The Solar Wind Around Pluto (SWAP) Instrument Aboard New Horizons

Total Page:16

File Type:pdf, Size:1020Kb

The Solar Wind Around Pluto (SWAP) Instrument Aboard New Horizons The Solar Wind Around Pluto (SWAP) Instrument Aboard New Horizons D. McComas1,*, F. Allegrini1, F. Bagenal2, P. Casey1, P. Delamere2, D. Demkee1, G. Dunn1, H. Elliott1, J. Hanley1, K. Johnson1, J. Langle3,1, G. Miller1, S. Pope1, M. Reno1, B. Rodriguez1, N. Schwadron4,1, P. Valek1, S. Weidner1 1Southwest Research Institute®, San Antonio, Texas 78228-0510, U.S.A. 2University of Colorado, Boulder, Colorado 80309, U.S.A. 3Midwest Research Institute, Kansas City Missouri 64110, U.S.A. 4Boston University, Boston Massachusetts 02215, U.S.A. ( *author for correspondence, e-mail: [email protected]) Abstract. The Solar Wind Around Pluto (SWAP) instrument on New Horizons will measure the interaction between the solar wind and ions created by atmospheric loss from Pluto. These measurements provide a characterization of the total loss rate and allow us to examine the complex plasma interactions at Pluto for the first time. Constrained to fit within minimal resources, SWAP is optimized to make plasma-ion measurements at all rotation angles as the New Horizons spacecraft scans to image Pluto and Charon during the flyby. In order to meet these unique requirements, we combined a cylindrically symmetric retarding potential analyzer (RPA) with small deflectors, a top-hat analyzer, and a redundant/coincidence detection scheme. This configuration allows for highly sensitive measurements and a controllable energy passband at all scan angles of the spacecraft. Keywords: solar wind, Pluto plasma interaction, pickup ions 1.0 Introduction The New Horizons mission [Stern et al., 2007] will make the first up-close and detailed observations of Pluto and its moons. These observations include measurements of the solar wind interaction with Pluto. The Solar Wind Around Pluto (SWAP) instrument is designed to measure the tenuous solar wind out at ~30 AU and its interaction with Pluto. SWAP directly addresses the Group 1 science objective for the New Horizons mission to “characterize the neutral atmosphere of Pluto and its escape rate.” In addition, SWAP makes measurements critical for the Group 2 objective of characterizing Pluto's 1 ionosphere and solar wind interaction. Finally, SWAP makes observations relevant to two Group 3 science objectives for New Horizons, both in support of characterizing the energetic particle environment of Pluto and Charon and in searching for magnetic fields of Pluto and Charon. As the solar wind approaches Pluto, it interacts with ions produced when Pluto’s thin upper atmosphere escapes, streams away as neutral particles, and becomes ionized. This pickup process slows the solar wind, and the type of interaction varies greatly depending on the atmospheric escape rate. SWAP measurements should provide the best estimate of the overall atmospheric escape rate at Pluto and allow the first detailed examination of its plasma interactions with the solar wind. The SWAP observations are extremely challenging because the solar wind flux, which falls off roughly as the square with distance, is approximately three orders of magnitude lower at Pluto compared to typical solar wind fluxes observed near Earth’s orbit. In addition, because the solar wind continues to cool as it propagates out through the heliosphere, the solar wind beam becomes narrow in both angle and energy. The SWAP design was strongly driven by three constraints: 1) very low use of spacecraft resources (mass, power, telemetry, etc.) as this is a non-core instrument on a relatively small planetary mission; 2) very high sensitivity to measure the solar wind and its interaction with Pluto out at ~30 AU, where the density is down by a factor of ~1000 compared to 1 AU; and 3) the need to make observations over a very large range of angles as the spacecraft constantly repoints its body- mounted cameras during the flyby. Given these not-entirely-consistent design drivers, we developed an entirely new design that combines elements of several different previous plasma instruments. Together these components comprise the SWAP instrument, which will measure the speed, density, and temperature of the distant solar wind and its interaction with Pluto. 2 2.0 Scientific Background and Objectives Only partly in jest, Dessler and Russell (1980) suggested that Pluto might act like a colossal comet. The 1988 stellar occultation showed that Pluto’s tenuous atmosphere could indeed be escaping (Hubbard et al., 1988; Elliot et al., 1989). Applying basic cometary theories to Pluto, Bagenal and McNutt (1989) showed that photoionization of escaping neutral molecules from Pluto’s atmosphere could significantly alter the solar wind flow around Pluto for sufficiently large escape rates. For large atmospheric escape rates, the interaction may be best described as “comet-like,” with significant mass-loading over an extensive region; for small escape rates the interaction is probably confined to a much smaller region, creating a more “Venus-like” interaction (Luhmann et al., 1991), where electrical currents in the gravitationally bound ionosphere deflect the solar wind flow. Figure 1 compares these two types of interactions schematically. At aphelion (50 AU), should Pluto’s atmosphere completely collapse and freeze onto the surface, then the interaction becomes “Moon-like” with the solar wind suffering minimal deflection and directly bombarding the bare, icy dayside surface. Not having a detectable atmosphere, Charon almost certainly has such a “Moon-like” interaction, remaining primarily in the solar wind if Pluto’s interaction is weak but becoming totally engulfed if Pluto’s interaction is strongly “comet-like” and extends beyond Charon’s orbit at 17 RP (Pluto radii, ~1150 km). For a review of early studies of the solar wind interaction with Pluto see Bagenal et al. (1997), which also reviews the implications of the unlikely possibility of Pluto having an intrinsic magnetic field. The solar wind is supersonic so that when the flow impinges on an obstacle (such as the magnetosphere of the Earth or other planet) an upstream bow shock must form to slow and deflect the supersonic (actually superfast-mode magnetosonic) plasma. The weak interplanetary magnetic field (IMF) at 30 AU (see Table I for typical solar wind properties near Pluto) and heavy ions formed by photoionizing the heavy molecules of Pluto’s escaping atmosphere have very large gyroradi (~500 RP). The net results of these non-fluid or kinetic effects are to make the bow shock a thick transition region and to make the shape of the interaction region asymmetric where the direction of asymmetry is governed by the direction of the IMF. Recent simulations of the solar wind interaction with a strongly escaping 3 atmosphere have necessarily been 3D and have either taken a multi-fluid approach (solar wind proton fluid and pick-up ion fluid) or a hybrid approach (electron fluid, ion particles) (Harnett et al. 2005, Delamere and Bagenal, 2004). Table I. Typical Solar wind Interaction Properties at Pluto (at 30 AU), taken from Bagenal et al. (1997) using Rp=1150 km. Magnetic field 0.2 nT Proton density 0.01 cm-3 Solar wind speed 450 km/s Proton temperature 1.3 eV Alfvén Mach number ~45 Sonic Mach number ~40 Proton gyroradius 23,000 km (~20 Rp) N2+ gyroradius 658,000 km (~550 Rp) Ion inertial length 2280 (~2 Rp) Electron inertial length 53 km Figure 1. Solar wind interaction with Pluto for (a) low atmospheric escape rate and (b) high atmospheric escape rate. The dots indicate ions produced by the photoionization of Pluto’s escaping atmosphere. These pick-up ions will move perpendicular to both the magnetic field (B) and solar wind (upwards in the top two diagrams). Note that while the IMF tends to be close to 4 tangential to Sun direction, the sign of the direction varies on timescales of days. The asymmetries of the interaction will flip as the magnetic field changes direction. Below we discuss how the current understanding of Pluto’s atmosphere leads us to expect a more comet-like interaction at the time of the New Horizons flyby in 2015. Through measurements of bulk properties of the solar wind (flow, density, temperature) as well as the energy distribution of solar wind and pick-up ions, the SWAP instrument will not only characterize the solar wind interaction with Pluto but will also allow us to determine the global rate of atmospheric escape. In the comet-like scenario, variations on the scale of the interaction region can be substantial over periods of days, and a factor of ~10 variations in the solar wind flux can change the size of the interaction region from a few to more than 20 RP. It is therefore critical to measure the solar wind for several solar rotations (~26 days per rotation) before and after the flyby in order to characterize the most likely external solar wind properties during the actual encounter period. Furthermore, since the strong asymmetry of the interaction depends on the direction of the IMF, our analysis of SWAP data will need assistance from increasingly capable models of solar wind structure based on plasma and magnetometer data from spacecraft elsewhere in the solar system. 2.1 Atmospheric Escape The exact nature of Pluto’s plasma interaction is critically dependent on the hydrodynamic escape rate of the atmosphere from its weak gravity. Escaping neutrals are photoionized by solar UV (or, less likely, suffer an ionizing collision). Freshly ionized particles experience an electric field due to their motion relative to the IMF (that is carried away from the Sun at ~400 km/s) and are accelerated by this motional electric field, extracting momentum from the solar wind flow. This electrodynamic interaction modifies the solar wind flow. Estimates of Pluto’s atmospheric escape rate, Q, vary substantially: McNutt (1989) estimated 2.3-5.5 x 27 -1 10 s for CH4-dominated outflow, Krasnopolsky (1999) found a hydrodynamic 27 -1 outflow of N2 of 2.0-2.6 x 10 s , while Tian and Toon (2005) derived values for 28 -1 N2 escape as high as 2 x 10 s .
Recommended publications
  • Juno Telecommunications
    The cover The cover is an artist’s conception of Juno in orbit around Jupiter.1 The photovoltaic panels are extended and pointed within a few degrees of the Sun while the high-gain antenna is pointed at the Earth. 1 The picture is titled Juno Mission to Jupiter. See http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA13087 for the cover art and an accompanying mission overview. DESCANSO Design and Performance Summary Series Article 16 Juno Telecommunications Ryan Mukai David Hansen Anthony Mittskus Jim Taylor Monika Danos Jet Propulsion Laboratory California Institute of Technology Pasadena, California National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California October 2012 This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology. Copyright 2012 California Institute of Technology. Government sponsorship acknowledged. DESCANSO DESIGN AND PERFORMANCE SUMMARY SERIES Issued by the Deep Space Communications and Navigation Systems Center of Excellence Jet Propulsion Laboratory California Institute of Technology Joseph H. Yuen, Editor-in-Chief Published Articles in This Series Article 1—“Mars Global
    [Show full text]
  • Mars Reconnaissance Orbiter
    Chapter 6 Mars Reconnaissance Orbiter Jim Taylor, Dennis K. Lee, and Shervin Shambayati 6.1 Mission Overview The Mars Reconnaissance Orbiter (MRO) [1, 2] has a suite of instruments making observations at Mars, and it provides data-relay services for Mars landers and rovers. MRO was launched on August 12, 2005. The orbiter successfully went into orbit around Mars on March 10, 2006 and began reducing its orbit altitude and circularizing the orbit in preparation for the science mission. The orbit changing was accomplished through a process called aerobraking, in preparation for the “science mission” starting in November 2006, followed by the “relay mission” starting in November 2008. MRO participated in the Mars Science Laboratory touchdown and surface mission that began in August 2012 (Chapter 7). MRO communications has operated in three different frequency bands: 1) Most telecom in both directions has been with the Deep Space Network (DSN) at X-band (~8 GHz), and this band will continue to provide operational commanding, telemetry transmission, and radiometric tracking. 2) During cruise, the functional characteristics of a separate Ka-band (~32 GHz) downlink system were verified in preparation for an operational demonstration during orbit operations. After a Ka-band hardware anomaly in cruise, the project has elected not to initiate the originally planned operational demonstration (with yet-to-be­ used redundant Ka-band hardware). 201 202 Chapter 6 3) A new-generation ultra-high frequency (UHF) (~400 MHz) system was verified with the Mars Exploration Rovers in preparation for the successful relay communications with the Phoenix lander in 2008 and the later Mars Science Laboratory relay operations.
    [Show full text]
  • FDIR Variability and Impacts on Avionics
    FDIR variability and impacts on avionics : Return of Experience and recommendations for the future Jacques Busseuil Antoine Provost-Grellier Thales Alenia Space ADCSS 2011- FDIR - 26/10/2011 All rights reserved, 2007, Thales Alenia Space Presentation summary Page 2 • Survey of FDIR main features and in-flight experience if any for various space domains and missions Earth Observation (Meteosat Second Generation - PROTEUS) Science missions (Herschel/Planck) Telecommunication (Spacebus – constellations) • FDIR main features for short term ESA programs and trends (if any!) Exploration missions (Exomars) Meteosat Third Generation (MTG) The Sentinels Met-OP Second Generation • Conclusion and possible recommendations From in-flight experience and trends Thales Alenia Spacs ADCSS 2011- FDIR - 26/10/11 All rights reserved, 2007, Thales Alenia Space MSG (1) – FDIR Specification Page 3 The MeteoSat 2nd Generation has a robust concept : Spin stabilised in GEO : no risk of loss of attitude control 360° solar array : solar power available in most satellite attitudes on-board autonomy requirements : GEO - normal operations : 24 hours autonomous survival after one single failure occurrence. LEOP - normal operations : 13 hours autonomous survival after one single failure occurrence (one eclipse crossing max.) GEO & LEOP - critical operations : ground reaction within 2 minutes FDIR implementation to cover autonomy requirement Time criticality (in GEO normal ops) criticality < 5 sec handled at unit H/W level criticality > 5sec & < 24hours handled at S/W level criticality > 24hours handled by the ground segment On-board autonomous actions classification level A: handled internally to CDMU / DHSW: transparent wrt mission impacts. (e.g. single bit correction) level B: action limited to a few units reconfiguration or switch-off.
    [Show full text]
  • Survey of Juno Observations in Jupiter's Plasma Disk: Density
    RESEARCH ARTICLE Survey of Juno Observations in Jupiter's Plasma Disk: 10.1029/2021JA029446 Density Key Points: E. Huscher1, F. Bagenal1 , R. J. Wilson1 , F. Allegrini2,3 , R. W. Ebert2,3 , P. W. Valek2 , • On most orbits, the densities exhibit J. R. Szalay4 , D. J. McComas4 , J. E. P. Connerney5,6 , S. Bolton2 , and S. M. Levin7 regular behavior mapping out a disk confined close to the centrifugal 1Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA, 2Southwest Research equator 3 • Small-scale ( minutes) variabilities Institute, San Antonio, TX, USA, Department of Physics and Astronomy, University of Texas at San Antonio, San 4 5 may indicate∼ radial transport via Antonio, TX, USA, Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA, Space Research local instabilities Corporation, Annapolis, MD, USA, 6Goddard Space Flight Center, Greenbelt, MD, USA, 7Jet Propulsion Laboratory/ • Occasionally a uniformly tenuous California Institute of Technology, Pasadena, CA, USA outer disk indicates enhanced losses, perhaps triggered by solar wind compression Abstract We explore the variation in plasma conditions through the middle magnetosphere of Jupiter with latitude and radial distance using Juno-JADE measurements of plasma density (electrons, protons, Supporting Information: sulfur, and oxygen ions) surveyed on Orbits 5–26 between March 2017 and April 2020. On most orbits, the Supporting Information may be found in the online version of this article. densities exhibit regular behavior, mapping out a disk between 10 and 50 RJ (Jovian radii). In the disk, the heavy ions are confined close to the centrifugal equator which oscillates relative to the spacecraft due to the 10° tilt of Jupiter's magnetic dipole.
    [Show full text]
  • + New Horizons
    Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16
    [Show full text]
  • Jpl Anomaly Issues
    National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology JPL ANOMALY ISSUES Henry B. Garrett Jet Propulsion Laboratory California Institute of Technology Pasadena, CA, 91109 National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Space Weather Anomaly Concerns for JPL Robotic Mission AGENDA Overview of Space Weather Anomalies on JPL Missions Space Weather Products used by JPL Ops for Anomaly Mitigation and Resolution Suggested Improvements in Anomaly Mitigation Procedures for JPL Missions Summary National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Overview of Space Weather Anomalies on JPL Missions National Aeronautics and Space Administration Jet Propulsion Laboratory Space Weather Effects on Ops California Institute of Technology Some Examples of Space Weather Effects on JPL Spacecraft Ops National Aeronautics and Space Administration Solar Proton Event (SPE) Jet Propulsion Laboratory California Institute of Technology Effects on Cassini Lessons Learned: Real Time SPE Observations can Predict Effects on Ops (Cassini Solid State Recorder Upsets) National Aeronautics and Space Administration Space Weather Anomalies on JPL Ops Jet Propulsion Laboratory California Institute of Technology During the 2003 Halloween Storms Oct 23: Genesis at L1 entered safe mode. Normal operations resumed on Nov. 3 Oct 24: Midori-2 Polar satellite failed (Spacecraft Charging…) Stardust comet mission went into safe mode; recovered. Oct 28: ACE lost plasma observations. Mars Odyssey entered Safe mode Oct 29: During download Mars Odyssey had a memory error MARIE instrument powered off (has NOT recovered) Oct 30: Both MER entered “Sun Idle” mode due to excessive star tracker events Two UV experiments on GALEX had excess charge so high voltages turned off.
    [Show full text]
  • The Suitability of Quantum Magnetometers for Defence Applications
    The Suitability of Quantum Magnetometers for Defence Applications UDT 2019 - 14th May 2019 Andrew Bond and Leighton Brown Presented by Nick Sheppard © Thales UK Limited 2019 The copyright herein is the property of Thales UK Limited. It is not to be reproduced, modified, adapted, published, translated in any material form (including storage in any medium by electronic means whether or not transiently or incidentally), in whole or in part nor disclosed to any third party without the prior written permission of Thales UK Limited. Neither shall it be used otherwise than for the purpose for which it is supplied. The information contained herein is confidential and, subject to any rights of third parties, is proprietary to Thales UK Limited. It is intended only for the authorised recipient for the intended purpose, and access to it by any other person is unauthorised. The information contained herein may not be disclosed to any third party or used for any other purpose without the express written permission of Thales UK Limited. If you are not the intended recipient, you must not disclose, copy, circulate or in any other way use or rely on the information contained in this document. Such unauthorised use may be unlawful. If you have received this document in error, please inform Thales UK Limited immediately on +44 (0)118 9434500 and post it, together with your name and address, to The Intellectual Property Department, Thales UK Limited, 350 Longwater Avenue, Green Park, Reading RG2 6GF. Postage will be refunded. www.thalesgroup.com OPEN Quantum Devices ▌Quantum technologies are beginning to move out of laboratory environments and into industrial applications.
    [Show full text]
  • Amazing Discoveries Satellite Schedule
    Amazing Discoveries Satellite Schedule Thatch is starred: she pullulating serially and mail her bow. Devoted Jacques sometimes compromises his sax unpoetically and jollying so temporarily! Hindu and loosest Grover denominates her limits forsaking laudably or kiboshes ripely, is Aldric tangential? It is now on a collision course with Earth. With their computer codes using a technique called machine learning the researchers in Bern and Seattle were able to calibrate the Kepler data within record time working day and night. Astronomy has seen so much progress and change in the last decade. Circumbinary planets are those that orbit two stars. The images we returned, built, astronomers and engineers devised a way to repurpose and save the space telescope by changing its field of view periodically. The hotter it gets, the star and the planet. Five, or after all that planning, smartest opinion takes of the week. This is similar to a normal safe mode configuration, NASA calibrates the data of the Kepler Space Telescope in a lengthy procedure before public release, sunlight is one hundred times weaker. Supercomputers are changing the way scientists explore the evolution of our universe, but generally orbit so close to their parent stars that they are hot, to understand its deep history and explore its rings. The water that now lies frozen within its interior was once liquid. At the end of the mission the spacecraft was low on fuel and it had suffered a lot of radiation damage, except for Venus and Uranus, such as its size and how long it takes to orbit. Lyra region in the northern sky was chosen for its rich field of stars somewhat richer than a southern field.
    [Show full text]
  • 2018: Aiaa-Space-Report
    AIAA TEAM SPACE TRANSPORTATION DESIGN COMPETITION TEAM PERSEPHONE Submitted By: Chelsea Dalton Ashley Miller Ryan Decker Sahil Pathan Layne Droppers Joshua Prentice Zach Harmon Andrew Townsend Nicholas Malone Nicholas Wijaya Iowa State University Department of Aerospace Engineering May 10, 2018 TEAM PERSEPHONE Page I Iowa State University: Persephone Design Team Chelsea Dalton Ryan Decker Layne Droppers Zachary Harmon Trajectory & Propulsion Communications & Power Team Lead Thermal Systems AIAA ID #908154 AIAA ID #906791 AIAA ID #532184 AIAA ID #921129 Nicholas Malone Ashley Miller Sahil Pathan Joshua Prentice Orbit Design Science Science Science AIAA ID #921128 AIAA ID #922108 AIAA ID #761247 AIAA ID #922104 Andrew Townsend Nicholas Wijaya Structures & CAD Trajectory & Propulsion AIAA ID #820259 AIAA ID #644893 TEAM PERSEPHONE Page II Contents 1 Introduction & Problem Background2 1.1 Motivation & Background......................................2 1.2 Mission Definition..........................................3 2 Mission Overview 5 2.1 Trade Study Tools..........................................5 2.2 Mission Architecture.........................................6 2.3 Planetary Protection.........................................6 3 Science 8 3.1 Observations of Interest.......................................8 3.2 Goals.................................................9 3.3 Instrumentation............................................ 10 3.3.1 Visible and Infrared Imaging|Ralph............................ 11 3.3.2 Radio Science Subsystem.................................
    [Show full text]
  • The Pickup Ion-Mediated Solar Wind
    The Astrophysical Journal, 869:23 (21pp), 2018 December 10 https://doi.org/10.3847/1538-4357/aaebfe © 2018. The American Astronomical Society. All rights reserved. The Pickup Ion-mediated Solar Wind G. P. Zank1,2 , L. Adhikari1 , L.-L. Zhao1 , P. Mostafavi2,3 , E. J. Zirnstein3 , and D. J. McComas3 1 Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805, USA 2 Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899, USA 3 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA Received 2018 September 10; revised 2018 October 22; accepted 2018 October 24; published 2018 December 7 Abstract The New Horizons Solar Wind Around Pluto (NH SWAP) instrument has provided the first direct observations of interstellar H+ and He+ pickup ions (PUIs) at distances between ∼11.26 and 38 au in the solar wind. The observations demonstrate that the distant solar wind beyond the hydrogen ionization cavity is indeed mediated by PUIs. The creation of PUIs modifies the underlying low-frequency turbulence field responsible for their own scattering. The dissipation of these low-frequency fluctuations serves to heat the solar wind plasma, and accounts for the observed non-adiabatic solar wind temperature profile and a possible slow temperature increase beyond ∼30 au. We develop a very general theoretical model that incorporates PUIs, solar wind thermal plasma, the interplanetary magnetic field, and low-frequency turbulence to describe the evolution of the large-scale solar wind, PUIs, and turbulence from 1–84 au, the structure of the perpendicular heliospheric termination shock, and the transmission of turbulence into the inner heliosheath, extending the classical models of Holzer and Isenberg.
    [Show full text]
  • 1 the New Horizons Spacecraft Glen H. Fountain, David Y
    The New Horizons Spacecraft Glen H. Fountain, David Y. Kusnierkiewicz, Christopher B. Hersman, Timothy S. Herder, Thomas B Coughlin, William T. Gibson, Deborah A. Clancy, Christopher C. DeBoy, T. Adrian Hill, James D. Kinnison, Douglas S. Mehoke, Geffrey K. Ottman, Gabe D. Rogers, S. Alan Stern, James M. Stratton, Steven R. Vernon, Stephen P. Williams Abstract The New Horizons spacecraft was launched on January 19, 2006. The spacecraft was designed to provide a platform for the seven instruments designated by the science team to collect and return data from Pluto in 2015 that would meet the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AO-OSS-01. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other NASA missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration consistent with meeting the AO requirement of returning data prior to the year 2020. The spacecraft subsystems were designed to meet tight resource allocations (mass and power) yet provide the necessary control and data handling finesse to support data collection and return when the one way light time during the Pluto fly-by is 4.5 hours. Missions to the outer regions of the solar system (where the solar irradiance is 1/1000 of the level near the Earth) require a Radioisotope Thermoelectric Generator (RTG) to supply electrical power. One RTG was available for use by New Horizons. To accommodate this constraint, the spacecraft electronics were designed to operate on less than 200 W.
    [Show full text]
  • NASA Finds Neptune Moons Locked in 'Dance of Avoidance' 15 November 2019, by Gretchen Mccartney
    NASA finds Neptune moons locked in 'dance of avoidance' 15 November 2019, by Gretchen McCartney Although the dance may appear odd, it keeps the orbits stable, researchers said. "We refer to this repeating pattern as a resonance," said Marina Brozovi?, an expert in solar system dynamics at NASA's Jet Propulsion Laboratory in Pasadena, California, and the lead author of the new paper, which was published Nov. 13 in Icarus. "There are many different types of 'dances' that planets, moons and asteroids can follow, but this one has never been seen before." Far from the pull of the Sun, the giant planets of the Neptune Moon Dance: This animation illustrates how the outer solar system are the dominant sources of odd orbits of Neptune's inner moons Naiad and gravity, and collectively, they boast dozens upon Thalassa enable them to avoid each other as they race dozens of moons. Some of those moons formed around the planet. Credit: NASA alongside their planets and never went anywhere; others were captured later, then locked into orbits dictated by their planets. Some orbit in the opposite direction their planets rotate; others swap orbits Even by the wild standards of the outer solar with each other as if to avoid collision. system, the strange orbits that carry Neptune's two innermost moons are unprecedented, according to Neptune has 14 confirmed moons. Neso, the newly published research. farthest-flung of them, orbits in a wildly elliptical loop that carries it nearly 46 million miles (74 million Orbital dynamics experts are calling it a "dance of kilometers) away from the planet and takes 27 avoidance" performed by the tiny moons Naiad years to complete.
    [Show full text]