SIGPLAN Makes Several Awards Based on Nominations From

Total Page:16

File Type:pdf, Size:1020Kb

SIGPLAN Makes Several Awards Based on Nominations From SIGPLAN makes several awards based on SIGPLAN Awards CRA-W Board as a Regional Mentor, organizer of the nominations from SIGPLAN Members — which CRA-W Programming Language Summer School and means that you can and should make a CRA-W Workshops on programming languages, operating The winners of the 2011 Software Award The winner of the 2011 Outstanding systems, and architecture. Kathryn has served on the nomination! Nominations are accepted at any are Simon Peyton Jones and Simon Marlow Doctoral Dissertation Award is program committees of SIGPLAN's ASPLOS, PLDI, th time; those received by 5 Jan are considered for the Glasgow Haskell Compiler. Robert L. Bocchino, whose dissertation An OOPSLA, CGO, MSP, and ISMM conferences, and non- for the awards of that year. SIGPLAN conferences such as PACT (for which she was Simon Marlow and Effect System and Language for Deterministic- also program chair), SIGMETRICS, CC, ICPP, and ISCA. The winner of the 2011 Programming by-Default Parallel Programming was Languages Achievement Award is Sir Charles completed at the University of Illinois at As a measure of her mentoring skills, Kathryn's students Antony Richard Hoare, FRS, FREng, FBCS. Urbana-Champaign. His advisor was Vikram have also distinguished themselves by winning prestigious Adve awards such as SIGPLAN's Outstanding Doctoral Tony Hoare's long career in Dissertation Award, PLDI's Student Research computing is studded with This dissertation makes Competition, and several Best Presentation awards at seminal engineering and several significant SIGPLAN conferences. They have also won prestigious scientific contributions to contributions to the field of graduate Research Fellowships from Microsoft, Intel, Programming Languages; his parallel and concurrent Samsung, and the National Science Foundation. As a views on programming programming. The main member of the SIGPLAN community and representative language design have been Simon Peyton Jones technical contribution is a to the broader computing community, Kathryn has hugely recognized as profound even receive the SIGPLAN type and effect system that influenced the choices of many to pursue successful by those who declined to Software Award as the enables reasoning about careers in programming language research and follow his advice. authors of the Glasgow Haskell Compiler (GHC), which is non-interference at a fine development. Two contributions stand out as the preeminent lazy functional programming system for granularity. A second contribution is support for The winners of the award for Most fundamental: the development industry, teaching, and research. GHC has not only Influential Paper of PLDI 2000 are Vasanth provided a language implementation, but also established non-deterministic code of what is now known as Bala, Evelyn Duesterwald and Sanjeev Banerji Hoare logic, and the whole paradigm of lazy functional programming and sections that are explicitly Communicating Sequential Processes. Hoare logic is a formed the foundation of a large and enthusiastic user marked as such. A third contribution is support for for Dynamo: A Transparent Dynamic system for reasoning about imperative programs. It was community. object-oriented frameworks, where user extensions are Optimization System introduced in the 1969 article "An Axiomatic Basic for guaranteed to adhere to the framework's effect GHC's flexibility has supported experimental research restrictions. These contributions are backed by formal The winners of the award for Most Computer Programming", which is perhaps the most on programming language design in areas as diverse as influential 6-page paper ever published in CACM. models, soundness proofs, and the Deterministic Parallel Influential Paper of ICFP 2000 are Koen monads, generalized algebraic data types, rank-N Java implementation. Evaluation shows that highly Drawing on earlier work of Robert Floyd, an entire sub- polymorphism, and software transactional memory. Claessen and John Hughes for Quickcheck: A area of computer science has developed from Hoare's satisfactory speedups can be achieved on interesting code Lightweight Tool for Random Testing of Haskell Indeed, a large share of the research on lazy functional bases, sometimes beating the performance of hand-crafted initial ideas; many modern verification systems build on programming in the last 5–10 years has been carried out Programs Hoare logic. implementations. The members of the award committee with GHC. were impressed by the quality of the work and the clarity The winners of the award for Most Only 9 years later, CACM published Hoare's paper on Simultaneously, GHC's reliability and efficiency has of the presentation. Influential Paper of OOPSLA 2000 are Communicating Sequential Processes (CSP). encouraged commercial adoption, in the financial sector The winner of the 2011 SIGPLAN Service Matthew Arnold, Stephen Fink, David Grove, Contemporary with Milner's CCS, but pursuing in institutions like Credit Suisse and Standard Chartered complementary goals, CSP has been enormously Bank, and for high assurance software in companies like Award is Prof. Kathryn McKinley, University Michael Hind and Peter F. Sweeney for influential. It provided the basis for the occam Amgen, Eaton, and Galois. of Texas at Austin. Adaptive Optimization in the Jalapeño JVM programming language and its realization in the Transputer; it has been used for modeling and verifying the A measure of GHC's influence is the way that many of Kathryn has served the SIGPLAN community for many The winners of the award for Most concurrency properties of critical software systems; and it the ideas of purely functional, "typeful" programming" years as a researcher, educator, mentor, reviewer, and Influential Paper of POPL 2001 are Samin inspired a flowering of subsequent concurrency research. have been carried into newer languages and language leader. She has worked in a number of formal SIGPLAN Ishtiaq and Peter W. O'Hearn for BI as an features. including C#, F#, Java Generics, LINQ, Perl 6, leadership roles, including co-Editor of TOPLAS, Associate Assertion Language for Mutable Data Structures Although either of these contributions would alone justify Python, and Visual Basic 9.0. Editor of TACO, Program Chair for ASPLOS and PLDI, the achievement award, Hoare is doing more with his Peyton Jones and Marlow have been visionary in the way Editor of "20 Years of PLDI (1979-1999)", and as a leading Unifying Theories research, which aims to unify theories of proponent of the double-blind reviewing procedures now programming across paradigm, abstraction level and that they have transitioned research into practice. They have been role models and leaders in creating the large adopted by many SIGPLAN conferences. She has also semantic style. Beyond all of this, Tony is renowned for his served on the steering committees for PLDI, ASPLOS, and unfailing courtesy, his inspiration, and his dedication to his and diverse Haskell community, and have made GHC an industrial-strength platform for commercial development OOPSLA (1999-2001), and as Secretary and Treasurer of chosen calling. He is the epitome of a scholar and a the SIGPLAN Executive Committee. gentleman. as well as for research. Kathryn's service to the broader programming-languages community beyond SIGPLAN includes her activities on the Each of these awards is selected by a committee. SIGPLAN thanks all of the committee members for their service. Achievement Award: Andrew Black, Michael Hind, Kathryn McKinley, Jens Palsberg, Peter Thiemann, Philip Wadler. Software Award: Alex Aiken, Andrew Black, James Noble, Jens Palsberg, Peter Thiemann, Philip Wadler. The Service Award is made by the SIGPLAN Executive Committee as a whole. Outstanding Dissertation Award: Ras Bodik, Matthew Dwyer, Matthew Fluet, Kevin Hammond, Nathaniel Nystrom, Kostis Sagonas, Peter Sewell, Peter Thiemann. Most Influential Paper Awards: Tony Hosking, Chair. The award given in year N is for the most influential paper presented at the conference held in year N-10. The selection committee consists of the current SIGPLAN Chair, ex officio, a member of the SIGPLAN EC appointed as committee Chair by the SIGPLAN Chair, the General Chairs and Program Chairs for years N-10 and N-1, and a member of the SIGPLAN EC appointed by the committee Chair..
Recommended publications
  • Structure Interpretation of Text Formats
    1 1 Structure Interpretation of Text Formats 2 3 SUMIT GULWANI, Microsoft, USA 4 VU LE, Microsoft, USA 5 6 ARJUN RADHAKRISHNA, Microsoft, USA 7 IVAN RADIČEK, Microsoft, Austria 8 MOHAMMAD RAZA, Microsoft, USA 9 Data repositories often consist of text files in a wide variety of standard formats, ad-hoc formats, aswell 10 mixtures of formats where data in one format is embedded into a different format. It is therefore a significant 11 challenge to parse these files into a structured tabular form, which is important to enable any downstream 12 data processing. 13 We present Unravel, an extensible framework for structure interpretation of ad-hoc formats. Unravel 14 can automatically, with no user input, extract tabular data from a diverse range of standard, ad-hoc and 15 mixed format files. The framework is also easily extensible to add support for previously unseen formats, 16 and also supports interactivity from the user in terms of examples to guide the system when specialized data extraction is desired. Our key insight is to allow arbitrary combination of extraction and parsing techniques 17 through a concept called partial structures. Partial structures act as a common language through which the file 18 structure can be shared and refined by different techniques. This makes Unravel more powerful than applying 19 the individual techniques in parallel or sequentially. Further, with this rule-based extensible approach, we 20 introduce the novel notion of re-interpretation where the variety of techniques supported by our system can 21 be exploited to improve accuracy while optimizing for particular quality measures or restricted environments.
    [Show full text]
  • The Marriage of Effects and Monads
    The Marriage of Effects and Monads PHILIP WADLER Avaya Labs and PETER THIEMANN Universit¨at Freiburg Gifford and others proposed an effect typing discipline to delimit the scope of computational ef- fects within a program, while Moggi and others proposed monads for much the same purpose. Here we marry effects to monads, uniting two previously separate lines of research. In partic- ular, we show that the type, region, and effect system of Talpin and Jouvelot carries over di- rectly to an analogous system for monads, including a type and effect reconstruction algorithm. The same technique should allow one to transpose any effect system into a corresponding monad system. Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and Theory; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages— Operational semantics General Terms: Languages, Theory Additional Key Words and Phrases: Monad, effect, type, region, type reconstruction 1. INTRODUCTION Computational effects, such as state or continuations, are powerful medicine. If taken as directed they may cure a nasty bug, but one must be wary of the side effects. For this reason, many researchers in computing seek to exploit the benefits of computational effects while delimiting their scope. Two such lines of research are the effect typing discipline, proposed by Gifford and Lucassen [Gifford and Lucassen 1986; Lucassen 1987], and pursued by Talpin and Jouvelot [Talpin and Jouvelot 1992, 1994; Talpin 1993] among others, and the use of monads, proposed by Moggi [1989, 1990], and pursued by Wadler [1990, 1992, 1993, 1995] among others. Effect systems are typically found in strict languages, such as FX [Gifford et al.
    [Show full text]
  • A Critique of Abelson and Sussman Why Calculating Is Better Than
    A critique of Abelson and Sussman - or - Why calculating is better than scheming Philip Wadler Programming Research Group 11 Keble Road Oxford, OX1 3QD Abelson and Sussman is taught [Abelson and Sussman 1985a, b]. Instead of emphasizing a particular programming language, they emphasize standard engineering techniques as they apply to programming. Still, their textbook is intimately tied to the Scheme dialect of Lisp. I believe that the same approach used in their text, if applied to a language such as KRC or Miranda, would result in an even better introduction to programming as an engineering discipline. My belief has strengthened as my experience in teaching with Scheme and with KRC has increased. - This paper contrasts teaching in Scheme to teaching in KRC and Miranda, particularly with reference to Abelson and Sussman's text. Scheme is a "~dly-scoped dialect of Lisp [Steele and Sussman 19781; languages in a similar style are T [Rees and Adams 19821 and Common Lisp [Steele 19821. KRC is a functional language in an equational style [Turner 19811; its successor is Miranda [Turner 1985k languages in a similar style are SASL [Turner 1976, Richards 19841 LML [Augustsson 19841, and Orwell [Wadler 1984bl. (Only readers who know that KRC stands for "Kent Recursive Calculator" will have understood the title of this There are four language features absent in Scheme and present in KRC/Miranda that are important: 1. Pattern-matching. 2. A syntax close to traditional mathematical notation. 3. A static type discipline and user-defined types. 4. Lazy evaluation. KRC and SASL do not have a type discipline, so point 3 applies only to Miranda, Philip Wadhr Why Calculating is Better than Scheming 2 b LML,and Orwell.
    [Show full text]
  • Richard S. Uhler
    Smten and the Art of Satisfiability-Based Search by Richard S. Uhler B.S., University of California, Los Angeles (2008) S.M., Massachusetts Institute of Technology (2010) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2014 c Massachusetts Institute of Technology 2014. All rights reserved. Author.............................................................. Department of Electrical Engineering and Computer Science August 22, 2014 Certified by. Jack B. Dennis Professor of Computer Science and Engineering Emeritus Thesis Supervisor Accepted by . Leslie A. Kolodziejski Chairman, Committee for Graduate Students 2 Smten and the Art of Satisfiability-Based Search by Richard S. Uhler Submitted to the Department of Electrical Engineering and Computer Science on August 22, 2014, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering and Computer Science Abstract Satisfiability (SAT) and Satisfiability Modulo Theories (SMT) have been leveraged in solving a wide variety of important and challenging combinatorial search prob- lems, including automatic test generation, logic synthesis, model checking, program synthesis, and software verification. Though in principle SAT and SMT solvers sim- plify the task of developing practical solutions to these hard combinatorial search problems, in practice developing an application that effectively uses a SAT or SMT solver can be a daunting task. SAT and SMT solvers have limited support, if any, for queries described using the wide array of features developers rely on for describing their programs: procedure calls, loops, recursion, user-defined data types, recursively defined data types, and other mechanisms for abstraction, encapsulation, and modu- larity.
    [Show full text]
  • Haskell the Essence of Functional Programming
    Haskell The essence of functional programming Correspondence to mathematics: • Types play the role of sets • Sets of functions, Sums, Products important • Programs inhabit types, so are like elements of sets • Programs usually have function type, i.e. are functions from input to output • But are really ‘partial’, i.e. can crash, or fail to return an output • But functions remain pure — they map inputs to outputs, so their result does not depend on the state of memory, external events, etc. If you wish to include such dependencies, they must explicitly be inputs to the function Functional programming in practice • Types model objects in the problem domain. • Programming means defining types and writing functions over types. • Computing with functions means evaluation (reduction). • Variables name values and cannot vary. Haskell • Functional programming language • Launched in 1990 • By Paul Hudak, Philip Wadler, Arvind, Brain Boutel, Jon Fairbairn, Joseph Fasel, Kevin Hammond, John Hughes, Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil, Simon Peyton Jones, Mike Reeve, David Wise, Jonathan Young • Named after logician Haskell Curry (1990-1982) • Photo c/o Wikipedia Haskell is Functional • Functions are first-class, that is, functions are values which can be used in exactly the same ways as any other sort of value. • The meaning of Haskell programs is centered around evaluating expressions rather than executing instructions. Haskell is Pure Haskell expressions are always referentially transparent: • no mutations; everything (variables, data structures …) is immutable • expressions are side-effect free • programs are deterministic - calling the same function with the same arguments results in the same output Haskell is Lazy Expressions are not evaluated until their results are needed.
    [Show full text]
  • Notes on Functional Programming with Haskell
    Notes on Functional Programming with Haskell H. Conrad Cunningham [email protected] Multiparadigm Software Architecture Group Department of Computer and Information Science University of Mississippi 201 Weir Hall University, Mississippi 38677 USA Fall Semester 2014 Copyright c 1994, 1995, 1997, 2003, 2007, 2010, 2014 by H. Conrad Cunningham Permission to copy and use this document for educational or research purposes of a non-commercial nature is hereby granted provided that this copyright notice is retained on all copies. All other rights are reserved by the author. H. Conrad Cunningham, D.Sc. Professor and Chair Department of Computer and Information Science University of Mississippi 201 Weir Hall University, Mississippi 38677 USA [email protected] PREFACE TO 1995 EDITION I wrote this set of lecture notes for use in the course Functional Programming (CSCI 555) that I teach in the Department of Computer and Information Science at the Uni- versity of Mississippi. The course is open to advanced undergraduates and beginning graduate students. The first version of these notes were written as a part of my preparation for the fall semester 1993 offering of the course. This version reflects some restructuring and revision done for the fall 1994 offering of the course|or after completion of the class. For these classes, I used the following resources: Textbook { Richard Bird and Philip Wadler. Introduction to Functional Program- ming, Prentice Hall International, 1988 [2]. These notes more or less cover the material from chapters 1 through 6 plus selected material from chapters 7 through 9. Software { Gofer interpreter version 2.30 (2.28 in 1993) written by Mark P.
    [Show full text]
  • Stephanie Weirich –
    Stephanie Weirich School of Engineering and Science, University of Pennsylvania Levine 510, 3330 Walnut St, Philadelphia, PA 19104 215-573-2821 • [email protected] July 13, 2021 Positions University of Pennsylvania Philadelphia, Pennsylvania ENIAC President’s Distinguished Professor September 2019-present Galois, Inc Portland, Oregon Visiting Scientist June 2018-August 2019 University of Pennsylvania Philadelphia, Pennsylvania Professor July 2015-August 2019 University of Pennsylvania Philadelphia, Pennsylvania Associate Professor July 2008-June 2015 University of Cambridge Cambridge, UK Visitor August 2009-July 2010 Microsoft Research Cambridge, UK Visiting Researcher September-November 2009 University of Pennsylvania Philadelphia, Pennsylvania Assistant Professor July 2002-July 2008 Cornell University Ithaca, New York Instructor, Research Assistant and Teaching AssistantAugust 1996-July 2002 Lucent Technologies Murray Hill, New Jersey Intern June-July 1999 Education Cornell University Ithaca, NY Ph.D., Computer Science 2002 Cornell University Ithaca, NY M.S., Computer Science 2000 Rice University Houston, TX B.A., Computer Science, magnum cum laude 1996 Honors ○␣ SIGPLAN Robin Milner Young Researcher award, 2016 ○␣ Most Influential ICFP 2006 Paper, awarded in 2016 ○␣ Microsoft Outstanding Collaborator, 2016 ○␣ Penn Engineering Fellow, University of Pennsylvania, 2014 ○␣ Institute for Defense Analyses Computer Science Study Panel, 2007 ○␣ National Science Foundation CAREER Award, 2003 ○␣ Intel Graduate Student Fellowship, 2000–2001
    [Show full text]
  • Whither Semantics?
    Whither Semantics? Samson Abramsky∗ Department of Computer Science, University of Oxford Abstract We discuss how mathematical semantics has evolved, and suggest some new directions for future work. As an example, we discuss some recent work on encapsulating model comparison games as comonads, in the context of finite model theory. Keywords Mathematical semantics, finite model theory, model-theoretic games, category theory, comonads 1 Introduction Maurice Nivat was one of the founding fathers of Theoretical Computer Science in Europe, both through his scientific achievements, and his community-building work, including es- tablishing the Journal of Theoretical Computer Science, and as one of the founders of the European Association for Theoretical Computer Science, and the ICALP conference. The very name of ICALP – International Colloquium on Automata, Languages and Programming – shows the two main scientific lines to which Nivat himself made pioneering contributions: formal languages and automata on the one hand, and semantics of programming languages on the other. Having started his scientific career in the former, Nivat had the breadth of interest and perspective to see the importance and depth of the work on mathematical se- arXiv:2010.13328v1 [cs.LO] 23 Oct 2020 mantics of programming languages of Dana Scott, Robin Milner, Rod Burstall, et al. He founded a French school of algebraic semantics of recursive program schemes, and did much to create the conditions and possibilities which allowed for the development by others of work in λ-calculus, type theory, and programming language semantics. In my own entry to the programming languages world, I encountered Nivat’s work, includ- ing [Niv79], which gives an elegant introduction to how infinite objects arise in the semantics of computation, and the mathematical theory around them.
    [Show full text]
  • Submission Data for 2020-2021 CORE Conference Ranking Process International Conference on Functional Programming
    Submission Data for 2020-2021 CORE conference Ranking process International Conference on Functional Programming Jeremy Gibbons Conference Details Conference Title: International Conference on Functional Programming Acronym : ICFP Rank: A* Requested Rank Rank: A* Recent Years Proceedings Publishing Style Proceedings Publishing: journal Link to most recent proceedings: https://dblp.uni-trier.de/db/journals/pacmpl/pacmpl4.html#nrICFP Further details: ACM introduced the PACM series of journals in 2017 for ”the best conferences published by ACM”, for publishing the proceedings of conferences with a two-phase reviewing process comparable to journal reviewing ( https://www.acm.org/publications/pacm/introducing-pacm). In particular, Proceedings of the ACM on Programming Languages (PACMPL) has published the proceedings of ICFP, OOPSLA, and POPL since September 2017 ( https://dl.acm.org/journal/pacmpl). It is published Gold Open Access. Most Recent Years Most Recent Year Year: 2019 URL: https://icfp19.sigplan.org/ Location: Berlin Papers submitted: 119 Papers published: 39 Acceptance rate: 33 Source for numbers: SlidesfromPCChair'sreport General Chairs Name: Derek Dreyer Affiliation: MPS-SWS Gender: M H Index: 33 GScholar url: https://scholar.google.com/citations?user=1_c89uMAAAAJ&hl=en DBLP url: Program Chairs Name: Francois Pottier Affiliation: INRIA Gender: M H Index: 30 GScholar url: https://scholar.google.com/citations?user=7R6jcZ0AAAAJ&hl=en DBLP url: 1 Second Most Recent Year Year: 2018 URL: https://icfp18.sigplan.org/ Location: St Louis, Missouri
    [Show full text]
  • Variations on Algebra: Monadicity and Generalisations of Equational Theories Robinson, Edmund P
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen Mary Research Online Variations on Algebra: monadicity and generalisations of equational theories Robinson, Edmund P. For additional information about this publication click this link. http://qmro.qmul.ac.uk/jspui/handle/123456789/4745 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] Department of Computer Science Research Report No. RR-02-01 ISSN 1470-5559 February 2002 Variations on Algebra: monadicity and generalisations of equational theories Edmund Robinson Variations on Algebra: monadicity and generalisations of equational theories Edmund Robinson ∗ Queen Mary, University of London February 12, 2002 Dedicated to Rod Burstall Introduction Rod Burstall gave me my first academic job. This was, he explained, to help his group learn about some of the more advanced aspects of category theory. In fact I spent much of my time learning from them about some of the more advanced, now fundamental, aspects of Computer Science. I’ve always been grateful to Rod, both for the opportunity, and for his willingness to give me time to learn. So it’s appropriate that I offer this essentially tutorial paper to him. Better late than never! Back in the dawn of time Linton [Lin66] discovered that there was a connection between one- sorted algebraic theories and the categorical notion of monad, or more precisely, monads with rank on the category of sets. From the categorist’s point of view this is important because it gives a good ranking of the definitional power of the notion of monad, placing monads at the bottom end of a hierarchy of theories with generic models, with geometric theories and their classifying toposes at the top.
    [Show full text]
  • Introduction to the Literature on Programming Language Design Gary T
    Computer Science Technical Reports Computer Science 7-1999 Introduction to the Literature On Programming Language Design Gary T. Leavens Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports Part of the Programming Languages and Compilers Commons Recommended Citation Leavens, Gary T., "Introduction to the Literature On Programming Language Design" (1999). Computer Science Technical Reports. 59. http://lib.dr.iastate.edu/cs_techreports/59 This Article is brought to you for free and open access by the Computer Science at Iowa State University Digital Repository. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Introduction to the Literature On Programming Language Design Abstract This is an introduction to the literature on programming language design and related topics. It is intended to cite the most important work, and to provide a place for students to start a literature search. Keywords programming languages, semantics, type systems, polymorphism, type theory, data abstraction, functional programming, object-oriented programming, logic programming, declarative programming, parallel and distributed programming languages Disciplines Programming Languages and Compilers This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cs_techreports/59 Intro duction to the Literature On Programming Language Design Gary T. Leavens TR 93-01c Jan. 1993, revised Jan. 1994, Feb. 1996, and July 1999 Keywords: programming languages, semantics, typ e systems, p olymorphism, typ e theory, data abstrac- tion, functional programming, ob ject-oriented programming, logic programming, declarative programming, parallel and distributed programming languages.
    [Show full text]
  • Philip Wadler the University of Edinburgh
    Philip Wadler The University of Edinburgh Thursday, September 26, 2019 4:00 pm Luddy Hall, Rm. 1106 (Dorsey Learning Hall) (Programming Languages) in Agda = Programming (Languages in Agda) Abstract: The most profound connection between logic and computation is a pun. The doctrine of Propositions as Types asserts that propositions correspond to types, proofs to programs, and simplification of proofs to evaluation of programs. The proof of an implication is a function, proof by induction is just recursion. Dependently-typed programming languages, such as Agda, exploit this pun. To prove properties of programming languages in Agda, all we need do is program a description of those languages Agda. Finding an abstruse mathematical proof becomes as simple and as fun as hacking a program. Accordingly, I have written a new textbook, Programming Language Foundations in Agda (PLFA), as a literate script for the proof assistant Agda. In this talk I will describe three things I learned from writing PFLA, and I will touch on the role Agda plays in IOHK’s new cryptocurrency. Biography: Philip Wadler is Professor of Theoretical Computer Science at the University of Edinburgh and Senior Research Fellow at IOHK. He is an ACM Fellow, a Fellow of the Royal Society of Edinburgh, and editor- in-chief of Proceedings of the ACM for Programming Languages. He is past chair of ACM SIGPLAN, past holder of a Royal Society-Wolfson Research Merit Fellowship, winner of the SIGPLAN Distinguished Service Award, and a winner of the POPL Most Influential Paper Award. Previously, he worked or studied at Stanford, Xerox Parc, CMU, Oxford, Chalmers, Glasgow, Bell Labs, and Avaya Labs, and visited as a guest professor in Copenhagen, Sydney, and Paris.
    [Show full text]