82803295.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dopamine D1 Rather Than D2 Receptor Agonists Disrupt Prepulse Inhibition of Startle in Mice
Neuropsychopharmacology (2003) 28, 108–118 & 2003 Nature Publishing Group All rights reserved 0893-133X/03 $25.00 www.neuropsychopharmacology.org Dopamine D1 Rather than D2 Receptor Agonists Disrupt Prepulse Inhibition of Startle in Mice 1 2 ,2 Rebecca J Ralph-Williams , Virginia Lehmann-Masten and Mark A Geyer* 1 2 Alcohol and Drug Abuse Research Center, Harvard Medical School and McLean Hospital, Belmont, MA, USA; Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA Although substantial literature describes the modulation of prepulse inhibition (PPI) by dopamine (DA) in rats, few reports address the effects of dopaminergic manipulations on PPI in mice. We characterized the effects of subtype-specific DA agonists in the PPI paradigm to further delineate the specific influences of each DA receptor subtype on sensorimotor gating in mice. The mixed D1/D2 agonist apomorphine and the preferential D1-family agonists SKF82958 and dihydrexidine significantly disrupted PPI, with differing or no effects on startle. In contrast to findings in rats, the D2/D3 agonist quinpirole reduced startle but had no effect on PPI. Pergolide, which has affinity for D2/D3 and D1-like receptors, reduced both startle and PPI, but only at the higher, nonspecific doses. In addition, the D1-family receptor antagonist SCH23390 blocked the PPI-disruptive effects of apomorphine on PPI, but the D2-family receptor antagonist raclopride failed to alter the disruptive effect of apomorphine. These studies reveal potential species differences in the DA receptor modulation of PPI between rats and mice, where D1-family receptors may play a more prominent and independent role in the modulation of PPI in mice than in rats. -
Dopamine: a Role in the Pathogenesis and Treatment of Hypertension
Journal of Human Hypertension (2000) 14, Suppl 1, S47–S50 2000 Macmillan Publishers Ltd All rights reserved 0950-9240/00 $15.00 www.nature.com/jhh Dopamine: a role in the pathogenesis and treatment of hypertension MB Murphy Department of Pharmacology and Therapeutics, National University of Ireland, Cork, Ireland The catecholamine dopamine (DA), activates two dis- (largely nausea and orthostasis) have precluded wide tinct classes of DA-specific receptors in the cardio- use of D2 agonists. In contrast, the D1 selective agonist vascular system and kidney—each capable of influenc- fenoldopam has been licensed for the parenteral treat- ing systemic blood pressure. D1 receptors on vascular ment of severe hypertension. Apart from inducing sys- smooth muscle cells mediate vasodilation, while on temic vasodilation it induces a diuresis and natriuresis, renal tubular cells they modulate sodium excretion. D2 enhanced renal blood flow, and a small increment in receptors on pre-synaptic nerve terminals influence nor- glomerular filtration rate. Evidence is emerging that adrenaline release and, consequently, heart rate and abnormalities in DA production, or in signal transduc- vascular resistance. Activation of both, by low dose DA tion of the D1 receptor in renal proximal tubules, may lowers blood pressure. While DA also binds to alpha- result in salt retention and high blood pressure in some and beta-adrenoceptors, selective agonists at both DA humans and in several animal models of hypertension. receptor classes have been studied in the treatment of -
TECHNISCHE UNIVERSITÄT MÜNCHEN Large Scale
TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Genomorientierte Bioinformatik Large Scale Knowledge Extraction from Biomedical Literature Based on Semantic Role Labeling Thorsten Barnickel Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzende: Univ.‐Prof. Dr. I. Antes Prüfer der Dissertation: 1. Univ.‐Prof. Dr. H.‐W. Mewes 2. Univ.‐Prof. Dr. R. Zimmer (Ludwig‐Maximilians‐Universität München) Die Dissertation wurde am 30. Juli bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 25. November 2009 angenommen. ACKNOWLEDGEMENTS First and foremost, I would like to express my deep gratitude to my promoter Dr. Volker Stümpflen. Without his continuing, stimulating encouragement and his excellent background in Enterprise technologies still being predominantly used in the IT-industry rather than in academic research, I would not have been able to finish my doctorate in the presented form. Facing the tremendous amount of data that was generated by gathering the positional information of millions of biomedical terms, I was close to cutting the project down to a notably smaller version compared to the text mining system presented in this thesis. Volkers knowledge on database servers and performance tuning significantly contributed to the development of a database schema finally being able to cope with the immense amount of data. I would also like to cordially thank Prof. Dr. Hans-Werner Mewes, head of the Institute for Bioinformatics and Systems Biology (IBIS), for giving me the opportunity to do my doctorate at his institute and for his friendly support and encouragement all along my time at IBIS. -
Title Structure of the Human Histamine H1 Receptor Complex With
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Structure of the human histamine H1 receptor complex with Title doxepin. Shimamura, Tatsuro; Shiroishi, Mitsunori; Weyand, Simone; Tsujimoto, Hirokazu; Winter, Graeme; Katritch, Vsevolod; Author(s) Abagyan, Ruben; Cherezov, Vadim; Liu, Wei; Han, Gye Won; Kobayashi, Takuya; Stevens, Raymond C; Iwata, So Citation Nature (2011), 475(7354): 65-70 Issue Date 2011-07-07 URL http://hdl.handle.net/2433/156845 © 2011 Nature Publishing Group, a division of Macmillan Right Publishers Limited. Type Journal Article Textversion author Kyoto University Title: Structure of the human histamine H1 receptor in complex with doxepin. Authors Tatsuro Shimamura 1,2,3*, Mitsunori Shiroishi 1,2,4*, Simone Weyand 1,5,6, Hirokazu Tsujimoto 1,2, Graeme Winter 6, Vsevolod Katritch7, Ruben Abagyan7, Vadim Cherezov3, Wei Liu3, Gye Won Han3, Takuya Kobayashi 1,2‡, Raymond C. Stevens3‡and So Iwata1,2,5,6,8‡ 1. Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan. 2. Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-Ku, Kyoto 606-8501, Japan. 3. Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. 4. Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan. 5. Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK. 6. Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK. -
Antagonism of Dopamine D2 Receptor/Я-Arrestin 2 Interaction Is a Common Property of Clinically Effective Antipsychotics
Antagonism of dopamine D2 receptor/-arrestin 2 interaction is a common property of clinically effective antipsychotics Bernard Masri, Ali Salahpour, Michael Didriksen*, Valentina Ghisi, Jean-Martin Beaulieu†, Raul R. Gainetdinov‡, and Marc G. Caron§ Departments of Cell Biology, Medicine and Neurobiology, Duke University Medical Center, Durham, NC 27710 Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved July 8, 2008 (received for review April 10, 2008) Since the unexpected discovery of the antipsychotic activity of beit with different potency, on the dopamine (DA) system. It has chlorpromazine, a variety of therapeutic agents have been devel- been demonstrated that clinical efficacy of essentially all anti- oped for the treatment of schizophrenia. Despite differences in psychotic drugs (including traditional and newer antipsychotics) their activities at various neurotransmitter systems, all clinically is directly correlated with dopamine D2 receptor (D2R) binding effective antipsychotics share the ability to interact with D2 class affinity and their capacity to antagonize this receptor (5, 6). It dopamine receptors (D2R). D2R mediate their physiological effects is commonly believed that the D2R, which belongs to the G via both G protein-dependent and independent (-arrestin 2- protein-coupled receptor (GPCR) family, mediates the major dependent) signaling, but the role of these D2R-mediated signaling part of its signaling and functions by coupling to Gi/o proteins to events in the actions of antipsychotics remains unclear. We dem- negatively regulate cAMP production. Thus, studies aimed at onstrate here that while different classes of antipsychotics have assessing the efficacy of antipsychotics on D2R signaling have complex pharmacological profiles at G protein-dependent D2R classically been mainly concerned with measuring Gi/o-mediated long isoform (D2LR) signaling, they share the common property of inhibition of cAMP. -
Repeated Quinpirole Treatment Increases Camp-Dependent Protein
Neuropsychopharmacology (2004) 29, 1823–1830 & 2004 Nature Publishing Group All rights reserved 0893-133X/04 $30.00 www.neuropsychopharmacology.org Repeated Quinpirole Treatment Increases cAMP-Dependent Protein Kinase Activity and CREB Phosphorylation in Nucleus Accumbens and Reverses Quinpirole-Induced Sensorimotor Gating Deficits in Rats 1 1 3 ,1,2 Kerry E Culm , Natasha Lugo-Escobar , Bruce T Hope and Ronald P Hammer Jr* 1 2 Departments of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA, USA; Neuroscience, Anatomy 3 and Psychiatry, Tufts University School of Medicine, Boston, MA, USA; Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA Sensorimotor gating, which is severely disrupted in schizophrenic patients, can be measured by assessing prepulse inhibition of the acoustic startle response (PPI). Acute administration of D -like receptor agonists such as quinpirole reduces PPI, but tolerance occurs 2 upon repeated administration. In the present study, PPI in rats was reduced by acute quinpirole (0.1 mg/kg, s.c.), but not following repeated quinpirole treatment once daily for 28 days. Repeated quinpirole treatment did not alter the levels of basal-, forskolin- (5 mM), or SKF 82958- (10 mM) stimulated adenylate cyclase activity in the nucleus accumbens (NAc), but significantly increased cAMP- dependent protein kinase (PKA) activity. Phosphorylation of cAMP response element-binding protein (CREB) was significantly greater in the NAc after repeated quinpirole treatment than after repeated saline treatment with or without acute quinpirole challenge. Activation of PKA by intra-accumbens infusion of the cAMP analog, Sp-cAMPS, prevented acute quinpirole-induced PPI disruption, similar to the behavioral effect observed following repeated quinpirole treatment. -
Repeated Administration of Aripiprazole Produces A
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications, Department of Psychology Psychology, Department of 2015 Repeated administration of aripiprazole produces a sensitization effect in the suppression of avoidance responding and phencyclidine-induced hyperlocomotion and increases D2 receptor- mediated behavioral function Jun Gao University of Nebraska–Lincoln Rongyin Qin University of Nebraska–Lincoln Ming Li University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/psychfacpub Part of the Applied Behavior Analysis Commons, Experimental Analysis of Behavior Commons, and the Health Psychology Commons Gao, Jun; Qin, Rongyin; and Li, Ming, "Repeated administration of aripiprazole produces a sensitization effect in the suppression of avoidance responding and phencyclidine-induced hyperlocomotion and increases D2 receptor-mediated behavioral function" (2015). Faculty Publications, Department of Psychology. 681. http://digitalcommons.unl.edu/psychfacpub/681 This Article is brought to you for free and open access by the Psychology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, Department of Psychology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Journal of Psychopharmacology 29:4 (2015), pp. 390–400; doi: 10.1177/0269881114565937 Copyright © 2014 Jun Gao, Rongyin Qin, and Ming Li. Published by SAGE Publications. Used by permission. digitalcommons.unl.edudigitalcommons.unl.edu Repeated administration of aripiprazole produces a sensitization effect in the suppression of avoidance responding and phencyclidine-induced hyperlocomotion and increases D2 receptor-mediated behavioral function Jun Gao,1 Rongyin Qin,1,2,3 and Ming Li1 1 Department of Psychology, University of Nebraska–Lincoln, Lincoln, NE, USA 2 Department of Neurology, The Clinical Medical College of Yangzhou University, Yangzhou, PR China 3 Department of Neurology, Changzhou No. -
GPCR/G Protein
Inhibitors, Agonists, Screening Libraries www.MedChemExpress.com GPCR/G Protein G Protein Coupled Receptors (GPCRs) perceive many extracellular signals and transduce them to heterotrimeric G proteins, which further transduce these signals intracellular to appropriate downstream effectors and thereby play an important role in various signaling pathways. G proteins are specialized proteins with the ability to bind the nucleotides guanosine triphosphate (GTP) and guanosine diphosphate (GDP). In unstimulated cells, the state of G alpha is defined by its interaction with GDP, G beta-gamma, and a GPCR. Upon receptor stimulation by a ligand, G alpha dissociates from the receptor and G beta-gamma, and GTP is exchanged for the bound GDP, which leads to G alpha activation. G alpha then goes on to activate other molecules in the cell. These effects include activating the MAPK and PI3K pathways, as well as inhibition of the Na+/H+ exchanger in the plasma membrane, and the lowering of intracellular Ca2+ levels. Most human GPCRs can be grouped into five main families named; Glutamate, Rhodopsin, Adhesion, Frizzled/Taste2, and Secretin, forming the GRAFS classification system. A series of studies showed that aberrant GPCR Signaling including those for GPCR-PCa, PSGR2, CaSR, GPR30, and GPR39 are associated with tumorigenesis or metastasis, thus interfering with these receptors and their downstream targets might provide an opportunity for the development of new strategies for cancer diagnosis, prevention and treatment. At present, modulators of GPCRs form a key area for the pharmaceutical industry, representing approximately 27% of all FDA-approved drugs. References: [1] Moreira IS. Biochim Biophys Acta. 2014 Jan;1840(1):16-33. -
Natural Psychoplastogens As Antidepressant Agents
molecules Review Natural Psychoplastogens As Antidepressant Agents Jakub Benko 1,2,* and Stanislava Vranková 1 1 Center of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; [email protected] 2 Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia * Correspondence: [email protected]; Tel.: +421-948-437-895 Academic Editor: Olga Pecháˇnová Received: 31 December 2019; Accepted: 2 March 2020; Published: 5 March 2020 Abstract: Increasing prevalence and burden of major depressive disorder presents an unavoidable problem for psychiatry. Existing antidepressants exert their effect only after several weeks of continuous treatment. In addition, their serious side effects and ineffectiveness in one-third of patients call for urgent action. Recent advances have given rise to the concept of psychoplastogens. These compounds are capable of fast structural and functional rearrangement of neural networks by targeting mechanisms previously implicated in the development of depression. Furthermore, evidence shows that they exert a potent acute and long-term positive effects, reaching beyond the treatment of psychiatric diseases. Several of them are naturally occurring compounds, such as psilocybin, N,N-dimethyltryptamine, and 7,8-dihydroxyflavone. Their pharmacology and effects in animal and human studies were discussed in this article. Keywords: depression; antidepressants; psychoplastogens; psychedelics; flavonoids 1. Introduction 1.1. Depression Depression is the most common and debilitating mental disease. Its prevalence and burden have been steadily rising in the past decades. For example, in 1990, the World Health Organization (WHO) projected that depression would increase from 4th to 2nd most frequent cause of world-wide disability by 2020 [1]. -
Structure, Function, and Pharmaceutical Ligands of 5-Hydroxytryptamine 2B Receptor
pharmaceuticals Review Structure, Function, and Pharmaceutical Ligands of 5-Hydroxytryptamine 2B Receptor Qing Wang 1,2 , Yu Zhou 2 , Jianhui Huang 1 and Niu Huang 2,3,* 1 School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; [email protected] (Q.W.); [email protected] (J.H.) 2 National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; [email protected] 3 Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China * Correspondence: [email protected]; Tel.: +86-10-80720645 Abstract: Since the first characterization of the 5-hydroxytryptamine 2B receptor (5-HT2BR) in 1992, significant progress has been made in 5-HT2BR research. Herein, we summarize the biological function, structure, and small-molecule pharmaceutical ligands of the 5-HT2BR. Emerging evidence has suggested that the 5-HT2BR is implicated in the regulation of the cardiovascular system, fibrosis disorders, cancer, the gastrointestinal (GI) tract, and the nervous system. Eight crystal complex structures of the 5-HT2BR bound with different ligands provided great insights into ligand recognition, activation mechanism, and biased signaling. Numerous 5-HT2BR antagonists have been discovered and developed, and several of them have advanced to clinical trials. It is expected that the novel 5-HT2BR antagonists with high potency and selectivity will lead to the development of first-in-class drugs in various therapeutic areas. Keywords: GPCR; 5-HT2BR; biased signaling; agonist; antagonist Citation: Wang, Q.; Zhou, Y.; Huang, J.; Huang, N. Structure, Function, and Pharmaceutical Ligands of 5-Hydroxytryptamine 2B Receptor. 1. Introduction Pharmaceuticals 2021, 14, 76. -
A Double-Blind Placebo-Controlled Study of Fluvoxamine and Imipramine in Out-Patients with Primary Depression T.M
Br. J. clin. Pharmac. (1983), 15, 433S-438S A DOUBLE-BLIND PLACEBO-CONTROLLED STUDY OF FLUVOXAMINE AND IMIPRAMINE IN OUT-PATIENTS WITH PRIMARY DEPRESSION T.M. ITIL, R.K. SHRIVASTAVA, S. MUKHERJEE, B.S. COLEMAN' & S.T. MICHAEL New York Institute for Research into Contemporary Medicine, Tarrytown, N.Y., affiliated with the Department of Psychiatry, New York Medical College, Valhalla, N.Y. and 'Kali-Duphar Laboratories, Inc., Columbus, Ohio 43229, U.S.A. 1 A double-blind placebo-controlled study of fluvoxamine and imipramine was performed in a group of depressed patients. Twenty-two patients received fluvoxamine (mean dose 101 mg/day), 25 received imipramine (mean dose 127 mg/day) and 22 received placebo. 2 Apart from an increase in the SGOT and SGPT values offour imipramine patients, no statistically significant changes in haematology or urinalysis were judged to be medically relevant. Fluvoxamine exhibited fewer anticholinergic side effects than imipramine. 3 Both fluvoxamine treated patients and imipramine-treated patients exhibited a statistically sig- nificant improvement at the end ofthe 28-day treatment period with respect to the placebo patients, as measured using the Hamilton Rating Scale for Depression, and the Clinical Global Impression Scale. Evaluations ofthe results of the Beck Depression Inventory and the Profile ofMood States revealed a statistically significant improvement for imipramine patients with respect to placebo at week 4, but not for fluvoxamine patients. It is postulated on the basis of quantitative pharmaco-EEG findings, that the slight superiority of imipramine over fluvoxamine was due to underdosing of the latter. Introduction Despite the development of a series of new anti- study in human volunteers (Menon & Vijvers, 1974) depressants, there is still a need to develop an anti- confirmed the absence of anticholinergic effects. -
Mypgx Abstract Booklet
MyPGx® Abstract booklet July 2018 Version number: 003 Content I. General information abstracts – Pharmacogenetics (PGx), single nucleotide polymorphisms (SNPs) and adverse drug reactions (ADRs) 2 II. Psychiatry - MyPSY 10 III. Rheumatology - MyRHUMA 14 IV. Neuology – MyNEURO 16 V. Oncology – MyONCO 18 VI. Cardiology– MyCARDIO 21 VII. APPENDIX 1: U.S.Food & Drug administration (FDA) PGx Biomarker in drug labelling 26 VIII. APPENDIX 2: Genetic biomarkers associated with inter-individual differences in drug pharmacokinetic or pharmacodynamics parameters 42 © 2018 SYNLAB International GmbH. All rights reserved. MyPGx® is a registered trade mark of SYNLAB International GmbH. 1 I. General information abstracts – Pharmacogenetics (PGx), single nucleotide polymorphisms (SNPs) and adverse drug reactions (ADRs) A Survey on Polypharmacy and Use of Inappropriate Medications Rambhade, S., Chakarborty, A., Shrivastava, A., Patil, U. K., & Rambhade, A. (2012). A survey on polypharmacy and use of inappropriate medications. Toxicology international, 19(1), 68. In the past, polypharmacy was referred to the mixing of many drugs in one prescription. Today polypharmacy implies to the prescription of too many medications for an individual patient, with an associated higher risk of adverse drug reactions (ADRs) and interactions. Situations certainly exist where the combination therapy or polytherapy is the used for single disease condition. Polypharmacy is a problem of substantial importance, in terms of both direct medication costs and indirect medication costs resulting from drug-related morbidity. Polypharmacy increases the risk of side effects and interactions. Moreover it is a preventable problem. A retrospective study was carried out at Bhopal district (Capital of Madhya Pradesh, India) in the year of September-November 2009 by collecting prescriptions of consultants at various levels of health care.