia or idiopathic pulmonary fibrosis also have short nection of telomere biology to human disease.
    [Show full text]
  • Letters to the Editor
    LETTERS TO THE EDITOR The significant upregulation of Gata1 and EpoR mRNA Mice over-expressing human erythropoietin expression in hEPO over-expressing tg6 mice was con - indicate that erythropoietin enhances expression firmed by analyzing the spleen as a major source of of its receptor via up-regulated Gata1 and Tal1 hematopoiesis (Figure 2A and B). To further dissect the complexity of changes in the transcriptional network, the analysis of Myb mRNA expression served as marker for The development of medullary hematopoiesis is char - adult definitive erythroblasts, 10 showing significantly acterized by a specific expression profile of hematopoiet - ic transcription factors, including GATA transcription fac - tors. At mid-gestation, when hematopoiesis is newly A GATA 1 2 established in the bone marrow of human fetuses, initial - wt ly high GATA2 expression becomes subsequently down- regulated, while GATA1 expression increases in parallel. 1 1.5 Both transcription factors bind to overlapping sets of tg6 hematopoietic downstream target genes, often at distinct 1 sites, to regulate the balance between proliferation and differentiation. Chromatin occupancy by GATA1 and 0.5 GATA2 can change in the course of hematopoietic differ - entiation, leading to the so-called GATA switch. 2 Thus, a 0 n d7 d21 d49 i spatio-temporal regulation of GATA1 or GATA2 activities t c is required within lineage-specific differentiation. During a - erythroid differentiation GATA1 expression peaks at the b B GATA 2 3 o level of colony-forming units (CFU-E), where erythro - t 2 e poietin (Epo) exerts most specifically its effects, but v i t blocks terminal maturation if constitutively over- a 1.5 l 4 e expressed.
    [Show full text]
  • Epigenetic Services Citations
    Active Motif Epigenetic Services Publications The papers below contain data generated by Active Motif’s Epigenetic Services team. To learn more about our services, please give us a call or visit us at www.activemotif.com/services. Technique Target Journal Year Reference Justin C. Boucher et al. CD28 Costimulatory Domain- ATAC-Seq, Cancer Immunol. Targeted Mutations Enhance Chimeric Antigen Receptor — 2021 RNA-Seq Res. T-cell Function. Cancer Immunol. Res. doi: 10.1158/2326- 6066.CIR-20-0253. Satvik Mareedu et al. Sarcolipin haploinsufficiency Am. J. Physiol. prevents dystrophic cardiomyopathy in mdx mice. RNA-Seq — Heart Circ. 2021 Am J Physiol Heart Circ Physiol. doi: 10.1152/ Physiol. ajpheart.00601.2020. Gabi Schutzius et al. BET bromodomain inhibitors regulate Nature Chemical ChIP-Seq BRD4 2021 keratinocyte plasticity. Nat. Chem. Biol. doi: 10.1038/ Biology s41589-020-00716-z. Siyun Wang et al. cMET promotes metastasis and ChIP-qPCR FOXO3 J. Cell Physiol. 2021 epithelial-mesenchymal transition in colorectal carcinoma by repressing RKIP. J. Cell Physiol. doi: 10.1002/jcp.30142. Sonia Iyer et al. Genetically Defined Syngeneic Mouse Models of Ovarian Cancer as Tools for the Discovery of ATAC-Seq — Cancer Discovery 2021 Combination Immunotherapy. Cancer Discov. doi: doi: 10.1158/2159-8290 Vinod Krishna et al. Integration of the Transcriptome and Genome-Wide Landscape of BRD2 and BRD4 Binding BRD2, BRD4, RNA Motifs Identifies Key Superenhancer Genes and Reveals ChIP-Seq J. Immunol. 2021 Pol II the Mechanism of Bet Inhibitor Action in Rheumatoid Arthritis Synovial Fibroblasts. J. Immunol. doi: doi: 10.4049/ jimmunol.2000286. Daniel Haag et al.
    [Show full text]
  • The Role of Gata2 in Hematopoietic and Vascular Development By
    The Role of Gata2 in Hematopoietic and Vascular Development by William D Brandt A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in The University of Michigan 2009 Doctoral Committee: Professor James Douglas Engel, Chair Professor Eric R Fearon Professor Deborah L Gumucio Associate Professor Thomas M Glaser William D Brandt 2009 Dedication To my family, without whom this PhD would never have been possible. ii Acknowledgements The Engel lab and the University of Michigan will always have my deepest gratitude, particularly the lab’s proprietor and my thesis advisor Doug Engel, whose love of science and good nature has always been a source of inspiration. Doug has been instrumental in my growth as a nascent scientist and I will forever be indebted to him. My gratitude also goes to Kim-Chew Lim and Tomo Hosoya, whose wealth of knowledge and support were relied upon regularly. To Deb Gumucio, Tom Glaser, and Eric Fearon, whose advice and support facilitated my maturation from a naïve student to a proficient scientist – thank you. And to Lori Longeway and Kristin Hug, whose capabilities as department representatives I repeatedly put to the test; you came through for me every time. Thank you. Finally, no amount of words can express how truly grateful and indebted I am to my parents and sister – Cary, Kim, and Jenelle. I would not be in this position today without their unerring love and support. iii Table of Contents Dedication ii Acknowledgements iii List of Figures v List of Tables vi Abstract vii Chapter 1.
    [Show full text]
  • A Germline ERBB3 Variant Is a Candidate for Predisposition to Erythroid MDS/Erythroleukemia
    Letters to the Editor 2242 A germline ERBB3 variant is a candidate for predisposition to erythroid MDS/erythroleukemia Leukemia (2016) 30, 2242–2245; doi:10.1038/leu.2016.173 Supplementary Table S1). This indicates that the ERBB3 variant co- segregates with disease in this large multigenerational pedigree family, with one individual who is non-penetrant at this time. Myelodysplastic syndromes (MDS) and acute myeloid leukemia The ERBB3 gene is a member of the epidermal growth factor (AML) are usually sporadic diseases, however, rare familial cases have receptor tyrosine kinase family that also includes ERBB2/HER2,andis helped to identify human disease genes and provide crucial insight frequently somatically mutated in several types of solid tumor into hematopoiesis. Multiple predisposition genes have been malignancies.9 Ligand binding produces a conformational change identified, including RUNX1, CEBPA, GATA2, ETV6 and DDX41.1 These that results in homo- or heterodimerization with other members of syndromes are characterized by autosomal dominant inheritance the ERBB family, most commonly ERBB2.10 The C-terminal tyrosine- and heterozygous germline mutations. Latency periods preceding rich tail is responsible for recruitment and activation of down- the onset of MDS or other hematologic malignancies are widely stream binding partners.11 The ERBB3 p.A1337T variant is located variable, and appearance of the malignant phenotype is thought at the far C-terminal end of the protein and is conserved across to require additional somatic mutations. In addition to improving most vertebrate species (Figure 1b; Supplementary Figure S1B). The diagnosis and treatment of hematologic malignancies, identification closest known phosphorylation site is at Tyr1328, and the sequence of disease-predisposing mutations has broadened our understand- surrounding this tyrosine is conserved (Supplementary Figure S1C).
    [Show full text]