Galaxy Happenings

Total Page:16

File Type:pdf, Size:1020Kb

Galaxy Happenings 12B • Moab Happenings www.moabhappenings.com Galaxy Happenings A Galactic Spring! by Spencer Stokes, Dead Horse Point State Park Ranger Spring is a wonderful time of the year to dust off the see this galaxy with the naked eye. binoculars, and telescopes, to peer into the night sky, and This is a testament to its leviathan Dead Horse Point is located nine miles north of uncover the veil of deep space to see galaxies beyond size, Andromeda is estimated to Moab on US 191, and 23 miles southwest on SR313 (32 imagination! Galaxies are some of the most fascinating contain close to 1 trillion stars. miles total.) The visitor center is open from 9 a.m. to 5 deep space objects to view because of their immense size The furthest galaxy from the earth p.m. daily. Closed Thanksgiving, Christmas Day, and and distance from earth. There are a few galaxies that stand is GN-z11, which astronomers New Year’s Day. Park admission is $20 per vehicle and out for amateur astronomers, so let’s take a dive into some estimate to be a whopping 13.4 is valid for three days. fascinating details about galaxies. billion light-years away! Here are Galaxies are incredible formations composed of examples of a spiral galaxy and an millions, to billions, to trillions of stars. They can come elliptical galaxy. Image by NASA in the night sky. A in many diff erent shapes and sizes but generally fall into The galaxy that earth is located in is called the Milky combination of both two categories; spiral and elliptical. The physical size of Way Galaxy. In a location with dark skies, you can see visual magnitude and a galaxy is staggering, traveling the core and arm of the galaxy, which is what people have surface brightness at the speed of light would take called the Milky Way. In the summer months look towards leads to the most 3,000 years to cross a small galaxy the brightest section of the milky way, which is very close easily seen galaxies, and up to 300,000 years to cross to the constellation Sagittarius, and you will be looking and springtime is the a large galaxy. The majority of directly into the core of our Galaxy. It is a spiral galaxy, best time to see these galaxies have a similar structure estimated to contain 100-400 billion stars, and would take amazing deep space Image by NASA of a nucleus surrounded by clouds a spacecraft 100,000 years to cross it traveling at the speed objects. So here are of stars and dust, or a spiral shape of light! When you look out at the night sky all of the stars a handful of the best galaxies to see this spring; M81/M82, of clouds and dust. A galactic you can see are a part of the Milky Way Galaxy. (Milky Way The Leo Triplet, M51, and The Realm of Galaxies. Use a nucleus is incredibly chaotic and Image by NASA pictured over Bryce Canyon National Park) search engine to fi nd star charts for these objects and get contains a supermassive black hole. The closest galaxy to Only a handful of the closest and brightest galaxies outside to see some awe-inspiring sights. Just be prepared, earth, besides our own, is the Andromeda Galaxy, which is 3 are visible to the naked eye under perfect conditions. So galaxies seen through telescopes and binoculars look very million light-years away! On a clear and dark night, you can binoculars, or a telescope, are essential to seeing galaxies diff erent from pictures taken with long exposures! Explore the Wonders of Range Creek! P.O. Box 68, Moab UT 84532 800-860-5262 • 435-259-7750 cfi moab.org • info@cfi moab.org This June, Canyonlands Field Institute is travelling back a day’s worth of exploring, evenings will be spent eating in time to explore the breathtaking Fremont archeology of FIELD INS TITUTE deliciousConnecting Peoplemeals, and relaxing Nature: History, around Education camp, and and Adventure discussing Range Creek. Nestled within the Book Cliff s, Range Creek the day’s discoveries. This canyon is home to unique archeological resources including format is great for any level dwellings, pictographs, of camper and will enable petroglyphs, and pottery. you to fully disconnect, Anybody is welcome, relax, and explore while we from home-grown worry about all those pesky archeologists looking to details! expand their knowledge We are incredibly beyond tourist-trampled excited to include this trip sites, to folks interested in within our Adult Seminar receiving a compelling introduction to some of the area’s Series. Trips just like this former inhabitants. one take place throughout Over the course of this 3-day, 2-night adventure, we they may have eventually departed. This is a limited public the year, visiting various will be joined by Archeologists Dr. Kevin Jones, and Jamie access space and we are one of only a few outfi tters that are cultural and archeological Hollingsworth. Check out our website to learn more about permitted to take groups into the area! sites. Logistics are supported by CFI naturalist guides so these phenomenal guest experts. With decades of combined The trip follows a basecamp format: CFI naturalist that you can concentrate on engaging with our guest experts! experience, you will be treated to the engaging narrative of guides will drive the group overland into the backcountry Proceeds from our Adult Seminar Series are directed toward this landscape: who lived here, how they lived, and why and set up a comfortable vehicle supported camp. After underwriting the opportunities that Canyonlands Field Institute provides to explore Moab’s beautiful surroundings. Whether you’ve THE BEST JERKY ON explored every nook and cranny the JOHN WESLEY POWELL PLANET EARTH Colorado Plateau has to offer, or are looking to go RIVER HISTORY MUSEUM beyond the typical curated archeological experiences, this trip is sure to capture your NOW SHOWING imagination. Range Creek’s wildness is rejuvenating, its archeology is breathtaking, and its mysteries are vast. And “Our River Is Our Community” we can’t wait to share them with you! If you have any questions or wish to save a spot on this trip, visit https://cfi moab.org/trips/range-creek-utah- Check Website for archaeology-trip/ or all us at 435 259-7750. Happy exploring! Upcoming Events MARTIAN MEAT! Utah’s Original THAT’S REALLY NEAT! Home of the River Runners A COME Hall of Fame TASTY EAT! ! HOURS: MON-SAT 9AM-5PM TREAT 1765 E. MAIN ST. GREEN RIVER, UT Nightly Programs • Call for Reservations 435-210-0066 • www.moab-astronomy.com 40 JOHNWESLEYPOWELL.COM | 435-564-3427 JUST MINUTEs NORTH OF MOAB! Veteran Owned & Operated Since 2009.
Recommended publications
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • An Extended Star Formation History in an Ultra-Compact Dwarf
    MNRAS 451, 3615–3626 (2015) doi:10.1093/mnras/stv1221 An extended star formation history in an ultra-compact dwarf Mark A. Norris,1‹ Carlos G. Escudero,2,3,4 Favio R. Faifer,2,3,4 Sheila J. Kannappan,5 Juan Carlos Forte4,6 and Remco C. E. van den Bosch1 1Max Planck Institut fur¨ Astronomie, Konigstuhl¨ 17, D-69117 Heidelberg, Germany 2Facultad de Cs. Astronomicas´ y Geof´ısicas, UNLP, Paseo del Bosque S/N, 1900 La Plata, Argentina 3Instituto de Astrof´ısica de La Plata (CCT La Plata – CONICET – UNLP), Paseo del Bosque S/N, 1900 La Plata, Argentina 4Consejo Nacional de Investigaciones Cient´ıficas y Tecnicas,´ Rivadavia 1917, C1033AAJ Ciudad Autonoma´ de Buenos Aires, Argentina 5Department of Physics and Astronomy UNC-Chapel Hill, CB 3255, Phillips Hall, Chapel Hill, NC 27599-3255, USA 6Planetario Galileo Galilei, Secretar´ıa de Cultura, Ciudad Autonoma´ de Buenos Aires, Argentina Accepted 2015 May 29. Received 2015 May 28; in original form 2015 April 2 ABSTRACT Downloaded from There has been significant controversy over the mechanisms responsible for forming compact stellar systems like ultra-compact dwarfs (UCDs), with suggestions that UCDs are simply the high-mass extension of the globular cluster population, or alternatively, the liberated nuclei of galaxies tidally stripped by larger companions. Definitive examples of UCDs formed by either route have been difficult to find, with only a handful of persuasive examples of http://mnras.oxfordjournals.org/ stripped-nucleus-type UCDs being known. In this paper, we present very deep Gemini/GMOS spectroscopic observations of the suspected stripped-nucleus UCD NGC 4546-UCD1 taken in good seeing conditions (<0.7 arcsec).
    [Show full text]
  • Elements of Astronomy and Cosmology Outline 1
    ELEMENTS OF ASTRONOMY AND COSMOLOGY OUTLINE 1. The Solar System The Four Inner Planets The Asteroid Belt The Giant Planets The Kuiper Belt 2. The Milky Way Galaxy Neighborhood of the Solar System Exoplanets Star Terminology 3. The Early Universe Twentieth Century Progress Recent Progress 4. Observation Telescopes Ground-Based Telescopes Space-Based Telescopes Exploration of Space 1 – The Solar System The Solar System - 4.6 billion years old - Planet formation lasted 100s millions years - Four rocky planets (Mercury Venus, Earth and Mars) - Four gas giants (Jupiter, Saturn, Uranus and Neptune) Figure 2-2: Schematics of the Solar System The Solar System - Asteroid belt (meteorites) - Kuiper belt (comets) Figure 2-3: Circular orbits of the planets in the solar system The Sun - Contains mostly hydrogen and helium plasma - Sustained nuclear fusion - Temperatures ~ 15 million K - Elements up to Fe form - Is some 5 billion years old - Will last another 5 billion years Figure 2-4: Photo of the sun showing highly textured plasma, dark sunspots, bright active regions, coronal mass ejections at the surface and the sun’s atmosphere. The Sun - Dynamo effect - Magnetic storms - 11-year cycle - Solar wind (energetic protons) Figure 2-5: Close up of dark spots on the sun surface Probe Sent to Observe the Sun - Distance Sun-Earth = 1 AU - 1 AU = 150 million km - Light from the Sun takes 8 minutes to reach Earth - The solar wind takes 4 days to reach Earth Figure 5-11: Space probe used to monitor the sun Venus - Brightest planet at night - 0.7 AU from the
    [Show full text]
  • Monthly Newsletter of the Durban Centre - March 2018
    Page 1 Monthly Newsletter of the Durban Centre - March 2018 Page 2 Table of Contents Chairman’s Chatter …...…………………….……….………..….…… 3 Andrew Gray …………………………………………...………………. 5 The Hyades Star Cluster …...………………………….…….……….. 6 At the Eye Piece …………………………………………….….…….... 9 The Cover Image - Antennae Nebula …….……………………….. 11 Galaxy - Part 2 ….………………………………..………………….... 13 Self-Taught Astronomer …………………………………..………… 21 The Month Ahead …..…………………...….…….……………..…… 24 Minutes of the Previous Meeting …………………………….……. 25 Public Viewing Roster …………………………….……….…..……. 26 Pre-loved Telescope Equipment …………………………...……… 28 ASSA Symposium 2018 ………………………...……….…......…… 29 Member Submissions Disclaimer: The views expressed in ‘nDaba are solely those of the writer and are not necessarily the views of the Durban Centre, nor the Editor. All images and content is the work of the respective copyright owner Page 3 Chairman’s Chatter By Mike Hadlow Dear Members, The third month of the year is upon us and already the viewing conditions have been more favourable over the last few nights. Let’s hope it continues and we have clear skies and good viewing for the next five or six months. Our February meeting was well attended, with our main speaker being Dr Matt Hilton from the Astrophysics and Cosmology Research Unit at UKZN who gave us an excellent presentation on gravity waves. We really have to be thankful to Dr Hilton from ACRU UKZN for giving us his time to give us presentations and hope that we can maintain our relationship with ACRU and that we can draw other speakers from his colleagues and other research students! Thanks must also go to Debbie Abel and Piet Strauss for their monthly presentations on NASA and the sky for the following month, respectively.
    [Show full text]
  • Coma Cluster Activity
    Coma Cluster of Galaxies In 2006, Hubble Space Telescope aimed at a nearby collection of NAT I O N A L SC I E N C E ED U C AT I O N STA N D A R D S galaxies called the Coma Cluster. Using the HST images, astronomers • Content Standard in 9-12 Science as gained fascinating insights into the evolution of galaxies in dense Inquiry (Abilities necessary to do sci- galactic neighborhoods. In this activity, students will first learn the entific inquiry, Understanding about basics of galaxy classification and grouping, then use HST images to scientific inquiry) discover the “morphology-density effect” and make hypotheses about • Content Standard in 9-12 Earth and its causes. Space Science (Origin and evolution of the universe) MAT E R I A L S & PR E PA R AT I O N • Each student needs a copy of the next 7 pages (not this page). You may InvIsIble Clu s t e r copy the pages out of this guide, but it is recommended that you go to If you aim a big telescope at the Coma mcdonaldobservatory.org/teachers/classroom and download the student Cluster, you’ll see galaxies galore worksheets. The galaxy images in the online worksheets are “negatives” — thousands of galaxies of all sizes of the real images, which provides better detail when printing. Supple­ and shapes, from little puffballs to mental materials for this activity are also available on the website. big, fuzzy footballs. Even so, you won’t • Each student or student team will need a calculator and a magnifying see most of the cluster because it’s invis­ glass (a linen tester works well).
    [Show full text]
  • Tidal Dwarf Galaxies and Missing Baryons
    Tidal Dwarf Galaxies and missing baryons Frederic Bournaud CEA Saclay, DSM/IRFU/SAP, F-91191 Gif-Sur-Yvette Cedex, France Abstract Tidal dwarf galaxies form during the interaction, collision or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons”, known to exist but not directly observed. The number of dwarf galaxies in the Universe is another cosmological problem for which it is important to ascertain if tidal dwarf galaxies formed frequently at high redshift, when the merger rate was high, and many of them survived until today. In this article, I use “dark matter” to refer to the non-baryonic matter, mostly located in large dark halos – i.e., CDM in the standard paradigm. I use “missing baryons” or “dark baryons” to refer to the baryons known to exist but hardly observed at redshift zero, and are a baryonic dark component that is additional to “dark matter”. 1. Introduction: the formation of Tidal Dwarf Galaxies A Tidal Dwarf Galaxy (TDG) is, per definition, a massive, gravitationally bound object of gas and stars, formed during a merger or distant tidal interaction between massive spiral galaxies, and is as massive as a dwarf galaxy [1] (Figure 1).
    [Show full text]
  • NASA Teacher Science Background Q&A
    National Aeronautics and Space Administration Science Teacher’s Background SciGALAXY Q&As NASA / Amazing Space Science Background: Galaxy Q&As 1. What is a galaxy? A galaxy is an enormous collection of a few million to several trillion stars, gas, and dust held together by gravity. Galaxies can be several thousand to hundreds of thousands of light-years across. 2. What is the name of our galaxy? The name of our galaxy is the Milky Way. Our Sun and all of the stars that you see at night belong to the Milky Way. When you go outside in the country on a dark night and look up, you will see a milky, misty-looking band stretching across the sky. When you look at this band, you are looking into the densest parts of the Milky Way — the “disk” and the “bulge.” The Milky Way is a spiral galaxy. (See Q7 for more on spiral galaxies.) 3. Where is Earth in the Milky Way galaxy? Our solar system is in one of the spiral arms of the Milky Way, called the Orion Arm, and is about two-thirds of the way from the center of the galaxy to the edge of the galaxy’s starlight. Earth is the third planet from the Sun in our solar system of eight planets. 4. What is the closest galaxy that is similar to our own galaxy, and how far away is it? The closest spiral galaxy is Andromeda, a galaxy much like our own Milky Way. It is 2. million light-years away from us.
    [Show full text]
  • Automated Quantification of Arbitrary Arm-Segment Structure in Spiral Galaxies
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Automated Quantification of Arbitrary Arm-Segment Structure in Spiral Galaxies Permalink https://escholarship.org/uc/item/0fv151p6 Author Davis, Darren Robert Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Automated Quantification of Arbitrary Arm-Segment Structure in Spiral Galaxies DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Computer Science by Darren Robert Davis Dissertation Committee: Professor Wayne Hayes, Chair Professor Deva Ramanan Professor Aaron Barth 2014 c 2014 Darren Robert Davis TABLE OF CONTENTS Page LIST OF FIGURES iv LIST OF TABLES vii ACKNOWLEDGMENTS viii CURRICULUM VITAE xi ABSTRACT OF THE DISSERTATION xiii 1 Introduction 1 1.1 Background . 1 1.2 Uses of Spiral Structure Information . 3 1.3 Primary Contributions . 7 2 Related Work 10 2.1 Morphological Classification . 10 2.2 Bulge, Disk, and Bar Fitting . 12 2.3 Spiral Arm Pitch Angle Measurement . 13 2.4 Automated Fitting of Restricted Spiral Models . 15 2.5 Human-Interactive Detailed Spiral Fitting . 17 2.6 Large-Scale Manual Determination of Spiral Galaxy Structure . 19 2.7 An Unfulfilled Need for Automated Fitting of General Spiral Structure . 20 3 Extracting Spiral Arm-Segment Structure 22 3.1 Representing Arm-Segment Structure . 22 3.2 Image Brightness Transformation . 31 3.3 Image Standardization . 35 3.4 Foreground Star Removal . 41 3.5 Orientation Field Generation . 48 3.5.1 Determining the Orientation Field Vectors . 49 3.5.2 Enhancing Sensitivity to Spiral Arms via the Unsharp Mask .
    [Show full text]
  • Lesson 5 Galaxies and Beyond
    LESSON 5 GALAXIES AND BEYOND Chapter 8 Astronomy OBJECTIVES • Classify galaxies according to their properties. • Explain the big bang and the way in which Earth and its atmosphere were formed. MAIN IDEA The Milky Way is one of billions of galaxies that are moving away from each other in an expanding universe. VOCABULARY • galaxy • Milky Way • spectrum • expansion redshift • big bang • background radiation WHAT ARE GALAXIES? • A galaxy is a group of star clusters held together by gravity. • Stars move around the center of their galaxy in the same way that planets orbit a star. • Galaxies differ in size, age, and structure. • Astronomers place them in three main groups based on shape. • spiral • elliptical • irregular SPIRAL GALAXY • Spiral galaxies look like whirlpools. • Some are barred spiral galaxies. • Have bars of stars, gas, and dust throughout its center. • Spiral arms emerge from this bar. ELLIPTICAL GALAXY • An elliptical galaxy is shaped a bit like a football. • It has no spiral arms and little or no dust. IRREGULAR GALAXY • Has no recognizable shape. • The amount of dust varies. • Collisions with other galaxies may have caused the irregular shape. THE MILKY WAY GALAXY • During the summer at night, overhead, you will see a broad band of light stretching across the sky. • You are looking at part of the Milky Way. • The Milky Way is our home galaxy. • The Milky Way is a spiral galaxy. • The stars are grouped in a bulge around a core. • All of the stars in the Milky Way including our sun orbit this core. • The closer a star is to the core the faster its orbit.
    [Show full text]
  • Galaxy Classification and Evolution
    name Galaxy Classification and Evolution Galaxy Morphologies In order to study galaxies and their evolution in the universe, it is necessary to categorize them by some method. A classification scheme generally must satisfy two criteria to be successful: It should act as a shorthand means of identification of the object, and it should provide some insight to understanding the object. We most generally used classification scheme of galaxies is one proposed by Edwin Hubble in 1926. His classification is based entirely on the visual appearance of a galaxy on a photographic plate. Hubble's system lists three basic categories: elliptical galaxies, spiral galaxies, and irregular galaxies. The spirals are divided into two groups, normal and barred. The elliptical galaxies, and both normal and barred spiral galaxies, are subdivided further, as illustrated in the figure, and discussed below. This figure is called the “Hubble Tuning Fork”. The Hubble tuning fork is a classification based on the visual appearance of the galaxies. Originally, when Hubble proposed this classification, he had hoped that it might yield deep insights, just as in the case for classifying stars a century ago. This classification scheme was thought to represent en evolutionary scheme, where galaxies start off as elliptical galaxies, then rotate, flatten and spread out as they age. Unfortunately galaxies turned out to be more complex than stars, and while this classification scheme is still used today, it does not provide us with deeper insights into the nature of galaxies. Image obtained from Wikipedia at http://en.wikipedia.org/wiki/Galaxy_morphological_classification Galaxy Classification & Evolution Laboratory Lab 12 1 Part I — Classification The photocopies of the galaxies are not good enough to be classified You will need to access the images on the computer and look at some of the fine detail.
    [Show full text]
  • The Never-Ending Realm of Galaxies
    The Multi-Bang Universe: The Never-Ending Realm of Galaxies Mário Everaldo de Souza Departamento de Física, Universidade Federal de Sergipe, 49.100-000, Brazil Abstract A new cosmological model is proposed for the dynamics of the Universe and the formation and evolution of galaxies. It is shown that the matter of the Universe contracts and expands in cycles, and that galaxies in a particu- lar cycle have imprints from the previous cycle. It is proposed that RHIC’s liquid gets trapped in the cores of galaxies in the beginning of each cycle and is liberated with time and is, thus, the power engine of AGNs. It is also shown that the large-scale structure is a permanent property of the Universe, and thus, it is not created. It is proposed that spiral galaxies and elliptical galaxies are formed by mergers of nucleon vortices (vorteons) at the time of the big squeeze and immediately afterwards and that the merging process, in general, lasts an extremely long time, of many billion years. It is concluded then that the Universe is eternal and that space should be infinite or almost. Keywords Big Bang, RHIC’s liquid, Galaxy Formation, Galaxy Evolution, LCDM Bang Theory: the universal expansion, the Cosmic Micro- 1. Introduction wave Background (CMB) radiation and Primordial or Big The article from 1924 by Alexander Friedmann "Über Bang Nucleosynthesis (BBN). Since then there have been die Möglichkeit einer Welt mit konstanter negativer several improvements in the measurements of the CMB Krümmung des Raumes" ("On the possibility of a world spectrum and its anisotropies by COBE [6], WMAP [7], with constant negative curvature of space") is the theoreti- and Planck 2013 [8].
    [Show full text]
  • The Spiral Galaxy Messier 81 the Spiral Galaxy Messier 81
    The Spiral Galaxy Messier 81 The Spiral Galaxy Messier 81 The magnificent, dusty, star-studded bulge are the grand spiral arms which and comparing them to the distribution arms of a nearby spiral galaxy, Messier are very rich in infrared-emitting dust. of gas and dust, astronomers can 81, are illuminated in this image from This dust is bathed in ultraviolet and learn more about the conditions and NASA's Spitzer Space Telescope. visible light from the surrounding processes needed for star formation. Located in the northern constellation of stars. When the dust absorbs this light, The white stars scattered throughout Ursa Major (which also includes the it heats up and then releases this heat the image are foreground stars within Big Dipper), this galaxy is easily visible as infrared light. By detecting these our own Milky Way galaxy. through binoculars or a small telescope. dust particles, composed of silicates Located 12 million light-years away, (which are chemically similar to beach This Spitzer Space Telescope image M81 is one of the closest spiral galaxies sand) and polycyclic aromatic hydro- was obtained using instruments that to our Milky Way galaxy. carbons (which are organic molecules), are sensitive to invisible infrared light astronomers can trace the distribution at wavelengths about ten times longer Because it is so close compared to most of gas and dust in the galaxy. This gas than visible light. It is a composite other galaxies, M81 gives astronomers and dust provides the raw materials made using both Spitzer's multiband an opportunity to study the properties from which future stars will form.
    [Show full text]