Duboisia Species

Total Page:16

File Type:pdf, Size:1020Kb

Duboisia Species Influence of abiotic factors on growth and biosynthesis of secondary plant components in Duboisia species Zur Erlangung des akademischen Grades eines Dr. rer. nat. von der Fakultät Bio- und Chemieingenieurwesen der Technischen Universität Dortmund genehmigte Dissertation vorgelegt von Sophie Friederike Ullrich aus Mainz, Deutschland Tag der mündlichen Prüfung: 09.12.2016 1. Gutachter: Prof. Dr. Oliver Kayser 2. Gutachter: Prof. Dr. Bernd Honermeier Dortmund 2016 “Look deep into nature, and then you will understand everything better.” Albert Einstein I Acknowledgements Acknowledgements I would like to express my sincere appreciation and gratitude to all the people who accompanied and supported me in finishing my thesis. At first, I would like to thank my supervisor Prof. Oliver Kayser (Department of Biochemical and Chemical Engineering, Technical Biochemistry, TU Dortmund) for his support within working on my PhD thesis. His valuable input helped me in all the time of research as well as in writing of my thesis. I am very grateful for the trust he has placed in me over the past years. I am thankful to Boehringer Ingelheim Pharma GmbH & Co.KG for funding as well as for proving all the plant material I worked with. Great thanks go to my supervisor Dr. Hansjörg Hagels (Boehringer Ingelheim Pharma GmbH & Co.KG, Ingelheim, Germany) for promoting personal development, his valuable scientific thoughts and guidance on various aspects of my research work. Moreover, I also sincerely thank my supervisor Andreas Rothauer (Boehringer Ingelheim Pharma GmbH & Co.KG, Ingelheim, Germany) for his encouragement in taking my research forward and on his versatile input on different aspects of my scientific work. Thanks to Prof. Bernd Honermeier (Institute for Plant Production and Plant Breeding I, Plant production, Justus-Liebig-University of Gießen, Germany) for his input within our “Duboisia Kolloquiums” as well as for being part of the board of examiners and providing the second opinion on this thesis. I would also like to thank Prof. Young Hae Choi for offering me the opportunity to work in his lab at the University of Biology in Leiden and to learn a lot from him in the field of NMR- based plant metabolomics. Furthermore, thanks to Dr. Leonardo Castellanos, who took a lot of time for instructing me and assisted me in NMR data processing and analysis. Special thanks go to Des Crane and Andrew Hole from the Boehringer Ingelheim Pty Limited Duboisia Farms in Australia for taking care of the cultivation of some of my experimental plants and Nils Averesch from the University of Brisbane for doing the harvesting and further sample work-up. Thank you all for the nice, inter-continental cooperation. I warmly thank all my colleagues at the Chair of Technical Biochemistry in Dortmund for their warm welcome, the good cooperation within the team as well as for all the fun we have had in the last years; especially Eva-Maria Gruchattka, Friederike Degenhardt, Kathleen Pamplanyil, Torsten Arndt and Bastian Zirpel, who accompanied me over all the time in Dortmund, not only at work, but also during my free time. Thanks go to all nice colleagues at the Phyto Center in Ingelheim always helping me to make progress, especially to Julia Sparke II Acknowledgements and her team. I am in particular grateful to my Duboisia research mates Laura Kohnen, Rosa Hiltrop and Sabine Oster for the great time we spent together within the past years. I really appreciate your support, our good conversations, our joint travel to conferences and I do also gladly remember our enjoyable long weekend together in Zeeland. I would also like to thank my parents as well as to my brother and sisters for all of their confidence, encouragement and support within my whole life. Furthermore, thanks to all of my friends, especially Mira Oswald, Sabine Bellers and Laura Tretzel for always having an open ear for me and for the nice time we spent together within yet more than 10 years. At the end I would like to express my deepest appreciation to my boyfriend Michael Eckbauer who is always there for me, encourages me and makes my life more beautiful! III Table of Contents Table of Contents Abstract ................................................................................................................................... VII Zusammenfassung ................................................................................................................. VIII Chapter 1: Scope of the thesis ............................................................................................. 1 1.1. Aims and Objectives .................................................................................................... 2 Chapter 2: Introduction ....................................................................................................... 3 2.1. Abstract ........................................................................................................................ 4 2.2. Introduction .................................................................................................................. 5 2.3. Botanical origin ........................................................................................................... 5 2.4. Pharmacology .............................................................................................................. 7 2.4.1. Ethnopharmacological use ................................................................................... 7 2.4.2. Contemporary therapeutical use ........................................................................... 9 2.4.3. Mechanism of action .......................................................................................... 11 2.4.4. Pharmacokinetics ................................................................................................ 12 2.4.5. Toxicity .............................................................................................................. 12 2.4.6. Abuse as “Truth serum” ..................................................................................... 13 2.5. Biosynthesis ............................................................................................................... 13 2.5.1. Plant biosynthetic pathway ................................................................................. 13 2.5.2. Structure elucidation and full chemical synthesis .............................................. 16 2.6. Production .................................................................................................................. 17 2.6.1. Industrial production .......................................................................................... 17 2.6.2. Agricultural cultivation ...................................................................................... 18 2.6.3. Biotechnological Production .............................................................................. 19 2.7. Conclusions................................................................................................................ 27 2.8. References .................................................................................................................. 30 Chapter 3: Discrimination of wild types and hybrids of Duboisia myoporoides and Duboisia leichhardtii at different growth stages using 1H NMR-based metabolite profiling and tropane alkaloids-targeted HPLC-MS analysis ........................................................................ 43 IV Table of Contents 3.1. Abstract ...................................................................................................................... 44 3.2. Introduction ................................................................................................................ 45 3.3. Methods and Materials .............................................................................................. 48 3.3.1. Plant material ...................................................................................................... 48 3.3.2. Chemicals and reagents ...................................................................................... 48 3.3.3. NMR analysis ..................................................................................................... 49 3.3.4. HPLC-MS ........................................................................................................... 50 3.4. Results and discussion ............................................................................................... 52 3.4.1. 1H NMR- based metabolite profiling ................................................................. 52 3.4.2. Comparison of different genotypes .................................................................... 55 3.4.3. Comparison of different growth stages .............................................................. 57 3.4.4. Impact of growth stage and genotype on the metabolite distribution ................ 59 3.4.5. Comparison of different cultivation conditions .................................................. 61 3.4.6. HPLC-MS method validation for quantification of tropane alkaloids ............... 62 3.4.7. Tropane alkaloid profile ..................................................................................... 64 3.5. Conclusion ................................................................................................................. 66 3.6. References .................................................................................................................. 68 Chapter
Recommended publications
  • Title ALKALOID BIOSYNTHESIS in CULTURED TISSUES OF
    ALKALOID BIOSYNTHESIS IN CULTURED TISSUES OF Title DUBOISIA( Dissertation_全文 ) Author(s) Endo, Tsuyoshi Citation 京都大学 Issue Date 1989-03-23 URL https://doi.org/10.14989/doctor.k4307 Right Type Thesis or Dissertation Textversion author Kyoto University ALKALOID BIOSYNTHESIS IN C;ULTURED TISSUES OF DUBOISIA . , . ; . ,­ " 1. :'. '. o , " ::,,~./ ~ ~';-~::::> ,/ . , , .~ - '.'~ . / -.-.........."~l . ~·_l:""· .... : .. { ." , :: I i i , (, ' ALKALOID BIOSYNTHESIS IN CULTURED TISSUES OF DUBOISIA TSUYOSHIENDO 1989 CONTENTS INTRODUCTION ----------1 CHAPTER I ALKALOID PRODUCTION IN CULTURED DUBOISIA TISSUES. INTRODUCTION ----------6 SECTION 1 Alkaloid Production and Plant Regeneration from ~ leichhardtii Calluses. ----------8 SECTION 2 Alkaloid Production in Cultured Roots of Three Species of Duboisia. ---------16 SECTION 3 Non-enzymatic Synthesis of Hygrine from Acetoacetic Acid and from Acetonedicar- boxylic Acid. ---------25 CHAPTER II SOMATIC HYBRIDIZATION OF DUBOISIA AND NICOTIANA. INTRODUCTION ---------35 SECTION 1 Establishment of an Intergeneric Hybrid Cell Line of ~ hopwoodii and ~ tabacum. ---------38 SECTION 2 Genetic Diversity Originating from a Single Somatic Hybrid Cell. ---------47 SECTION 3 Alkaloid Biosynthesis in Somatic Hybrids, D. leichhardtii + ~ tabacum ---------59 CONCLUSIONS ---------76 ACKNOWLEDGMENTS ---------79 REFERENCES ---------80 PUBLICATIONS ---------90 ABBREVIATIONS BA 6-benzyladenine OAPI 4',6-diamino-2-phenylindoledihydrochloride EDTA ethylenediaminetetraacetic acid GC-MS gas chromatography - mass spectrometry
    [Show full text]
  • Chemical Compounds, Pharmacological and Toxicological Activity of Brugmansia Suaveolens: a Review
    plants Review Chemical Compounds, Pharmacological and Toxicological Activity of Brugmansia suaveolens: A Review Vera L. Petricevich 1 , David Osvaldo Salinas-Sánchez 2, Dante Avilés-Montes 3, Cesar Sotelo-Leyva 4 and Rodolfo Abarca-Vargas 1,* 1 Faculty of Medicine, Autonomous University of the State of Morelos (UAEM), Street: Leñeros, esquina Iztaccíhuatl s/n. Col. Volcanes, Cuernavaca 62350, Morelos, Mexico; [email protected] 2 Biodiversity and Conservation Research Center, Autonomous University of the State of Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico; [email protected] 3 Faculty of Biological Science, Autonomous University of the State of Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico; [email protected] 4 Faculty of Chemistry-Biological Sciences, Autonomous University of Guerrero Av. Lázaro Cárdenas s/n, South University City, Chilpancingo 39000, Guerrero, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-777-361-2155 Received: 30 July 2020; Accepted: 3 September 2020; Published: 8 September 2020 Abstract: This study investigates updated information in different search engines on the distribution, phytochemistry, pharmacology, and toxicology of Brugmansia suaveolens (Solanaceae) using the extracts or chemical compounds at present. This plant has been used in traditional medicine in different cultures as a hallucinatory, analgesic, aphrodisiac, nematicide, sleep inducer, and muscle relaxant, as well as a treatment for rheumatism, asthma, and inflammation. The flowers, fruits, stems, and roots of the plant are used, and different chemical compounds have been identified, such as alkaloids, volatile compounds (mainly terpenes), coumarins, flavonoids, steroids, and hydrocarbons. The concentration of the different compounds varies according to the biotic and abiotic factors to which the plant is exposed.
    [Show full text]
  • Duboisia Myoporoides R.Br. Family: Solanaceae Brown, R
    Australian Tropical Rainforest Plants - Online edition Duboisia myoporoides R.Br. Family: Solanaceae Brown, R. (1810) Prodromus Florae Novae Hollandiae : 448. Type: New South Wales, Port Jackson, R. Brown, syn: BM, K, MEL, NSW, P. (Fide Purdie et al. 1982.). Common name: Soft Corkwood; Mgmeo; Poison Corkwood; Poisonous Corkwood; Corkwood Tree; Eye-opening Tree; Eye-plant; Duboisia; Yellow Basswood; Elm; Corkwood Stem Seldom exceeds 30 cm dbh. Bark pale brown, thick and corky, blaze usually darkening to greenish- brown on exposure. Leaves Leaf blades about 4-12 x 0.8-2.5 cm, soft and fleshy, indistinctly veined. Midrib raised on the upper surface. Flowers. © G. Sankowsky Flowers Small bell-shaped flowers present during most months of the year. Calyx about 1 mm long, lobes short, less than 0.5 mm long. Corolla induplicate-valvate in the bud. Induplicate sections of the corolla and inner surfaces of the corolla lobes clothed in somewhat matted, stellate hairs. Corolla tube about 4 mm long, lobes about 2 mm long. Fruit Fruits globular, about 6-8 mm diam. Seed and embryo curved like a banana or sausage. Seed +/- reniform, about 3-3.5 x 1 mm. Testa reticulate. Habit, leaves and flowers. © Seedlings CSIRO Cotyledons narrowly elliptic to almost linear, about 5-8 mm long. First pair of true leaves obovate, margins entire. At the tenth leaf stage: leaf blade +/- spathulate, apex rounded, base attenuate; midrib raised in a channel on the upper surface; petiole with a ridge down the middle. Seed germination time 31 to 264 days. Distribution and Ecology Occurs in CYP, NEQ, CEQ and southwards as far as south-eastern New South Wales.
    [Show full text]
  • Appendix Color Plates of Solanales Species
    Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect.
    [Show full text]
  • Redalyc.Growth and Nutrient Uptake Patterns in Plants of Duboisia Sp
    Semina: Ciências Agrárias ISSN: 1676-546X [email protected] Universidade Estadual de Londrina Brasil Cagliari Fioretto, Conrado; Tironi, Paulo; Pinto de Souza, José Roberto Growth and nutrient uptake patterns in plants of Duboisia sp Semina: Ciências Agrárias, vol. 37, núm. 4, julio-agosto, 2016, pp. 1883-1895 Universidade Estadual de Londrina Londrina, Brasil Available in: http://www.redalyc.org/articulo.oa?id=445749546016 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative DOI: 10.5433/1679-0359.2016v37n4p1883 Growth and nutrient uptake patterns in plants of Duboisia sp Crescimento e marcha de absorção de nutrientes em plantas de Duboisia sp Conrado Cagliari Fioretto1*; Paulo Tironi2; José Roberto Pinto de Souza3 Abstract Characterizing growth and nutrient uptake is important for the establishment of plant cultivation techniques that aim at high levels of production. The culturing of Duboisia sp., although very important for world medicine, has been poorly studied in the field, since the cultivation of this plant is restricted to a few regions. The objective of this paper is to characterize growth and nutrient absorption during development in Duboisia sp. under a commercial cultivation system, and in particular to assess the distribution of dry matter and nutrients in the leaves and branches. Our work was performed on a commercial production farm located in Arapongas, Paraná, Brazil, from March 2009 to February 2010. A total of 10 evaluations took place at approximately 10-day intervals, starting 48 days after planting and ending at harvesting, 324 days after planting.
    [Show full text]
  • Enzyme DHRS7
    Toward the identification of a function of the “orphan” enzyme DHRS7 Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Selene Araya, aus Lugano, Tessin Basel, 2018 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. Alex Odermatt (Fakultätsverantwortlicher) und Prof. Dr. Michael Arand (Korreferent) Basel, den 26.6.2018 ________________________ Dekan Prof. Dr. Martin Spiess I. List of Abbreviations 3α/βAdiol 3α/β-Androstanediol (5α-Androstane-3α/β,17β-diol) 3α/βHSD 3α/β-hydroxysteroid dehydrogenase 17β-HSD 17β-Hydroxysteroid Dehydrogenase 17αOHProg 17α-Hydroxyprogesterone 20α/βOHProg 20α/β-Hydroxyprogesterone 17α,20α/βdiOHProg 20α/βdihydroxyprogesterone ADT Androgen deprivation therapy ANOVA Analysis of variance AR Androgen Receptor AKR Aldo-Keto Reductase ATCC American Type Culture Collection CAM Cell Adhesion Molecule CYP Cytochrome P450 CBR1 Carbonyl reductase 1 CRPC Castration resistant prostate cancer Ct-value Cycle threshold-value DHRS7 (B/C) Dehydrogenase/Reductase Short Chain Dehydrogenase Family Member 7 (B/C) DHEA Dehydroepiandrosterone DHP Dehydroprogesterone DHT 5α-Dihydrotestosterone DMEM Dulbecco's Modified Eagle's Medium DMSO Dimethyl Sulfoxide DTT Dithiothreitol E1 Estrone E2 Estradiol ECM Extracellular Membrane EDTA Ethylenediaminetetraacetic acid EMT Epithelial-mesenchymal transition ER Endoplasmic Reticulum ERα/β Estrogen Receptor α/β FBS Fetal Bovine Serum 3 FDR False discovery rate FGF Fibroblast growth factor HEPES 4-(2-Hydroxyethyl)-1-Piperazineethanesulfonic Acid HMDB Human Metabolome Database HPLC High Performance Liquid Chromatography HSD Hydroxysteroid Dehydrogenase IC50 Half-Maximal Inhibitory Concentration LNCaP Lymph node carcinoma of the prostate mRNA Messenger Ribonucleic Acid n.d.
    [Show full text]
  • 2320-5407 Int. J. Adv. Res. 6(10), 1123-1133
    ISSN: 2320-5407 Int. J. Adv. Res. 6(10), 1123-1133 Journal Homepage: -www.journalijar.com Article DOI:10.21474/IJAR01/7916 DOI URL: http://dx.doi.org/10.21474/IJAR01/7916 RESEARCH ARTICLE MOLECULAR SYSTEMATIC STUDY OF TWO SOLANACEOUS GENERA DATURA L. AND BRUGMANSIA PERS. BASED ON ITS SEQUENCES OF NRDNA. Dhanya C.1, Shabir A. Rather2 and Devipriya V3. 1. Research & PG Department of Botany, SN College, Kollam, Kerala, South India, 2. Department of Botany, Delhi University, New Delhi, India, 3. Department of Botany, SN College, Chempazhanthy, Kerala, South India. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History Phylogenetic analysis was performed based on ITS 1 and 2 sequences to Received: 13 August 2018 determine monophyly of Datura and Brugmansia and to understand Final Accepted: 15 September 2018 their relationships. The results support the splitting of Datura and Published: October 2018 Brugmansia into two distinct genera (BS 100 & 91). D. ceratocaula earlier considered as the connecting link between the two genera, is nested within the Datura clade (BS 57) as a distinct species. Although the three conventional sections of Datura viz. Dutra, Ceratocaulis & Datura (Stramonium) stand well supported (BS 100, 100 & 83), D. kymatocarpa, D. leichhardtii and D. pruinosa appear shifted from Section Dutra to Section Datura, corroborating earlier observations. D. discolor remains nested within the Section Dutra, refuting earlier suggestions as intermediary or ancestral role. But the divergence of D. discolor from the remaining taxa within the section Dutra as a clearly supported subclade (BS 100) may be suggestive of the subdivision of Section Dutra into two subsections. This subdivision of section Dutra however remains to be appraised using cladistical studies incorporating both molecular and morphological data.
    [Show full text]
  • Tropane and Granatane Alkaloid Biosynthesis: a Systematic Analysis
    Office of Biotechnology Publications Office of Biotechnology 11-11-2016 Tropane and Granatane Alkaloid Biosynthesis: A Systematic Analysis Neill Kim Texas Tech University Olga Estrada Texas Tech University Benjamin Chavez Texas Tech University Charles Stewart Jr. Iowa State University, [email protected] John C. D’Auria Texas Tech University Follow this and additional works at: https://lib.dr.iastate.edu/biotech_pubs Part of the Biochemical and Biomolecular Engineering Commons, and the Biotechnology Commons Recommended Citation Kim, Neill; Estrada, Olga; Chavez, Benjamin; Stewart, Charles Jr.; and D’Auria, John C., "Tropane and Granatane Alkaloid Biosynthesis: A Systematic Analysis" (2016). Office of Biotechnology Publications. 11. https://lib.dr.iastate.edu/biotech_pubs/11 This Article is brought to you for free and open access by the Office of Biotechnology at Iowa State University Digital Repository. It has been accepted for inclusion in Office of Biotechnology Publicationsy b an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Tropane and Granatane Alkaloid Biosynthesis: A Systematic Analysis Abstract The tropane and granatane alkaloids belong to the larger pyrroline and piperidine classes of plant alkaloids, respectively. Their core structures share common moieties and their scattered distribution among angiosperms suggest that their biosynthesis may share common ancestry in some orders, while they may be independently derived in others. Tropane and granatane alkaloid diversity arises from the myriad modifications occurring ot their core ring structures. Throughout much of human history, humans have cultivated tropane- and granatane-producing plants for their medicinal properties. This manuscript will discuss the diversity of their biological and ecological roles as well as what is known about the structural genes and enzymes responsible for their biosynthesis.
    [Show full text]
  • Datura Innoxia Mill. (Solanaceae), a New Alien Species in the Flora of Bosnia and Herzegovina
    Thaiszia - J. Bot., Košice, 29 (2): 225-230, 2019 THAISZIA https://doi.org/10.33542/TJB2019-2-07 JOURNAL OF BOTANY Datura innoxia Mill. (Solanaceae), a new alien species in the flora of Bosnia and Herzegovina Semir Maslo1 & Šemso Šarić2 1Primary School, Lundåkerskola, Gislaved, Sweden; [email protected] 2Jelaške, Olovo, Bosnia and Herzegovina; [email protected] Maslo, S. & Šarić, Š. (2019): Datura innoxia Mill. (Solanaceae), a new alien species in the flora of Bosnia and Herzegovina. – Thaiszia – J. Bot. 29 (2): 225-230 Abstract: Downy thorn-apple Datura innoxia Mill is native in southwest U.S.A. and Mexico. It has been recorded as a new alien species to the vascular flora ofBosnia and Herzegovina. In Bosnia and Herzegovina, D. innoxia is reported from two localities in the city of Mostar where the species has escaped cultivation and established small populations in surrounding ruderal habitats including waste land. The species is toxic to animals and humans. The paper presents a short morphological characteristic and photographs as well as the distribution of the species in the Bosnia and Herzegovina. Keywords: alien plants, Bosnia and Herzegovina, Datura, distribution, garden escape, morphology. Introduction The genus Datura L. belongs to the tribe Datureae G. Don, of Solanaceae. There are about 10 species which occur naturally in south-western USA and Mexico, and parts of Central America (Dupin & Smith 2018). Within the genus Datura, only six species have been recorded as escapees in Europe of which four have been reported in the Balkans: Datura ferox L., Datura innoxia Mill., Datura metel L. and Datura stramonium L.
    [Show full text]
  • A Molecular Phylogeny of the Solanaceae
    TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae.
    [Show full text]
  • PEREGRINO-THESIS-2017.Pdf (6.329Mb)
    Biochemical studies in the elucidation of genes involved in tropane alkaloid production in Erythroxylum coca and Erythroxylum novogranatense by Olga P. Estrada, B. S. A Thesis In Chemical Biology Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCES Approved Dr. John C. D’Auria Chair of Committee Dr. David W. Nes Co-chair of Committee Mark Sheridan Dean of the Graduate School May, 2017 Copyright 2017, Olga P. Estrada Texas Tech University, Olga P. Estrada, May 2017 AKNOWLEDGMENTS I would like to thank my mentor and advisor Dr. John C. D’Auria, for providing me with the tools to become a scientist, and offering me his unconditional support. Thanks to the members of the D’Auria lab, especially Neill Kim and Benjamin Chavez for their aid during my experimental studies. And of course, thank you to my family for always giving me the strength to pursue my goals. ii Texas Tech University, Olga P. Estrada, May 2017 TABLE OF CONTENTS AKNOWLEDGMENTS ........................................................................................................... ii ABSTRACT ........................................................................................................................... v LIST OF TABLES ................................................................................................................. vi LIST OF FIGURES ............................................................................................................... vii CHAPTER I .........................................................................................................................
    [Show full text]
  • Conservation Status Assessment of Native Vascular Flora of Kalam Valley, Swat District, Northern Pakistan
    Vol. 10(11), pp. 453-470, November 2018 DOI: 10.5897/IJBC2018.1211 Article Number: 44D405259203 ISSN: 2141-243X Copyright ©2018 International Journal of Biodiversity and Author(s) retain the copyright of this article http://www.academicjournals.org/IJBC Conservation Full Length Research Paper Conservation status assessment of native vascular flora of Kalam Valley, Swat District, Northern Pakistan Bakht Nawab1*, Jan Alam2, Haider Ali3, Manzoor Hussain2, Mujtaba Shah2, Siraj Ahmad1, Abbas Hussain Shah4 and Azhar Mehmood5 1Government Post Graduate Jahanzeb College, Saidu Sharif Swat Khyber Pukhtoonkhwa, Pakistan. 2Department of Botany, Hazara University, Mansehra Khyber Pukhtoonkhwa, Pakistan. 3Department of Botany, University of Swat Khyber Pukhtoonkhwa, Pakistan. 4Government Post Graduate College, Mansehra Khyber Pukhtoonkhwa, Pakistan. 5Government Post Graduate College, Mandian Abotabad Khyber Pukhtoonkhwa, Pakistan. Received 14 July, 2018; Accepted 9 October, 2018 In the present study, conservation status of important vascular flora found in Kalam valley was assessed. Kalam Valley represents the extreme northern part of Swat District in KPK Province of Pakistan. The valley contains some of the precious medicinal plants. 245 plant species which were assessed for conservation studies revealed that 10.20% (25 species) were found to be endangered, 28.16% (69 species) appeared to be vulnerable. Similarly, 50.6% (124 species) were rare, 8.16% (20 species) were infrequent and 2.9% (7 species) were recognized as dominant. It was concluded that Kalam Valley inhabits most important plants majority of which are used in medicines; but due to anthropogenic activities including unplanned tourism, deforestation, uprooting of medicinal plants and over grazing, majority of these plant species are rapidly heading towards regional extinction in the near future.
    [Show full text]