Physics, Next 5-10 Years Next 10-20 Years

Total Page:16

File Type:pdf, Size:1020Kb

Physics, Next 5-10 Years Next 10-20 Years https://kicp-workshops.uchicago.edu/uheap2016/ 1 Welcome to Chicago 2 Local Information Front door opening time 8:30 - 17:30 without keys. This room (ERC 401) is available during all three days. Please feel free to use. Wifi: uchicago-guest Username: ucguest_2758 We are Password: dk79t here. Please keep your belongings with you. Smoking is prohibited in the building. Warm jacket needed. 3 We are here. Lunch 4 We are here. Lunch Quantum Cafe 1st flour hutchinson commons (food court) Sky lobby food court 7th flour Please come back at 2 pm. 5 To Speakers HDMI/Thunderbolt connectors are available. 30 minutes slot: 25 minutes talk + 5 minutes discussion 15 minutes slot: 12 minutes talk + 3 minutes discussion Please copy your presentation in USB. We will upload your slide in workshop page. 6 In UHEAP 2016 workshop, Social networking, please say hello to all participants. Encourage an informal discussion in receptions. Discuss a roadmap of future prospects in this workshop in UHE Astroparticle physics, Next 5-10 years Next 10-20 years. 7 Physics Goal and Future Prospects Origin and Nature of Ultra-high Energy Cosmic Rays and Particle Interactions at the Highest Energies 5 - 10 years Exposure and Full Sky Coverage Detector R&D “Precision” Measurements TA×4 + Auger Radio, SiPM, AugerPrime Low energy enhancement JEM-EUSO : pioneer detection from Low-cost (Auger infill+HEAT+AMIGA, space and sizable increase of exposure Detectors TALE+TA-muon+NICHE) 10 - 20 years Next Generation Observatories In space (100×exposure): EUSO-Next Ground (10×exposure with high quality events): Giant Ground Array, FAST 419 The post-trial p-value is 28%. For the analysis done using the high-energy cascades 420 (Figure 6b), the smallest pre-trial p-value is obtained at an angular distance of 22◦, 421 for which 575 pairs are observed while 490.3 were expected on average. The post-trial 4 422 p-value is 5.0 10− assuming an isotropic flux of CRs. ⇥ 419 The post-trial p-value is 28%. For the analysis done using the high-energy cascades 420 (Figure 6b), the smallest pre-trial p-value is obtained at an angular distance of 22◦, 421 for which 575 pairs are observed while 490.3 were expected on average. The post-trial 4 IceCube, Auger, TA 422 p-value is 5.0 10− assuming an isotropic flux of CRs. ⇥ All Sky SurveyHotspot/Warmspot with TA&PAO Oversampling with 20°-radius circle No correction for Northern TA : 7 years 109 events (>57EeV) E scale difference Southern Auger : 10 years 157 events (>57EeV) b/w TA and PAO !! SouthernUHECR hotspot is seen oversampling at Cen A(Pre-trial ~3.6 σ) 12 Figure 7: Maps in Equatorial and Galactic coordinates showing the arrival directions of the IceCube with 20°-radius circle cascades (black dots) and tracks (diamonds), as well as those of the UHECRs detected by the Pierre Auger Observatory (magenta stars) and Telescope Array (orange stars). The circles around the showers indicate angular errors. The black diamonds are the HESE tracks while the blue diamonds stand for the tracks from the through-going muon sample. The blue curve indicates the Super-Galactic plane. http://arxiv.org/abs/1511.09408 9 18 Figure 7: Maps in Equatorial and Galactic coordinates showing the arrival directions of the IceCube cascades (black dots) and tracks (diamonds), as well as those of the UHECRs detected by the Pierre Auger Observatory (magenta stars) and Telescope Array (orange stars). The circles around the showers indicate angular errors. The black diamonds are the HESE tracks while the blue diamonds stand for the tracks from the through-going muon sample. The blue curve indicates the Super-Galactic plane. 18 Selected for a Viewpoint in Physics week ending PRL 116, 061102 (2016) PHYSICAL REVIEW LETTERS 12 FEBRUARY 2016 New Partner Observation of Gravitational Waves from a Binary Black Hole Merger 11 B. P. Abbott et al.* High-energy Neutrino follow-up search of Gravitational Wave Event (LIGO Scientific Collaboration and Virgo Collaboration) GW150914 with ANTARES and IceCube (Received 21 January 2016; published 11 February 2016) 1 2 3 4 1 5 6 p-value6 1 Fpois(Nobserved 2,Nexpected =4.4) = 0.81, On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave S. Adri´an-Mart´ınez, A. Albert, M. Andr´e, G. Anton, M. Ardid, J.-J. Aubert, T. Avgitas, B. Baret, 7 8 5 9 10, 11 10 10, 12 5 − Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwardsJ. in Barrios-Mart´ı, S. Basa, V. Bertin, S. Biagi, R. Bormuth, M.C. Bouwhuis, R. Bruijn, J.where Brunner, Fpois is the Poisson cumulative distribution func- 5 13, 14 15 5 13, 14 16 17 6 frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 × 10−21. It matches the waveform J. Busto, A. Capone, L. Caramete, J. Carr, S. Celli, T. Chiarusi, M. Circella, A. Coleiro,tion. Second, for the most significant reconstructed muon predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the R. Coniglione,9 H. Costantini,5 P. Coyle,5 A. Creusot,6 A. Deschamps,18 G. De Bonis,13, 14 C. Distefano,9 PHYSICAL REVIEW LETTERS week ending 6, 19 5 2 4 20 21 4 PRL 116,resulting061102 single (2016) black hole. The signal was observed with a matched-filter signal-to-noise ratio12 of FEBRUARY 24 and a 2016C. Donzaud, D. Dornic, D. Drouhin, T. Eberl, I. El Bojaddaini, D. Els¨asser, A. Enzenh¨ofer,energy (Table I), 12.5% of background events will have false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater K. Fehn,4 I. Felis,22 L.A. Fusco,23, 16 S. Galat`a,6 P. Gay,24, 25 S. Geißels¨oder,4 K. Geyer,4 V. Giordano,greater26 muon energy. The probability that at least one propertiesthan of5.1 space-timeσ. The source in the lies strong-field, at a luminosity high-velocity distance of 410the160 coincidentMpc corresponding signal GW150914 to a redshift shownz in Fig.0.091.0 The.03. initial 4 27, 28 6 4 4 29 10 −þ180 −þ0.04 A. Gleixner, H. Glotin, R. Gracia-Ruiz, K. Graf, S. Hallmann, H. van Haren, A.J. Heijboer, regime and confirm predictions of general relativity for the detection5 was4 made by low-latency searches¼ for generic In the source frame, the initial black hole masses are 36þ M and 29þ M , and the final black hole mass is 18 7 4 4 30, 31 13, 14 neutrino4 candidate, out of 3 detected events, has an en- nonlinear dynamics of highly disturbed black holes. −gravitational-wave4 −4 transients [41] and was reported withinY. Hello, J.J. Hern´andez-Rey, J. H¨oßl, J. Hofest¨adt, C. Hugon, G. Illuminati, C.W James, 4 0.5 2 ⊙ ⊙ 62−þ4 M , with 3.0−þ0.5 M c radiated in gravitational waves.three All minutes uncertainties of data define acquisition 90% credible[43]. intervals. Subsequently, 10, 11 21 4 4 4 6, 28 21 ⊙ ⊙ M. de Jong, M. Kadler, O. Kalekin, U. Katz, D. Kießling, A. Kouchner, M. Kreter,ergy high enough to make it appear even less background- These observations demonstrate the existence of binary stellar-massmatched-filter black analyses hole systems. that use This relativistic is the first models direct of com- II. OBSERVATION I. Kreykenbohm,32 V. Kulikovskiy,9, 33 C. Lachaud,6 R. Lahmann,4 D. Lef`evre,34 E. Leonora,26, 35 S. Loucatos,36, 6 3 detection of gravitational waves and the first observationpact of binary a binary waveforms black hole[44] merger.recovered GW150914 as the 8 23, 16 37, 38 1 5 10 like, is39 1 (1 0.125) 0.33. Third, with the GW sky On September 14, 2015 at 09:50:45 UTC, the LIGO most significant event from each detector for theM. observa- Marcelin, A. Margiotta, A. Marinelli, J.A. Mart´ınez-Mora, A. Mathieu, T. Michael, P. Migliozzi, − − ⇡ 2 Hanford,DOI: WA,10.1103/PhysRevLett.116.061102 and Livingston, LA, observatories detected tions reported here. Occurring within the 10-msA. intersite Moussa,20 C. Mueller,21 E. Nezri,8 G.E. P˘av˘ala¸s,15 C. Pellegrino,23, 16 C. Perrina,13, 14 P. Piattelli,9 V.area Popa,15 90% CL of ⌦gw = 590 deg , the probability of a T. Pradier,40 C. Racca,2 G. Riccobene,9 K. Roensch,4 M. Salda˜na,1 D. F. E. Samtleben,10, 11 M. Sanguineti,background30, 31 neutrino candidate being directionally coin- P. Sapienza,9 J. Schnabel,4 F. Sch¨ussler,36 T. Seitz,4 C. Sieger,4 M. Spurio,23, 16 Th. Stolarczyk,36 I. INTRODUCTION The discovery of the binary pulsar system PSRA. B1913 S´anchez-Losa,16 7, 41 M. Taiuti,30, 31 A. Trovato,9 M. Tselengidou,4 D. Turpin,5 C. T¨onnis,7 B. Vallage,cident36, 25 is ⌦gw/⌦all 0.014. We expect 3⌦gw/⌦all di- by Hulse and Taylor [20] and subsequent observationsþ of In 1916, the year after the final formulation of the field C. Vall´ee,5 V. Van Elewyck,6 D. Vivolo,39, 42 S. Wagner,4 J. Wilms,32 J.D. Zornoza,7 and J. Z´u˜niga7 ⇡ its energy loss by Taylor and Weisberg [21] demonstrated rectionally coincident neutrinos, given 3 temporal coinci- equations of general relativity, Albert Einstein predicted (The Antares Collaboration) the existence of gravitational waves.
Recommended publications
  • Snowmass 2021 Letter of Interest: Ultra-High-Energy Neutrinos
    Snowmass 2021 Letter of Interest: Ultra-High-Energy Neutrinos Markus Ahlers,1 Jaime Alvarez-Mu~niz,´ 2 Rafael Alves Batista,3 Luis Anchordoqui,4 Carlos A. Arg¨uelles,5 Jos´e Bazo,6 James Beatty,7 Douglas R. Bergman,8 Dave Besson,9, 10 Stijn Buitink,11 Mauricio Bustamante,1, 12, ∗ Olga Botner,13 Anthony M. Brown,14 Washington Carvalho Jr.,15 Pisin Chen,16 Brian A. Clark,17 Amy Connolly,7 Linda Cremonesi,18 Cosmin Deaconu,19 Valentin Decoene,20 Paul de Jong,21, 22 Sijbrand de Jong,23, 22 Peter B. Denton,24, y Krijn De Vries,25 Michele Doro,26 Michael A. DuVernois,27 Ke Fang,28 Christian Glaser,13 Peter Gorham,29 Claire Gu´epin,30 Allan Hallgren,13 Jordan C. Hanson,31 Tim Huege,32, 11 Martin H. Israel,33 Albrecht Karle,27 Spencer R. Klein,34, 35 Kumiko Kotera,20 Ilya Kravchenko,36 John Krizmanic,30, 37 John G. Learned,29 Olivier Martineau-Huynh,38 Peter M´esz´aros,39 Thomas Meures,27 Miguel A. Mostaf´a,39, 40 Katharine Mulrey,11 Kohta Murase,39, 40, 41 Jiwoo Nam,16 Anna Nelles,42, 43 Eric Oberla,44 Foteini Oikonomou,45 Angela V. Olinto,44 Yasar Onel,46 A. Nepomuk Otte,47 Sergio Palomares-Ruiz,48 Alex Pizzuto,27 Steven Prohira,7 Brian Rauch,49 Mary Hall Reno,46 Juan Rojo,50, 51 Andr´esRomero-Wolf,52 Ibrahim Safa,5, 27 Olaf Scholten,53, 25 Frank G. Schr¨oder,54, 32 Wayne Springer,55 Irene Tamborra,1, 12 Charles Timmermans,51, 23 Diego F. Torres,56 Jo~aoR.
    [Show full text]
  • Neutrino Astrophysics
    Neutrino Astrophysics Ryan Nichol UK Input to European Strategy Neutrino Astrophysics Ryan Nichol UK Input to European Strategy Highly cited papers • Higgs Discovery (2012) • Z discovery (1983) –1500+ – 8000+ citations –2000+ • SN1987a neutrinos (1987) • Atmospheric neutrino • Positron excess –1500+ oscillations (1998) [PAMELA] (2008) • Weak neutral current –5000+ citations –1900+ (1973) • Top quark discovery • Reactor neutrino theta_13 –1500+ (1995) (2012) • Charmomium (2003) –3000+ citations –1900+ –1400+ • Solar neutrino oscillations • b-quark discovery (1977) • B-Bbar oscillation (1987) (2002) –1900+ –1300+ –3000+ citations • W-discovery (1983) • nu_mu -> nu_e (2011) • Kaon CP violations (1964) –1800+ –1300+ –3000+ citations • Z width (2005) • Accelerator neutrino • Reactor antineutrino –1700+ oscillation (2002) [KamLAND] (2003) • Proton spin crisis (1989) –1100+ –2000+ citations –1700+ • Muon neutrino discovery • Gravitational Waves • LSND anomaly (2001) (1962) (2016) –1700+ –1100+ –2000+ citations • Parity non conservation • DAMA/Libra (2008-) • c-quark discovery (1974) (1957) –1000+ –2000+ citations –1600+ • Pentaquark [LEPS] (2003) • Solar neutrino • LUX Dark Matter (2013) –1000+ [Homestake] (1968-1998) –1500+ • Neutron EDM (2006) !3 –2000+ • g-2 (2006) –1000+ Highly cited papers • Higgs Discovery (2012) • Z discovery (1983) –1500+ – 8000+ citations –2000+ • SN1987a neutrinos (1987) • Atmospheric neutrino • Positron excess –1500+ oscillations (1998) [PAMELA] (2008) • Weak neutral current –5000+ citations –1900+ (1973) • Top quark
    [Show full text]
  • The Compact Program Booklet
    - 1 - MONDAY, 5 SEPTEMBER 2011 WELCOME TO 12th International Conference on Topics in Astroparticle and Underground Physics 5 – 9 September 2011, Munich, Germany - 2 - structure of The ConferenCe SUNDAY, 4 SEP 2011 WEDNesDAY, 7 SEP 2011 Page 11 17:00 - 21:00 Registration/Reception 09:00 - 10:45 Plenary: Neutrinos 11:15 - 13:00 Plenary: Neutrinos MONDAY, 5 SEP 2011 Page 3 14:30 - 16:10 DM AM DBD/NM LE 09:00 - 10:10 Plenary: Cosmology 16:50 - 18:30 DM AM NO C 10:10 - 10:45 Plenary: Dark Matter 20:00 - 23:30 Conference Dinner 11:15 - 11:50 Plenary: Dark Matter 11:50 - 12:25 Plenary: Astrophysical Messengers THURSDAY, 8 SEP 2011 Page 14 12:25 - 13:00 Plenary: Underground Physics 09:00 - 10:45 Plenary: Astrophysical Messengers 14:30 - 16:10 DM AM DBD/NM LE 11:15 - 13:00 Plenary: Astrophysical Messengers 16:50 - 18:30 DM AM NO C 14:30 - 16:10 DM AM DBD/NM GW 16:50 - 18:30 DM LE DBD/NM GW TUesDAY, 6 seP 2011 Page 6 09:00 - 10:50 Plenary: Dark Matter FRIDAY, 9 seP 2011 Page 17 11:15 - 13:00 Plenary: Dark Matter 09:00 - 09:35 Plenary: Underground Physics 14:30 - 16:10 DM AM DBD/NM LE 09:35 - 10:45 Plenary: Astrophysical Messengers 16:50 - 18:30 DM AM NO C 11:15 - 12:25 Plenary: Astrophysical Messengers 18:30 - 20:00 Poster Session 12:25 - 13:00 Concluding Session DM Dark Matter NO Neutrino Oscillations AM Astrophysical Messengers DBD/NM Double Beta Decay, Neutrino Mass C Cosmology LE Low-Energy Neutrinos GW Gravitational Waves - 3 - MONDAY, 5 SEPTEMBER 2011 PLENARY SessION: CosmoloGY I Festsaal 09:00 CMB and Planck Francois Bouchet (IAP Paris)
    [Show full text]
  • Science Case for the Giant Radio Antenna Neutrino Detector
    Science Case for the Giant Radio Antenna Neutrino Detector Kumiko Kotera — Institut d’Astrophysique de Paris, UMR 7095 - CNRS, Université Pierre & Marie Curie, 98 bis boulevard Arago, 75014, Paris, France ; email: [email protected] “The title [of this book] is more of an expression of hope than a de- scription of the book’s contents [...]. As new ideas (theoretical and experimental) are explored, the observational horizon of neutrino as- trophysics may grow and the successor to this book may take on a different character, perhaps in a time as short as one or two decades.” John N. Bahcall, Neutrino Astrophysics, Cambridge University Press, 1989 igh-energy (> 1015 eV) neutrino as- progress in the fields of high-energy astro- tronomy will probe the working of physics and astroparticle physics. Addi- Hthe most violent phenomena in the tionally, they should contribute to unveil Universe. When most of the information fundamental neutrino properties. we have on the Universe stems from the observation of light, one essential strategy to undertake is to diversify our messengers. 1 Why neutrinos? The most energetic, mysterious and hardly understood astrophysical sources or events Neutrinos are unique messengers that let (fast-rotating neutron stars, supernova ex- us see deeper in objects, further in dis- plosions and remnants, gamma-ray bursts, tance, and pinpoint the exact location of outflows and flares from active galactic nu- their sources. clei, ...) are expected to be producers Neutrinos can escape much denser as- of high-energy non-thermal hadronic emis- trophysical environments than light, hence sion. Hence they should produce copious they enable us to explore processes in the amounts of high-energy neutrinos.
    [Show full text]
  • Pos(ICRC2021)048
    ICRC 2021 THE ASTROPARTICLE PHYSICS CONFERENCE ONLINE ICRC 2021Berlin | Germany THE ASTROPARTICLE PHYSICS CONFERENCE th Berlin37 International| Germany Cosmic Ray Conference 12–23 July 2021 Rapporteur ICRC 2021: Neutrinos and Muons PoS(ICRC2021)048 0,1, Anna Nelles ∗ 0DESY, Platanenallee 6, 15738 Zeuthen, Germany 1ECAP, Friedrich-Alexander-University Erlangen-Nuremberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany E-mail: [email protected] This contribution attempts to summarize the status of the field of neutrinos from the cosmos as presented at the ICRC 2021, the first online-only edition of this conference. This rapporteur report builds on 212 contributions with pre-recorded talks and posters, as well as 11 discussion sessions. Furthermore, many of the session conveners provided valuable input to this summary. 37th International Cosmic Ray Conference (ICRC 2021) July 12th – 23rd, 2021 Online – Berlin, Germany ∗Presenter © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/ Rapporteur: Neutrinos and Muons Anna Nelles The field of neutrino astronomy already provides exciting results, however,it is still dominated by very low statistics in astrophysical neutrino detections. The most transformative results have been discussed in the multi-messenger context [1] and clearly neutrinos are becoming a target of opportunity for all experiments with a potential sensitivity to them. The neutrino field itself is booming with new ideas for detectors and has reached a maturity in which detailed data analysis and systematic detector calibration are the order of business. To summarize the sentiment: the community is doing their homework to get ready for many more neutrinos, which the broader community is excited about.
    [Show full text]
  • Extracting the Energy-Dependent Neutrino-Nucleon Cross Section Above 10 Tev Using Icecube Showers
    Extracting the Energy-Dependent Neutrino-Nucleon Cross Section above 10 TeV Using IceCube Showers Bustamante, Mauricio; Connolly, Amy Published in: Physical Review Letters DOI: 10.1103/PhysRevLett.122.041101 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Bustamante, M., & Connolly, A. (2019). Extracting the Energy-Dependent Neutrino-Nucleon Cross Section above 10 TeV Using IceCube Showers. Physical Review Letters, 122(4), [041101]. https://doi.org/10.1103/PhysRevLett.122.041101 Download date: 30. sep.. 2021 PHYSICAL REVIEW LETTERS 122, 041101 (2019) Extracting the Energy-Dependent Neutrino-Nucleon Cross Section above 10 TeV Using IceCube Showers † Mauricio Bustamante1,2,3,* and Amy Connolly2,3, 1Niels Bohr International Academy & Discovery Centre, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark 2Center for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University, Columbus, Ohio 43210, USA 3Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA (Received 11 January 2018; revised manuscript received 17 November 2018; published 28 January 2019) Neutrinos are key to probing the deep structure of matter and the high-energy Universe. Yet, until recently, their interactions had only been measured at laboratory energies up to about 350 GeV. An opportunity to measure their interactions at higher energies opened up with the detection of high-energy neutrinos in IceCube, partially of astrophysical origin. Scattering off matter inside Earth affects the distribution of their arrival directions—from this, we extract the neutrino-nucleon cross section at energies from 18 TeV to 2 PeV, in four energy bins, in spite of uncertainties in the neutrino flux.
    [Show full text]
  • Beamforming Elevated Array for Cosmic Neutrinos (BEACON)
    Astro2020 Project White Paper Expanding the Reach of Tau Neutrino Telescopes with the Beamforming Elevated Array for COsmic Neutrinos (BEACON) Topic Areas: Multi-messenger Astronomy and Astrophysics, Cosmology and Fundamental Physics Stephanie Wissel†, California Polytechnic State University Jaime Alvarez-Muñiz, Universidade Santiago de Compostela Washington R. Carvalho, Jr., Universidade de São Paulo Austin Cummings, Gran Sasso Science Institute Cosmin Deaconu, University of Chicago Kaeli Hughes, University of Chicago Andrew Ludwig, University of Chicago Eric Oberla, University of Chicago Andres Romero-Wolf, Jet Propulsion Laboratory, California Institute of Technology David Saltzberg, University of California, Los Angeles Harm Schoorlemmer, Max-Plank-Institüt für Kernphysik Daniel Southall, University of Chicago Abigail Vieregg, University of Chicago Enrique Zas, Universidade Santiago de Compostela †Corresponding author, [email protected], (805) 756-7375 July 2019 1 Key Science Goals and Objectives 1.1 The High Energy End of the Cosmic Neutrino Spectrum Active galactic nuclei, pulsars, gamma-ray bursts, and galaxy clusters are all implicated as possible accelerators of ultra-high energy cosmic rays that can achieve energies greater than 1020 eV. The origin of these cosmic rays has confounded the field for decades in part because cosmic rays up to a certain rigidity are unreliable narrators. Such accelerators pump cosmic rays (protons and other nuclei) into the local environment where through pp and pg interactions they can deposit energy into several messengers: neutrinos, gamma rays, and secondary cosmic rays. Cosmic neutrinos can thus identify the sources of the highest energy particle acceleration in the universe. Com- bined multi-messenger observations can give further insight into the nature of the highest energy accelerators.
    [Show full text]
  • Aloha VHEPA Participant, Welcome to Hawaii!
    Aloha VHEPA participant, Welcome to Hawaii! Thanks a lot for joining the 9th VHEPA workshop. This workshop focuses on future projects to measure very high energy particles and cosmic rays including the NTA (Neutrino Telescope Array) proposal for the Big Island of Hawaii, ANITA, ARA, ARIANNA, AUGER, CTA, GRAND, HAWC, IceCube-Gen 2, JEM-EUSO, KM3NET, and TA. In particular, following the observation of astrophysical neutrinos by IceCube, there is world-wide interest in measuring neutrinos in the energy range above IceCube and below the range covered by Auger, TA and other experiments. Although ANITA observed ultra-high energy cosmic rays, neutrinos in the GZK energy range have not yet been detected either. There are no confirmed point sources of neutrinos or high energy cosmic rays. Best regards, Philip von Doetinchem (chair) Veronica Bindi Tom Browder Peter Gorham Francis Halzen George Hou Tadashi Kifune Jason Kumar John Learned Danny Marfatia Bob Morse Alan Watson Jan Bruce Jacky Li Josie Nanao Meeting location The meeting takes place on the campus of the University of Hawaii at Manoa. East-West Center (EWC) Hawaii Imin International Conference Center Jefferson Hall Pacific room 1777 East-West Road Honolulu, HI 96848 Please find a map with driving and bus directions attached. Parking We will have a limited number of on-campus parking passes on a first-come first-served basis. Parking on campus will be $18 total for three day. More parking is available in the general parking structure (no. 20). Daily parking is only $5. Please find a campus map with the parking structure location attached.
    [Show full text]
  • Ultra-High Energy Neutrinos
    XXXVIII International Symposium on Physics in Collision, Bogot´a,Colombia, 11-15 September 2018 Ultra-High Energy Neutrinos James Madsen∗ for the IceCube Collaboration,y Physics Department, University of Wisconsin-River Falls, River Falls, WI USA Abstract Ultra-high energy neutrinos hold promise as cosmic messengers to advance the understanding of extreme astrophysical objects and environments as well as possible probes for discovering new physics. This proceeding describes the motivation for measuring high energy neutrinos. A short summary of the mechanisms for producing high energy neutrinos is provided along with an overview of current and proposed modes of detection. The science reach of the field is also briefly surveyed. As an example of the potential of neutrinos as cosmic messengers, the recent results from an IceCube Collaboration real-time high energy neutrino alert and subsequent search of archival data are described. 1 Introduction Astrophysics has seen an incredible expansion in the last century or so with new ways of viewing the cosmos revealing extreme objects and environments far exceeding what can be reproduced even in the most ambitious particle accelerator facility. High energy astrophysics is an exciting field fueled by advances in the capabilities of observatories across the electromagnetic spectrum and in the size and scope of cosmic ray experiments. Inherently interesting in their own right, astrophysical phenomena also provide a natural source to extend particle physics studies one or more orders of magnitude higher in energy. Cosmic rays and gravity waves were covered in separate talks at this meeting, as were neutrino results from reactors, accelerators, and neutrino-less double beta-decay experiments.
    [Show full text]
  • Highlights in Astroparticle Physics: Muons, Neutrinos, Hadronic
    Highlights in astroparticle physics: muons, radiation from any kind of particle acceleration neutrinos, hadronic interactions, exotic par- (Sect. 5). ticles, and dark matter | Rapporteur Talk HE2 & HE3 • Muons are used in a geophysical application for tomography of a volcano (Sect. 6). J.R. H¨orandel • New projects are underway to detect high- energy neutrinos: KM3NeT in the Mediter- ranean Sea, as well as ARA and ARIANNA Department of Astrophysics, IMAPP, Radboud on the Antarctic continent (Sect. 7). University Nijmegen, 6500 GL Nijmegen, The Netherlands | http://particle.astro.ru.nl • First data from the Large Hadron Collider (LHC), in particular from the forward detec- Recent results presented at the International tor LHCf, yield new insight into hadronic in- Cosmic Ray Conference in Beijing will be reviewed. teractions, which are of great importance to de- Topics include HE2: "Muons and Neutrinos" and scribe the development of extensive air showers HE3: "Interactions, Particle Physics Aspects, (Sect. 8). Cosmology". • New upper limits on magnetic monopoles reach sensitivities of the order of keywords: muons, neutrinos, neutrino tele- 10−18 cm−2 s−1 sr−1. Searches for antin- scopes, hadronic interactions, exotic particles, dark uclei indicate that there is less than 1 matter antihelium nucleus per 107 helium nuclei in the Universe (Sect. 9). 1 Introduction • Astrophysical dark matter searches yield up- per limits for the velocity-weighted annihi- The 32nd International Cosmic Ray Conference was lation cross section of the order of hσvi < held in August 2011 in Beijing. About 150 pa- 10−24 cm3 s−1 (Sect. 10). pers were presented in the sessions HE2: "Muons and Neutrinos" and HE3: "Interactions, Particle Physics Aspects, Cosmology".
    [Show full text]
  • Fundamental Physics with High-Energy Cosmic Neutrinos Thematic Area: Cosmology and Fundamental Physics
    !stro"#"# Science White Paper Fundamental Physics with High-Energy Cosmic Neutrinos Thematic Area- Cosmology and Fundamental Physics Markus Ackermann, Deutsches Elektronen-Synchrotron (DESY) Zeuthen Markus Ahlers, Niels Bohr Institute, University of Copenh gen Luis Anchordoqui*, City University of Ne" York Mauricio Bustamante†, Niels Bohr Institute, University of Copenh gen Amy Connolly, #he Ohio St te University Cosmin Deaconu, University of Chicago Darren Grant‡, %ichi! n State University Peter Gorham, University of H " ii, M noa Francis Halzen, University of Wisconsin, M dison Albrecht Karle, University of Wisconsin, M (ison Kumiko Kotera, Institut d’*strophysique de P ris Marek Kowalski, Deutsches Elektronen-Synchrotron (DESY) Zeuthen Mi!uel A. Mostafa, ,ennsylv ni State University Kohta Murase, ,ennsylv ni St te University Anna Nelles, Deutsches Elektronen-Synchrotron (DESY) Zeuthen arXiv:submit/2608638 [astro-ph.HE] 11 Mar 2019 An!ela %linto, University of Chica!o § Andres &omero-Wol# , -et Propulsion L /oratory, C liforni Institute of Technology Abi!ail )iere!!¶, University of Chica!o *tephanie (issel , C liforni Polytechnic State University *luis'anchordo(ui)gmail'com, *+ ,+- 950 /#,, †m1ustamante)n1i'2u'dk, *3/ "" "0 0/ ,, ‡drg)msu'edu, *+ /+- 884 5/,- §Andrew'5omero-%olf)7&l.nasa.go8, *+ 4+8 3/4 ##/4 ¶avieregg)kic&'uchicago'edu, ++ 7-0 834 ".44 swissel)cal&oly'edu, *+ 4#/ 7/, -0-/ 9arch 201. Abstract High-energy cosmic neutrinos can reveal new fundamental particles and interactions, probing en- ergy and distance scales far exceeding those accessible in the laboratory. This white paper de- scribes the outstanding particle physics questions that high-energy cosmic neutrinos can address in the coming decade.
    [Show full text]
  • CHICAGO PHYSICS 4 Windows on the World Welcome to the Fourth Issue of Chicago Physics! in Our Last Issue, We Took You on a Journey to the Quantum World
    CHICAGO PHYSICS 4 Windows on the World Welcome to the fourth issue of Chicago Physics! In our last issue, we took you on a journey to the quantum world. In the current issue, we will guide you to explore the frontiers of our Universe. This year has been an extremely challenging We hope that the stories we share will inspire year forcing all of us to adapt to new realities. you to become more involved and engaged in Despite unprecedented times, we have the Department. Please keep in touch and let achieved much, thanks to the collective us know what you think. efforts of everyone in our department including undergraduate and graduate students, postdocs, the staff and the faculty. Yours sincerely, Special thanks should go to our staff and YOUNG-KEE KIM in the current issue our staff shares some Louis Block Distinguished Service Professor of their experiences in adapting their work Chair, the Department of Physics with students and faculty during these extraordinary circumstances. We also celebrate new members of the Department in this issue. The 4th Maria Goeppert-Mayer Lecture featured Andrea Ghez who was awarded the 2020 Nobel Prize in Physics for discovering the supermassive black hole that lurks at the center of the Milky Way. Her work is nicely connected to the theme of the current issue. The virtual lecture by Ghez, a 1983 graduate of the University of Chicago Laboratory Schools, attracted a diverse audience of about 2,500 people from around the world, including Maria Goeppert-Mayer’s grand-daughter Tania DeBeau, the 1st, 2nd, and 3rd Maria Goeppert- Mayer lecturers (Melissa Franklin, Helen Quinn, and 2018 Nobel Laureate Donna Strickland), Program Director of the Heising- Simons Foundation Cyndi Atherton, Ghez’s mother Susanne Ghez, Ghez’s high school chemistry teacher from the University of Chicago Lab Schools Judy Keane, and Interim Director of the Lab Schools Dave Magill.
    [Show full text]