Bistable Membrane Potential of Coleps Hirtus 759

Total Page:16

File Type:pdf, Size:1020Kb

Bistable Membrane Potential of Coleps Hirtus 759 The Journal of Experimental Biology 203, 757–764 (2000) 757 Printed in Great Britain © The Company of Biologists Limited 2000 JEB2284 BISTABLE MEMBRANE POTENTIAL OF THE CILIATE COLEPS HIRTUS PIA RUDBERG AND OLAV SAND* Department of Biology, University of Oslo, PO Box 1051 Blindern, N-0316 Oslo, Norway *Author for correspondence (e-mail: [email protected]) Accepted 24 November 1999; published on WWW 26 January 2000 Summary In normal recording solution, the swimming pattern of prolonged the shoulder, which occasionally stabilised at the the freshwater ciliate Coleps hirtus, belonging to the class shallow membrane potential (−30 mV). The membrane Prostomatea, consists of alternating periods of nearly linear potential could be shifted to the deep level by brief forward swimming and circular swimming within a small hyperpolarising current injections. Similar biphasic area. Current-clamp recordings were performed to membrane properties have not been reported previously in elucidate the mechanism for this behaviour. No members any ciliate. The bistability of the membrane potential was of this class have previously been studied using abolished in Ca2+-free solution containing Co2+ or Mg2+. In electrophysiological techniques. The ciliates were Ca2+-free solution containing 1 mmol l−1 Ba2+, brief maintained in culture and fed on the planctonic alga depolarising current injections at the deep potential level Rhodomonas minuta. The membrane potential showed evoked all-or-nothing action potentials with a prolonged spontaneous shifts between a more negative (deep) level of plateau coinciding with the shallow potential. We conclude approximately −50 mV and a less negative (shallow) level that the deep membrane potential in C. hirtus corresponds of approximately −30 mV. The input resistance and to the traditional resting potential, whereas the shallow capacitance at the more negative level were approximately level is a Ca2+-dependent plateau potential. In normal 400 MΩ and 120 pF respectively. C. hirtus displayed a solution, the direction of the ciliary beat was backwards at pronounced inward rectification, which was virtually the deep potential level and forwards at the shallow insensitive to 1 mmol l−1 Cs+ and almost completely blocked membrane potential, probably reflecting the two main by 1 mmol l−1 Ba2+. Depolarising current injections failed phases of the swimming pattern. to evoke graded, regenerative Ca2+ spikes. However, current-induced depolarisations from the more negative Key words: Coleps hirtus, ciliate, electrophysiology, membrane potential level (−50 mV) showed a pronounced shoulder potential, bistability, action potential, Ca2+, inward rectification, during the repolarising phase. Increased current injections swimming. Introduction Within the eight different classes of ciliates, approximately found in Bursaridium, from the class Colpodea, which 8000 species have so far been described (Corliss, 1994). generates spontaneous all-or-nothing action potentials with a However, electrophysiological properties have only been distinct threshold in normal solution (Berg and Sand, 1994). studied in a surprisingly small number of species, mainly Spontaneous action potentials with a plateau phase lasting up within the genera Paramecium (Eckert and Naitoh, 1972), to 3–4 s have also been reported in Stylonychia in solutions Stylonychia (Machemer and Deitmer, 1987), Didinium (Pape containing artificially high concentrations of Ca2+ (Machemer, and Machemer, 1986; Pernberg and Machemer, 1989) and 1970). Euplotes (Lueken et al., 1996). The presence of voltage- The ciliate genus Coleps belongs to the class Prostomatea, sensitive Ca2+ channels is a general feature in these ciliates, and no species within this class has previously been studied and the direction of the ciliary beat is controlled by the using electrophysiological methods. The swimming pattern of cytosolic Ca2+ concentration (Machemer and Sugino, 1989; C. hirtus in normal solution consists of forward swimming Pernberg and Machemer, 1995a,b). The detailed electrical covering relatively large distances interrupted by periods membrane properties, however, show great variation among of circular swimming within a small area. We have made different ciliate classes. In most cases, depolarising current current-clamp recordings from C. hirtus using standard injections evoke regenerative Ca2+ spikes lacking all-or- microelectrodes, and report exceptional electrophysiological nothing characteristics in normal solution, for instance in properties of this ciliate. The membrane potential showed Paramecium (see Machemer, 1988), belonging to the class spontaneous shifts between two semistable levels. The more Oligohymenophorea. A striking exception to this pattern is negative level corresponds to the traditional resting potential, 758 P. RUDBERG AND O. SAND whereas the less negative level is a Ca2+-dependent plateau animals were kept in position using a microsuction pipette with potential. The transition between these membrane potential a tip diameter of 10–15 µm. The suction pipette was connected levels was correlated with the reversal of the direction of the to ambient, subatmospheric or superatmospheric pressure via ciliary beat and may explain the characteristic swimming a solenoid valve (Jonsson and Sand, 1987). A selected animal behaviour of this ciliate. was sucked onto the tip of the pipette by activating the solenoid valve, using a manual trigger. The subatmospheric catching pressure was between −1.0 and −1.5 kPa, whereas the holding Materials and methods pressure during the recordings was reduced to −0.5 kPa. The Animals animals are coated with a gel-like material, which tended to Coleps hirtus Nitzsch is a barrel-shaped freshwater ciliate clog the pipette. Between each catch, the pipette was therefore feeding on dead or living algae, flagellates, rotifers or other cleaned using a short flush of medium through the tip. This was protozoa. The genus is characterised by an elaborate achieved by connecting the pipette to a pressure of endoskeleton consisting of superficial rows of calcium approximately 5 kPa. carbonate plates (Fig. 1). The animals were obtained from a The movements of both freely swimming animals and lake near Oslo and kept in culture. They were fed on the ciliates penetrated by microelectrodes were studied using a − planktonic alga Rhodomonas minuta, as described by video camera recording at 25 frames s 1. The general direction Klaveness (1984). The algae were grown in standard growth of the ciliary beat of penetrated cells was determined in a medium (Guillard and Lorenzen, 1972) at 17 °C with a suspension of carmine particles. A rough estimate of the beat 14 h:10 h light:dark photoperiod. The mean length of the direction was obtained from the movements of the insoluble animals in our cultures was 42 µm and the mean width was dye grains (diameter 0.5–1 µm) surrounding the cell. 29 µm (N=60). The cultures of Coleps hirtus and Rhodomonas Simultaneous recordings of the membrane potential and animal minuta were generously provided by Dr Dag Klaveness. and particle movements were stored on separate channels of the same recorder. Recordings Results are reported as means ± S.D. Prior to the recordings, the animals were transferred from the growth medium to a recording solution containing (in −1 Results mmol l ): CaCl2, 1; NaCl, 1; KCl, 1. The solution was adjusted to pH 7.2 with 1 mmol l−1 Tris/HCl. In some Swimming behaviour experiments, the CaCl2 in this normal recording solution was In normal recording solution, the swimming behaviour of C. replaced with BaCl2, CoCl2 or MgCl2. In one series of hirtus consisted largely of two alternating main patterns: experiments, 1 mmol l−1 CsCl was added to the normal forward swimming and circular movements. The forward solution. During the experiments, the animals were viewed swimming usually displayed a component of lateral through an inverted microscope. oscillations of small amplitude. Swimming speed was The electrical properties of the surface membrane were 0.4–1.0 mm s−1. At irregular intervals, the periods of forward studied using conventional microelectrodes and standard swimming were interrupted by circular movements within a recording equipment. The electrodes were filled with 4 mol l−1 restricted area (Fig. 2). The duration of these two swimming potassium acetate adjusted to pH 7.2 with acetic acid, and the patterns varied from a few seconds to more than a minute. electrode resistance was 40–80 MΩ. During the recordings, the The main purpose of the present investigation was to elucidate the cellular mechanisms behind this characteristic swimming pattern. In other ciliate species, the direction of the ciliary beat is controlled by the cytosolic Ca2+ concentration and, hence, the membrane potential. The natural approach was therefore to study the electrophysiological properties of C. hirtus. Passive electrical membrane properties and membrane rectification The initial recordings revealed a bimodal distribution of the membrane potential in normal solution. In approximately 70 % of the cells, the membrane potential was between −50 and −60 mV (deep membrane potential), whereas the remaining − 10 µM cells displayed membrane potentials between 20 mV and −30 mV (shallow membrane potential). To study the resistance, Fig. 1. A drawing of the endoskeleton of Coleps hirtus based on capacitance and rectifying properties of the membrane, hyper- scanning electron micrographs from Klaveness (1984) and Foissner and depolarising current pulses of varying
Recommended publications
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • An Evolutionary Switch in the Specificity of an Endosomal CORVET Tether Underlies
    bioRxiv preprint doi: https://doi.org/10.1101/210328; this version posted October 27, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: An evolutionary switch in the specificity of an endosomal CORVET tether underlies formation of regulated secretory vesicles in the ciliate Tetrahymena thermophila Daniela Sparvolia, Elisabeth Richardsonb*, Hiroko Osakadac*, Xun Land,e*, Masaaki Iwamotoc, Grant R. Bowmana,f, Cassandra Kontura,g, William A. Bourlandh, Denis H. Lynni,j, Jonathan K. Pritchardd,e,k, Tokuko Haraguchic,l, Joel B. Dacksb, and Aaron P. Turkewitza th a Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 E 58 Street, Chicago IL USA b Department of Cell Biology, University of Alberta, Canada c Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan. d Department of Genetics, Stanford University, Stanford, CA, 94305 e Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305 f current affiliation: Department of Molecular Biology, University of Wyoming, Laramie g current affiliation: Department of Genetics, Yale University School of Medicine, New Haven, CT 06510 h Department of Biological Sciences, Boise State University, Boise ID 83725-1515 I Department of Integrative Biology, University of Guelph, Guelph ON N1G 2W1, Canada j current affiliation: Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada k Department of Biology, Stanford University, Stanford, CA, 94305 l Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan.
    [Show full text]
  • Based on SSU Rdna Sequences
    J. Eukaryot. Microbiol., 48(5), 2001 pp. 604±607 q 2001 by the Society of Protozoologists Phylogenetic Position of Sorogena stoianovitchae and Relationships within the Class Colpodea (Ciliophora) Based on SSU rDNA Sequences ERICA LASEK-NESSELQUISTa and LAURA A. KATZa,b aDepartment of Biological Sciences, Smith College, Northampton, Massachusetts 01063, and bProgram in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA ABSTRACT. The ciliate Sorogena stoianovitchae, which can form a multicellular fruiting body, has been classi®ed based upon its ultrastructure and morphology: the oral and somatic infraciliature of S. stoianovitchae most closely resemble those of members of the order Cyrtolophosidida in the class Colpodea. We characterized the small subunit ribosomal DNA (SSU rDNA) gene sequence from S. stoianovitchae and compared this sequence with those from representatives of all ciliate classes. These analyses placed S. stoianovitchae as either sister to members of the class Nassophorea or Colpodea. In an in-group analysis, including all SSU rDNA sequences from members of the classes Nassophorea and Colpodea and representatives of appropriate outgroups, S. stoianovitchae was always sister to Platyophrya vorax (class Colpodea, order Cyrtolophosidida). However, our analyses failed to support the monophyly of the class Colpodea. Instead, our data suggest that there are essentially three unresolved clades: (1) the class Nassophorea; (2) Bresslaua vorax, Colpoda in¯ata, Pseudoplatyophrya nana, and Bursaria truncatella (class Colpodea); and (3) P. vorax and S. stoianovitchae (class Colpodea). Key Words. Bursariomorphida, ciliate phylogeny, Colpodida, Cyrtolophosidida, molecular systematics, Nassophorea, Sorogenida. OROGENA stoianovitchae is a unique ciliate that aggregates partial B. sphagni sequence), provide the ®rst molecular hy- S to produce an aerial fruiting body when cells are starved.
    [Show full text]
  • An Integrative Approach Sheds New Light Onto the Systematics
    www.nature.com/scientificreports OPEN An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea) Thomas Pröschold1*, Daniel Rieser1, Tatyana Darienko2, Laura Nachbaur1, Barbara Kammerlander1, Kuimei Qian1,3, Gianna Pitsch4, Estelle Patricia Bruni4,5, Zhishuai Qu6, Dominik Forster6, Cecilia Rad‑Menendez7, Thomas Posch4, Thorsten Stoeck6 & Bettina Sonntag1 Species of the genus Coleps are one of the most common planktonic ciliates in lake ecosystems. The study aimed to identify the phenotypic plasticity and genetic variability of diferent Coleps isolates from various water bodies and from culture collections. We used an integrative approach to study the strains by (i) cultivation in a suitable culture medium, (ii) screening of the morphological variability including the presence/absence of algal endosymbionts of living cells by light microscopy, (iii) sequencing of the SSU and ITS rDNA including secondary structures, (iv) assessment of their seasonal and spatial occurrence in two lakes over a one‑year cycle both from morphospecies counts and high‑ throughput sequencing (HTS), and, (v) proof of the co‑occurrence of Coleps and their endosymbiotic algae from HTS‑based network analyses in the two lakes. The Coleps strains showed a high phenotypic plasticity and low genetic variability. The algal endosymbiont in all studied strains was Micractinium conductrix and the mutualistic relationship turned out as facultative. Coleps is common in both lakes over the whole year in diferent depths and HTS has revealed that only one genotype respectively one species, C. viridis, was present in both lakes despite the diferent lifestyles (mixotrophic with green algal endosymbionts or heterotrophic without algae).
    [Show full text]
  • The Symbiotic Life of Symbiodinium in the Open Ocean Within a New Species of Calcifying Ciliate (Tiarina Sp.)
    The ISME Journal (2016) 10, 1424–1436 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE The symbiotic life of Symbiodinium in the open ocean within a new species of calcifying ciliate (Tiarina sp.) Solenn Mordret1,2,5, Sarah Romac1,2, Nicolas Henry1,2, Sébastien Colin1,2, Margaux Carmichael1,2, Cédric Berney1,2, Stéphane Audic1,2, Daniel J Richter1,2, Xavier Pochon3,4, Colomban de Vargas1,2 and Johan Decelle1,2,6 1EPEP—Evolution des Protistes et des Ecosystèmes Pélagiques—team, Sorbonne Universités, UPMC Univ Paris 06, UMR 7144, Station Biologique de Roscoff, Roscoff, France; 2CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France; 3Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand and 4Institute of Marine Science, University of Auckland, Auckland, New Zealand Symbiotic partnerships between heterotrophic hosts and intracellular microalgae are common in tropical and subtropical oligotrophic waters of benthic and pelagic marine habitats. The iconic example is the photosynthetic dinoflagellate genus Symbiodinium that establishes mutualistic symbioses with a wide diversity of benthic hosts, sustaining highly biodiverse reef ecosystems worldwide. Paradoxically, although various species of photosynthetic dinoflagellates are prevalent eukaryotic symbionts in pelagic waters, Symbiodinium has not yet been reported in symbiosis within oceanic plankton, despite its high propensity for the symbiotic lifestyle. Here we report a new pelagic photosymbiosis between a calcifying ciliate host and the microalga Symbiodinium in surface ocean waters. Confocal and scanning electron microscopy, together with an 18S rDNA-based phylogeny, showed that the host is a new ciliate species closely related to Tiarina fusus (Colepidae).
    [Show full text]
  • Resource Partitioning Between Phytoplankton and Bacteria in the Coastal Baltic Sea Frontiers in Marine Science, 7: 1-19
    http://www.diva-portal.org This is the published version of a paper published in Frontiers in Marine Science. Citation for the original published paper (version of record): Sörenson, E., Lindehoff, E., Farnelid, H., Legrand, C. (2020) Resource Partitioning Between Phytoplankton and Bacteria in the Coastal Baltic Sea Frontiers in Marine Science, 7: 1-19 https://doi.org/10.3389/fmars.2020.608244 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-99520 ORIGINAL RESEARCH published: 25 November 2020 doi: 10.3389/fmars.2020.608244 Resource Partitioning Between Phytoplankton and Bacteria in the Coastal Baltic Sea Eva Sörenson, Hanna Farnelid, Elin Lindehoff and Catherine Legrand* Department of Biology and Environmental Science, Linnaeus University Centre of Ecology and Evolution and Microbial Model Systems, Linnaeus University, Kalmar, Sweden Eutrophication coupled to climate change disturbs the balance between competition and coexistence in microbial communities including the partitioning of organic and inorganic nutrients between phytoplankton and bacteria. Competition for inorganic nutrients has been regarded as one of the drivers affecting the productivity of the eutrophied coastal Baltic Sea. Yet, it is unknown at the molecular expression level how resources are competed for, by phytoplankton and bacteria, and what impact this competition has on the community composition. Here we use metatranscriptomics and amplicon sequencing and compare known metabolic pathways of both phytoplankton and bacteria co-occurring during a summer bloom in the archipelago of Åland in the Baltic Sea to examine phytoplankton bacteria resource partitioning.
    [Show full text]
  • Ciliate Diversity, Community Structure, and Novel Taxa in Lakes of the Mcmurdo Dry Valleys, Antarctica
    Reference: Biol. Bull. 227: 175–190. (October 2014) © 2014 Marine Biological Laboratory Ciliate Diversity, Community Structure, and Novel Taxa in Lakes of the McMurdo Dry Valleys, Antarctica YUAN XU1,*†, TRISTA VICK-MAJORS2, RACHAEL MORGAN-KISS3, JOHN C. PRISCU2, AND LINDA AMARAL-ZETTLER4,5,*࿣ 1Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; 2Montana State University, Department of Land Resources and Environmental Sciences, 334 Leon Johnson Hall, Bozeman, Montana 59717; 3Department of Microbiology, Miami University, Oxford, Ohio 45056; 4The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543; and 5Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island 02912 Abstract. We report an in-depth survey of next-genera- trends in dissolved oxygen concentration and salinity may tion DNA sequencing of ciliate diversity and community play a critical role in structuring ciliate communities. A structure in two permanently ice-covered McMurdo Dry PCR-based strategy capitalizing on divergent eukaryotic V9 Valley lakes during the austral summer and autumn (No- hypervariable region ribosomal RNA gene targets unveiled vember 2007 and March 2008). We tested hypotheses on the two new genera in these lakes. A novel taxon belonging to relationship between species richness and environmental an unknown class most closely related to Cryptocaryon conditions
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Flagellates, Ciliates) and Bacteria in Lake Kinneret, Israel
    AQUATIC MICROBIAL ECOLOGY Published February 13 Aquat Microb Ecol Seasonal abundance and vertical distribution of Protozoa (flagellates, ciliates) and bacteria in Lake Kinneret, Israel Ora Hadas*, Tom Berman Israel Oceanographic & Limnological Research, The Yigal Allon Kinneret Limnological Laboratory, PO Box 345, Tiberias 14102, Israel ABSTRACT: The seasonal and vertical abundances of ciliates and flagellates are described over a 2 yr period in Lake Kinneret, Israel, a warm rneso-eutroph~cmonomictic lake. Ciliate numbers ranged from 3 to 47 cells ml-l. At the thermocline and oxycline region, the h~ghestcillate numbers were observed in autumn, with Coleps hirtus as the dominant speclea. Maximum heterotrophic nanoflagellate abun- dance (1300 cells ml") was found in the epilimnion In winter-spnng, minimum numbers (66 cells ml-') occurred in autumn. Bacteria ranged from 10ho 3 10' cells ml-l with h~ghestnumbers at the decline of the Peridinium yatunense bloom and the lowest during ivlnter. Protozoa, especially ciliates, appeared to be important food sources for metazooplankton. Top-down control is an important factor determin- ing the structure of the microbial loop in Lake Kinneret. KEY WORDS: HNAN Ciliates . Bacteria . Lake Kinneret INTRODUCTION for zooplankton in both marine and aquatic environ- ments (Beaver & Crisman 1989, Pace et al. 1990, The abundance and distribution of microorganisms Stoecker & Capuzzo 1990). in aquatic ecosystems result from a complex of envi- The abundance of each component within the ronmental factors and trophic interactions among a microbial loop, i.e. bacteria, picophytoplankton, fla- multitude of biotic components. In lakes, as in the gellates and ciliates, is controlled by some combina- marine habitat, important fluxes of carbon nutrients tion of bottom-up (nutrient supply) and top-down and energy are mediated by the microbial food web (grazing) regulation.
    [Show full text]
  • Protozoologica
    Acta Protozool. (2014) 53: 207–213 http://www.eko.uj.edu.pl/ap ACTA doi:10.4467/16890027AP.14.017.1598 PROTOZOOLOGICA Broad Taxon Sampling of Ciliates Using Mitochondrial Small Subunit Ribosomal DNA Micah DUNTHORN1, Meaghan HALL2, Wilhelm FOISSNER3, Thorsten STOECK1 and Laura A. KATZ2,4 1Department of Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany; 2Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; 3FB Organismische Biologie, Universität Salzburg, A-5020 Salzburg, Austria; 4Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA Abstract. Mitochondrial SSU-rDNA has been used recently to infer phylogenetic relationships among a few ciliates. Here, this locus is compared with nuclear SSU-rDNA for uncovering the deepest nodes in the ciliate tree of life using broad taxon sampling. Nuclear and mitochondrial SSU-rDNA reveal the same relationships for nodes well-supported in previously-published nuclear SSU-rDNA studies, al- though support for many nodes in the mitochondrial SSU-rDNA tree are low. Mitochondrial SSU-rDNA infers a monophyletic Colpodea with high node support only from Bayesian inference, and in the concatenated tree (nuclear plus mitochondrial SSU-rDNA) monophyly of the Colpodea is supported with moderate to high node support from maximum likelihood and Bayesian inference. In the monophyletic Phyllopharyngea, the Suctoria is inferred to be sister to the Cyrtophora in the mitochondrial, nuclear, and concatenated SSU-rDNA trees with moderate to high node support from maximum likelihood and Bayesian inference. Together these data point to the power of adding mitochondrial SSU-rDNA as a standard locus for ciliate molecular phylogenetic inferences.
    [Show full text]
  • A Preliminary Survey on the Planktonic Biota in a Hypersaline Pond of Messolonghi Saltworks (W
    diversity Article A Preliminary Survey on the Planktonic Biota in a Hypersaline Pond of Messolonghi Saltworks (W. Greece) George N. Hotos Plankton Culture Laboratory, Department of Animal Production, Fisheries & Aquaculture, University of Patras, 30200 Messolonghi, Greece; [email protected] Abstract: During a survey in 2015, an impressive assemblage of organisms was found in a hypersaline pond of the Messolonghi saltworks. The salinity ranged between 50 and 180 ppt, and the organisms that were found fell into the categories of Cyanobacteria (17 species), Chlorophytes (4 species), Diatoms (23 species), Dinoflagellates (1 species), Protozoa (40 species), Rotifers (8 species), Copepods (1 species), Artemia sp., one nematode and Alternaria sp. (Fungi). Fabrea salina was the most prominent protist among all samples and salinities. This ciliate has the potential to be a live food candidate for marine fish larvae. Asteromonas gracilis proved to be a sturdy microalga, performing well in a broad spectrum of culture salinities. Most of the specimens were identified to the genus level only. Based on their morphology, as there are no relevant records in Greece, there is a possibility for some to be either new species or strikingly different strains of certain species recorded elsewhere. Keywords: protists; cyanobacteria; rotifers; crustacea; hypersaline conditions; Messolonghi saltworks 1. Introduction Citation: Hotos, G.N. A Preliminary It is well known that saltwork waters support high algal densities due to the abun- Survey on the Planktonic Biota in a dance of nutrients concentrated by evaporation [1–3]. Apart from the fact that such Hypersaline Pond of Messolonghi ecosystems are of paramount ecological value, they are also a potential source for tolerant Saltworks (W.
    [Show full text]
  • Functional Ecology of Aquatic Phagotrophic Protists – Concepts, Limitations, and Perspectives
    Available online at www.sciencedirect.com ScienceDirect European Journal of Protistology 55 (2016) 50–74 Functional ecology of aquatic phagotrophic protists – Concepts, limitations, and perspectives a,∗ b c d b Thomas Weisse , Ruth Anderson , Hartmut Arndt , Albert Calbet , Per Juel Hansen , e David J.S. Montagnes a University of Innsbruck, Research Institute for Limnology, Mondseestr. 9, 5310 Mondsee, Austria b University of Copenhagen, Marine Biological Section, Strandpromenaden 5, 3000 Helsingør, Denmark c University of Cologne, Biocenter, Institute for Zoology, General Ecology, Zuelpicher Str. 47b, 50674 Cologne (Köln), Germany d Dept. Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC) Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain e Institute of Integrative Biology, University of Liverpool, BioScience Building, Crown Street, Liverpool L69 7ZB, UK Available online 31 March 2016 Abstract Functional ecology is a subdiscipline that aims to enable a mechanistic understanding of patterns and processes from the organismic to the ecosystem level. This paper addresses some main aspects of the process-oriented current knowledge on phagotrophic, i.e. heterotrophic and mixotrophic, protists in aquatic food webs. This is not an exhaustive review; rather, we focus on conceptual issues, in particular on the numerical and functional response of these organisms. We discuss the evolution of concepts and define parameters to evaluate predator–prey dynamics ranging from Lotka–Volterra to the Independent Response Model. Since protists have extremely versatile feeding modes, we explore if there are systematic differences related to their taxonomic affiliation and life strategies. We differentiate between intrinsic factors (nutritional history, acclimatisation) and extrinsic factors (temperature, food, turbulence) affecting feeding, growth, and survival of protist populations.
    [Show full text]