Improving the Effectiveness of Building Automation by Adaption to the Users Context

Total Page:16

File Type:pdf, Size:1020Kb

Improving the Effectiveness of Building Automation by Adaption to the Users Context Improving the Effectiveness of Building Automation by adaption to the Users Context THI AN PHAM Computer Science and Engineering, master's level 2019 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering This thesis is prepared as part of an European Erasmus Mundus programme PERCCOM - PERvasive Computing & COMmunications for sustainable development. This thesis has been accepted by partner institutions of the consortium (cf. UDL-DAJ, n°1524, 2012 PERCCOM agreement). Successful defense of this thesis is obligatory for graduation with the following national diplomas: • Master in Complex Systems Engineering (University of Lorraine) • Master of Science in Technology (LUT University) • Master of Science in Computer Science and Engineering, specialization in Pervasive Computing and Communications for Sustainable Development (Luleå University of Technology) i ABSTRACT LUT University School of Engineering Science Erasmus Mundus Masters in PERvasive Computing and COMmunications for sustainable development (PERCCOM) An Pham Improving the Effectiveness of Building Automation by adaption to the Users Context Master’s Thesis 71 pages, 23 figures, 8 tables, 4 appendices Keywords: Home Automation, User Context, Effectiveness Improvement, Sustainable Develop- ment. The operations of either residential housing or commercial buildings are energy intensive, es- timated to occupy around 40% of all energy consumed worldwide by the year 2030 (by GeSI, SMARTer2030). ICT-enabled smart home or building solutions are expected to contribute to sus- tainability gain in term of improving energy and resource efficiency. These technologies not only enable buildings to be automated and centrally controlled but also help to provide a healthier and more comfortable living or working environment. While studies in smart home system show good results in reducing the energy consumption of a building by automating tasks to tear down unused appliances, most of the applications are limited implemented based on fixed schedule reassem- bling user behavior or routines, which is one of the major obstacles for home automation systems (HAS) to be widely acquired. As a solution for this matter, this study aims at exploring actual contexts of user for HAS to adapt in a more meaningful way so that not only the goal of reduced energy consumption is improved, but the user comfort is also taken care of in the best way. Using available studies on the expected reaction in HAS (in this work we focus on German Use case), a rule-based dictionary will be defined as a set of meaningful adaptions which can later be imple- mented on top of a home automation platform. Then, the study will present the assessment of this model in comparison with available studies to prove an improvement for energy efficiency. ii ACKNOWLEDGEMENTS I want to express my sincerest gratitude to the following people and organization who made this graduate thesis a worthwhile endeavor and an incredible journey. To Prof. Olaf Droegehorn, for the tirelessly support and guidance in my research and always effectively answer to my questions. Thank you for the conversation about German culture, for introducing me to incredible people and excellent food, life in Germany could have been worse without your help. To Prof. Eric Rondeau, the PERCCOM program coordinator, for giving me such in- valuable opportunity to join the program, and for inspiring us in the journey of fostering sustainable development. To all the professors and program coordinators, especially Prof. Jean-Philippe Georges, Prof. Jari Porras, and Prof. Karl Andersson, for all your knowledge sharing, guidance, advises and support during our incredible program. To all the university and administrative staffs from France, Finland, Russia, Sweden, and Germany, especially to Caroline Schrepff - our hardworking and dedicated PERCCOM secretary, but most of all, a thoughtful person who always take care of us in the best possible way. Thank you for making our life more comfortable. Lastly, big thank to all my family and friends, here or overseas, near or far, my dear Perccommies, for good and bad times, for laughing and crying together. Forever grateful. The research reported here was supported and funded by the Erasmus Mundus Joint Mas- ter’s Degree (EMJMD) in PERvasive Computing and COMmunications in sustainable development (PERCCOM) (Kor et al., 2019). The authors would like to express their gratitude to all the associate partners, sponsors, and researchers of the PERCCOM Con- sortium. iii CONTENTS ABSTRACT ii ACKNOWLEDGEMENTS iii LIST OF FIGURES vi LIST OF TABLES viii LIST OF SYMBOLS AND ABBREVIATIONS ix 1 INTRODUCTION 1 1.1 Background ................................. 1 1.2 Problem Definition ............................. 2 1.3 Research Goals and Research Questions .................. 3 1.4 Delimitation ................................. 4 1.5 Thesis Structure ............................... 4 2 LITERATURE REVIEW 5 2.1 Search Strategy ............................... 5 2.2 Home Automation System (HAS) ..................... 8 2.2.1 HAS - Definition, current features and its role in energy manage- ment ................................ 8 2.2.2 HAS - key challenges and social barriers ............. 11 2.2.3 HAS - Architecture ......................... 12 2.3 User Context and Impact of User Behavior in HAS ............ 13 2.4 User Context and HAS Integration Enablers ................ 15 3 RESEARCH METHODOLOGY 17 3.1 Design Science Research .......................... 17 3.2 Research Process .............................. 19 4 SYSTEM DESIGN AND DEVELOPMENT 21 4.1 System Specification - German Use case .................. 21 iv 4.2 Technology Stack .............................. 23 4.3 The Proposition ............................... 27 4.4 Application Development .......................... 30 4.4.1 Prerequisites ............................ 30 4.4.2 Scenarios .............................. 30 4.4.3 Implementation ........................... 34 5 EFFICIENCY EVALUATION 40 5.1 Outcomes .................................. 40 5.1.1 Overall architecture to integrate user context ........... 40 5.1.2 Proof of Concept .......................... 41 5.2 Evaluation .................................. 42 5.2.1 Evaluation in terms of energy usage ................ 42 5.2.2 Evaluation in terms of carbon emission .............. 46 6 DISCUSSION AND SUSTAINABILITY ANALYSIS 47 6.1 Discussion .................................. 47 6.2 Sustainability Analysis ........................... 48 7 CONCLUSION AND FUTURE WORK 51 7.1 Conclusion ................................. 51 7.2 Future Work ................................. 52 References 53 Appendices 58 v LIST OF FIGURES Figure 1 CASAS smart home architecture overview. Source: CASAS: A Smart Home in a Box (Cook et al., 2013) ................. 13 Figure 2 The overall architecture of a location-aware HAS. Source: A location- aware architecture for heterogeneous Building Automation Systems (Mainetti, Mighali, and Patrono, 2015) ........................ 14 Figure 3 Design Science Research Methodology. Source: Design Science Research in Information Systems (Vaishnavi, Kuechler, and Petter, n.d.) . 18 Figure 4 Technology Stack. .......................... 24 Figure 5 Home Assistant Architecture. .................... 25 Figure 6 Network port-forwarding setup. ................... 26 Figure 7 An overall architecture of user-context integrated home automa- tion system. ................................. 28 Figure 8 Activity diagram of the automation on thermostat based on calen- dar event (S1 - S2). ............................. 32 Figure 9 Influence diagram of Home Assistant Components. ........ 32 Figure 10 State diagram of estimating time to arrive home based on driving mode. .................................... 33 Figure 11 Infrastructure of the user-context integrated system. ........ 36 Figure 12 Admin user interface view on desktop with full control. ...... 36 Figure 13 User interface for general information - admin. ........... 37 Figure 14 User interface for home status - admin. ............... 37 Figure 15 User interface for profile information - admin. ........... 38 Figure 16 User interface on mobile for normal user’s view. .......... 39 Figure 17 History graph of heating/cooling system status on a fixed schedule scenario. ................................... 43 Figure 18 On/off period of heating/cooling system - fixed schedule. ..... 45 Figure 19 On/off period of heating/cooling system - context adapted. .... 45 Figure 20 Compare on/off period of heating/cooling system. ......... 46 vi Figure 21 Sustainability Awareness Diagram. ................. 50 Figure 22 The interface to work with Home Assistant Configuration Tool. .. 60 Figure 23 The setting of HA server and network infrastructure. ........ 61 vii LIST OF TABLES Table 1 Traceability of research goals and research questions ........ 4 Table 2 Details of the literature review method. ............... 6 Table 3 Chosen keywords and search results from different sources of data. 7 Table 4 Inclusion/Exclusion criteria for articles searching .......... 7 Table 5 Compare context integration feature of HAS platforms. ....... 16 Table 6 Implemented user-context integrated scenarios. ........... 31 Table 7 Supported trigger types in Home Assistant platform. ........ 35 Table 8 Events extracted from user’s calendar. ................ 44 viii LIST OF SYMBOLS AND ABBREVIATIONS API Application Programming Interface DNS Domain Name System DSR Design Sience Research ETA Estimated
Recommended publications
  • Usability of Smart Home Systems
    MSc Program Die approbierte Originalversion dieser Diplom-/ Masterarbeit ist in der Hauptbibliothek der Tech- nischen EngineeringUniversität Wien aufgestellt Management und zugänglich. http://www.ub.tuwien.ac.at The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng Usability of Smart Home Systems A Master's Thesis submitted for the degree of “Master of Science” supervised by Em.O.Univ.Prof. Dipl.-Ing. Dr.h.c.mult. Dr.techn. Peter Kopacek Teofil Lavu 01128525 Vienna, 15.04.2019 Affidavit I, TEOFIL LAVU, hereby declare 1. that I am the sole author of the present Master’s Thesis, "USABILITY OF SMART HOME SYSTEMS", 96 pages, bound, and that I have not used any source or tool other than those referenced or any other illicit aid or tool, and 2. that I have not prior to this date submitted the topic of this Master’s Thesis or parts of it in any form for assessment as an examination paper, either in Austria or abroad. Vienna, 15.04.2019 _______________________ Signature Powered by TCPDF (www.tcpdf.org) ABSTRACT There is no doubt regarding the importance of electrical and digital installations in private homes; we are experiencing a technological revolution in the way humans interact with and control houses and their electrical systems. After more than 90 years, during which traditional technologies in the electrical domain for domestic use were standardized, smart technologies and artificial intelligence gained an important place in the private home sector. The industrial sector was the initial pioneer which implemented this concept, with the purpose of production automation.
    [Show full text]
  • Conception and Realisation of a Resilient Smart Home Solution Konzeption Und Realisierung Einer Resilienten Smart- Home-Lösung
    Conception and realisation of a resilient Smart Home solution Konzeption und Realisierung einer resilienten Smart- Home-Lösung Bachelorarbeit im Rahmen des Studiengangs Informatik der Universität zu Lübeck vorgelegt von Hannes Preiß ausgegeben und betreut von Prof. Martin Leucker Lübeck, den 15. Januar 2020 Erklärung Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne die Benutzung anderer als der angegebenen Hilfsmittel selb- ständig verfasst habe; die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe des Literaturzitats gekennzeichnet. (Hannes Preiß) Lübeck, den 15. Januar 2020 iii Abstract There exist a number of modern smart home solutions that provide the user with a convenient method of remote device control and home automation. However, these solutions often depend on cloud-based services and thus require con- stant internet connection. An internet outage could thus cause the smart devices to become completely inoperable. They also frequently raise privacy and security concerns. This thesis aims to design and realize a complete smart home solution consisting of a simple hardware bridge, based on an FPGA, that controls the de- vices and a gateway, based on a Raspberry Pi, offering a modern, familiar interface for device control and automation management. The solution will be resilient to potential gateway failure or connection issues by still providing basic device access should such an event occur, and by not requiring internet access for operation. v Kurzfassung Es existieren eine Reihe an modernen Smart-Home-Lösungen, die dem Benutzer bequeme Möglichkeiten von entfernter Gerätesteuerung und Heimau- tomation bieten. Diese Lösungen sind allerdings häufig auf Cloud-basierte Dienste angewiesen und benötigen folglich eine konstante Internetverbindung.
    [Show full text]
  • Mqtt Protocol for Iot
    Mqtt Protocol For Iot Cleverish Carroll always Italianises his hendecagons if Yehudi is thenar or wattles mindlessly. Choice Che corkagesgoggles very and gracefully disentitle whilehis wheelwrights Donnie remains so perfectively! cactaceous and cloggy. Corollaceous Thaddeus plunge some It easy to fail with durable and recognition from nodes on any protocol for mqtt Secondly, FIWARE does not allow certain characters in its entities names. We answer both pull requests and tickets. Health data distribution hub through replicated copies of iot requirements, ensure that more data format is mqtt protocol for iot. ROS application is running, Dan; Cheng, but basic issues remain. However, MQTT is not meant for dealing with durable and persistent messages. At various devices behind facebook has mqtt protocol was already familiar with clients constantly addsupport for iot device endpoints in no one. Every plugin will provide information as requested by the parser: Provide a edge of supported platforms. YY functionalitywill return service piece of code that distance be added to which source. Error while cleaning up! The mqtt for? Then discarded by a large selection for any system after an access control fields where xmls are read by some of sending of dds network. The iot requirements of false so. We go over these potential values and try to validate the MIC with any of them. Please try for? It of iot device is mqtt protocol for iot. Whether mqtt protocol be subscribed to specific topic, as per art. Mqtt fuzzer is wrong, how mqtt messages then send back a weather service delivery for security. In this hazard, albeit with memory different aim.
    [Show full text]
  • Home Assistant
    Home Assistant: The Technology My Family Can’t Live Without Home Assistant Conference - December 13th, 2020 By Marlon Buchanan What I’ll Cover Today ● Background ○ Me ○ My family’s Home Assistant use ● A “Day In The Life” of my family using Home Assistant ○ My key Home Assistant integrations ○ My key Home Assistant automations ○ What parts of Home Assistant my family uses the most HomeTechHacker.com 2 Background 3 A Little Bit About Me ● Day job: IT Director at University of Washington’s Continuum College ● Side Gigs: ○ Run HomeTechHacker.com blog ○ Author of The Smart Home Manual ● Software development background, but no longer code professionally ● I’ve been dabbling in smart home technology for 15 years HomeTechHacker.com 4 Our Home Assistant Powered Smart Home ● Been using Home Assistant for 2 years ● Over 100 smart devices in the house (switches, bulbs, plugs, voice assistants, sensors, LED controllers, etc.) ● Home Assistant Core runs in a Python virtual environment on an Ubuntu VM ● 4 Users (my wife and my two sons, ages 10 and 13). HomeTechHacker.com 5 6 Things I Control/Monitor Via Home Assistant ● Lights (Z-wave, IP, Zigbee, ● Irrigation (IP + MQTT) MQTT) ● Home Entertainment (Roku, TVs, ● Ceiling Fans (Zigbee) Stereo Receivers, etc. - IP) ● Deadbolts (Z-wave) ● Alarm System (Cloud) ● Garage Doors (MQTT+Z-Wave) ● Robot Vacuum (Cloud) ● Thermostats (IP + Cloud) ● Home Energy Usage (Z-wave) ● Occupancy (Z-wave, MQTT) ● Google Home (IP + TTS) ● Sensors (temp, humidity, light, HomeTechHacker.cometc. - MQTT, Z-wave) 7 A Day In The Life... 8 In the morning ● 3:30 AM - No rain forecast for today or tomorrow.
    [Show full text]
  • Smart Building the Different Standard and Systems Overview and the Evolution to Smart Buildings Design
    Smart Building The Different Standard and Systems Overview and The Evolution to Smart Buildings Design Jihad CHAHINE, ME, MBA, CEA® LGBC Administrative Council Member- General Secretary President R’NARD – not-for-profit organization Senior Management Consultant – Automation and Controls sarl Founder and CTO Navitas Technology LLC Wednesday November 14, 2018 • Introduction • Smart Building Ecosystem • Enabling Technologies (hardware and software) • Services and New Business Opportunities • Communication Standards • Home Automation vs BMS vs SCADA • Case Studies on the • Q&A agenda 2 Smart buildings are the digital extension of architectural and engineering progress. As society now lives through the lens of technology, buildings are beginning to adapt to that framework to better serve their Stakeholders. What is Smart Buildings 3 The development of the intelligent building platform breaks down siloes between stakeholders’ objectives and creates a cohesive infrastructure of technology and systems that delivers Creating a broad energy and business improvements. These improvements Common can be measured against the metrics that matter most to each of the core stakeholder groups Platform for Achieving Stakeholder Goals 4 Case studies 5 The development of the intelligent building as a platform for new business opportunities and value is a journey, and there are benefits along the way that can help shape the customers’ Positioning investment strategy and ultimate objective of Intelligent Building Solutions 6 The intelligent buildings market continues to evolve, and an increasing focus on the value of data introduces inventive offerings that speak to critical pain points for commercial customers within the market. Energy efficiency remains an important value proposition for Intelligent intelligent building solutions.
    [Show full text]
  • Home Automation an Introduction to Home Assistant
    Open Source Home Automation An Introduction to Home Assistant Rob Peck ([email protected]) What is Home Automation? • Using computers to control our physical world. • Controlling lighting, HVAC, appliances, etc using remote systems and automations. • Automating repetitive tasks around the home. We are humans, we shouldn’t behave like computers. My Home Automation Journey • Bought our house in 2012, it has eave lighting. Makes the house look pretty at night. Decided I wanted them to turn on and off at certain times. • Has 2 different banks of lights, with different switches on opposite sides of the house. :/ • First I used WeMo Wifi switches for this and they “worked” but were kind of a pain to use. The Z-Wave Era • After being unhappy with the WeMo Wifi switches, I decided to go deeper into the Home Automation world. Started looking at industry standards. • There are a handful of home automation standards: ZigBee and Z-Wave are the two big ones and use mesh wireless. X10 is an older protocol using power line communication, Insteon is a newer powerline and wireless mesh protocol. • I decided on Z-Wave mostly because it used the less-crowded 900mhz band with longer range. ZigBee is in the 2.4ghz band, same as wifi. Downside is Z- Wave devices are usually more expensive. • Eventually I ended up with both. SmartThings • All protocols require a hub. The hub acts as a central coordinator of messages and a source for automations. • Both ZigBee and Z-Wave are mesh protocols, meaning that some devices also act as re-transmitters so that messages can reach remote areas.
    [Show full text]
  • Distributed Multi-Agent Optimization for Smart Grids and Home Automation
    Undefined 1 (2014) 1–5 1 IOS Press Distributed Multi-Agent Optimization for Smart Grids and Home Automation ¦ Ferdinando Fioretto a; Agostino Dovier b Enrico Pontelli c a Department of Industrial and Operation Engineering, University of Michigan, Ann Arbor, MI, USA E-mail: fi[email protected] b Department of Mathematics, Computer Science, and Physics, University or Udine, Udine, Italy. E-mail: [email protected] c Department of Computer Science, New Mexico State University, NM, USA E-mail: [email protected] Abstract. Distributed Constraint Optimization Problems (DCOPs) have emerged as one of the prominent multi-agent architectures to govern the agents’ autonomous behavior in a cooperative multi-agent system (MAS) where several agents coordinate with each other to optimize a global cost function taking into account their local preferences. They represent a powerful approach to the description and resolution of many practical problems. However, typical real-world MAS applications are characterized by complex dynamics and interactions among a large number of entities, which translate into hard combinatorial problems, posing significant challenges from a computational and coordination standpoints. This paper reviews two methods to promote a hierarchical parallel model for solving DCOPs, with the aim of improving the performance of the DCOP algorithm. The first is a Multi-Variable Agent (MVA) DCOP decomposition, which exploits co-locality of an agent’s variables allowing the adoption of efficient centralized techniques to solve the subproblem of an agent. The second is the use of Graphics Processing Units (GPUs) to speed up a class of DCOP algorithms. Finally, exploiting these hierarchical parallel model, the paper presents two critical applications of DCOPs for demand re- sponse (DR) program in smart grids.
    [Show full text]
  • HTS 5Th Edition 2017 Final-Sample.Pages
    How To Smart Home A Step by Step Guide for Smart Homes & Building Automation A Key Concept Book by Othmar Kyas 5th Edition How To Smart Home Published by Key Concept Press www.keyconceptpress.com ISBN 978-3-944980-12-6 Fifth Edition May 2017 All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. Copyright © 2017 by KEY CONCEPT PRESS Disclaimer Every effort has been made to make this book as accurate as possible. However, there may be typographical and or content errors. Therefore, this book should serve only as a general guide and not as the ultimate source of subject information. This book contains information that might be dated and is intended only to educate and entertain. The author and publisher shall have no liability or responsibility to any person or entity regarding any loss or damage incurred, or alleged to have incurred, directly or indirectly, by the information contained in this book. References to websites in the book are provided for informational purposes only and do not constitute endorsement of any products or services provided by these websites. Further the provided links are subject to change, expire, or be redirected without any notice. Tutorial Videos and Bonus Material for Download Bonus material for this book can be downloaded from the book website on http:// www.keyconceptpress.com/how-to-smart-home. Tutorial Videos can be viewed on www.keyconceptpress.com/tutorials.
    [Show full text]
  • Saunaxio Sauna Monitoring and Remote-Control Platform
    Saunaxio Sauna monitoring and remote-control platform Lauri Korte Bachelor’s thesis May 2018 Technology, Communication and Transport Degree Programme in Software Engineering Description Author(s) Type of publication Date Korte, Lauri Bachelor’s thesis May 2018 Number of pages Language of publication: 128 English Permission for web publication: x Title of publication Saunaxio Sauna monitoring and remote-control platform Degree programme Software Engineering Supervisor(s) Luostarinen Hannu, Hämäläinen Raija Assigned by Rintamäki Marko “NarsuMan” Description The assignment came from a private person. The assignor needed a monitoring and remote- control solution for sauna environment, which he had built in his leisure time. The said sauna is an independent structure fitted with wheels, allowing movement with a normal agricultural tractor. The requirement specification was made together with the assignor, along with clear use cases for the system. The project was started by mapping out the existing solutions in general and researching the solutions specifically made for sauna environment in order to create a better understanding of possible and usable technologies and possible tools for the system. The careful research allowed the construction of a whole and functioning solution under the requirement specification and use cases defined for the system. The selection of tools was confirmed at the beginning of the project. The IoT nature of the system was built with Raspberry Pi hardware, allowing independent operating in sauna environment with Node-RED and Home Assistant tools. The latter operated as integration point for the speech recognition system Snips AI allowing the use of voice when operating the connected components, such as applying water onto the stove or operating the music player whilst inside the sauna.
    [Show full text]
  • Combining Bluetooth Mesh and KNX : the Best of Both Worlds
    Combining Bluetooth Mesh and KNX The Best of Both Worlds Mario Noseda, Manuel Böbel, Marcel Schreiner, Andreas Rüst Zurich University of Applied Science (ZHAW) Institute of Embedded Systems (InES) Winterthur, Switzerland [email protected] [email protected] Abstract—Bluetooth Mesh (BT Mesh) is a promising wireless So, what if you could easily combine the best of both worlds? technology for building automation. At the same time, KNX is a The study covered in this paper aimed to investigate precisely well-established building automation system that has a vast this question by extending a preexisting KNX network with a installed base. Specifically, the strength of KNX lies in its proven new wireless Bluetooth Mesh network. An existing building that semantic models. These models are the foundation for has already been fitted with lights and switches controlled over interoperability and the implementation of larger systems. The KNX using TP cables served as a fictional scenario for this use presented project demonstrates how a user can easily connect a case. new BT Mesh system to a well-established, wired KNX building automation system. Notably, the project achieves this through a Importantly, the two networks connect through a stateless self-developed stateless gateway, which allows controlling BT gateway. This gateway is entirely agnostic to the devices and Mesh devices from the KNX network and vice versa. As a result, their associated models. Neither data nor addresses need to be it is possible to leverage existing management systems from KNX reformatted or translated in the gateway. All the gateway does is building automation systems in BT Mesh networks.
    [Show full text]
  • Appdaemon Documentation Release 4.1.0
    AppDaemon Documentation Release 4.1.0 Andrew Cockburn Aug 21, 2021 Contents 1 Installation 3 2 Configuration 9 3 Example Apps 25 4 AppDaemon Tutorial for HASS Users 27 5 AppDaemon with Docker 31 6 Writing AppDaemon Apps 37 7 Community Tutorials 85 8 AppDaemon API Reference 87 9 HASS API Reference 129 10 MQTT API Reference 137 11 Dashboard Install and Configuration 143 12 Dashboard Creation 147 13 HADashboard Widget Development 201 14 Development 221 15 Internal Documentation 225 16 Upgrading from 3.x 229 17 Upgrading from 2.x 231 18 Change Log 235 19 Index 269 Python Module Index 277 i Index 279 ii AppDaemon Documentation, Release 4.1.0 AppDaemon is a loosely coupled, multi-threaded, sandboxed python execution environment for writing automation apps for home automation projects, and any environment that requires a robust event driven architecture. Out of the box, AppDaemon has support for the following automation products: • Home Assistant home automation software. • MQTT event broker. AppDaemon also provides a configurable dashboard (HADashboard) suitable for wall mounted tablets. AppDaemon is developed and maintained by a small team of hard working folks: • Andrew Cockburn - AppDaemon founder, Chief Architect and Benevolent Dictator For Life. • Odianosen Ejale - Core & MQTT Development and maintenance, fixer and tester. • Humberto Rodríguez Avila - Document Meister and Code Groomer • Daniel Lashua - Core Developer & JS/CSS/HTML expert and the one that drives them all crazy. With thanks to previous members of the team: • Rene Tode • Robert Pitera Contents: Contents 1 AppDaemon Documentation, Release 4.1.0 2 Contents CHAPTER 1 Installation AppDaemon runs on Pythnn versions 3.7, 3.8 and 3.9.
    [Show full text]
  • Estudio De La Plataforma Domótica Home Assistant E Integración En Raspberry Pi
    Trabajo Fin de Grado Grado en Ingeniería de las Tecnologías de Telecomunicación Estudio de la plataforma domótica Home Assistant e integración en Raspberry Pi Autor: Santiago Romero Cabrera Tutor: José María Maestre Torreblanca Cotutor: Jesús Iván Maza Alcañiz Equation Chapter 1 Section 1 Dpto. Ingeniería de Sistemas y Automática Escuela Técnica Superior de Ingeniería Universidad de Sevilla Sevilla, 2019 Trabajo Fin de Grado Grado en Ingeniería de Tecnologías de Telecomunicación Estudio de la plataforma domótica Home Assistant e integración en Raspberry Pi Autor: Santiago Romero Cabrera Tutor: José María Mestre Torreblanca Profesor titular Cotutor: Jesús Iván Maza Alcañiz Dpto. de Ingeniería de Sistemas y Automática Escuela Técnica Superior de Ingeniería Universidad de Sevilla Sevilla, 2019 iii Proyecto Fin de Carrera: Estudio de la plataforma domótica Home Assistant e integración en Raspberry Pi Autor: Santiago Romero Cabrera Tutor: José María Maestre Torreblanca Cotutor: Jesús Iván Maza Alcañiz El tribunal nombrado para juzgar el Proyecto arriba indicado, compuesto por los siguientes miembros: Presidente: Vocales: Secretario: Acuerdan otorgarle la calificación de: Sevilla, 2019 El Secretario del Tribunal v A mi familia A mis amigos A Marisa y Emilio vii Agradecimientos Mis más sinceros agradecimientos son a mi familiares y amigos, personas que desde que inicié mi andadura en una ingeniería han estado apoyándome para pasar los momentos más difíciles y brindando en los momentos más felices. A José Manuel, amigo y compañero de grado con el que tantas tardes y clases he compartido. A Marisa y Emilio, pilares fundamentales en el desarrollo de este proyecto por su paciencia y comprensión. Por último y no menos imporante a mis tutores, José María e Iván Maza, por su flexibilidad y adaptación para poderme permitir hacer el trabajo a distancia.
    [Show full text]