Physiological T Cell Trafficking in Vivo Analysis of Uropod Function During

Total Page:16

File Type:pdf, Size:1020Kb

Physiological T Cell Trafficking in Vivo Analysis of Uropod Function During In Vivo Analysis of Uropod Function during Physiological T Cell Trafficking Silvia F. Soriano, Miroslav Hons, Kathrin Schumann, Varsha Kumar, Timo J. Dennier, Ruth Lyck, Michael Sixt This information is current as and Jens V. Stein of September 26, 2021. J Immunol published online 27 July 2011 http://www.jimmunol.org/content/early/2011/07/27/jimmun ol.1100935 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2011/07/27/jimmunol.110093 Material 5.DC1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published July 27, 2011, doi:10.4049/jimmunol.1100935 The Journal of Immunology In Vivo Analysis of Uropod Function during Physiological T Cell Trafficking Silvia F. Soriano,*,1 Miroslav Hons,*,1 Kathrin Schumann,† Varsha Kumar,* Timo J. Dennier,* Ruth Lyck,* Michael Sixt,†,‡ and Jens V. Stein* Migrating lymphocytes acquire a polarized phenotype with a leading and a trailing edge, or uropod. Although in vitro experiments in cell lines or activated primary cell cultures have established that Rho-p160 coiled-coil kinase (ROCK)-myosin II-mediated uropod contractility is required for integrin de-adhesion on two-dimensional surfaces and nuclear propulsion through narrow pores in three-dimensional matrices, less is known about the role of these two events during the recirculation of primary, nonacti- vated lymphocytes. Using pharmacological antagonists of ROCK and myosin II, we report that inhibition of uropod contractility blocked integrin-independent mouse T cell migration through narrow, but not large, pores in vitro. T cell crawling on chemokine- coated endothelial cells under shear was severely impaired by ROCK inhibition, whereas transendothelial migration was only Downloaded from reduced through endothelial cells with high, but not low, barrier properties. Using three-dimensional thick-tissue imaging and dynamic two-photon microscopy of T cell motility in lymphoid tissue, we demonstrated a significant role for uropod contractility in intraluminal crawling and transendothelial migration through lymph node, but not bone marrow, endothelial cells. Finally, we demonstrated that ICAM-1, but not anatomical constraints or integrin-independent interactions, reduced parenchymal motility of inhibitor-treated T cells within the dense lymphoid microenvironment, thus assigning context-dependent roles for uropod con- traction during lymphocyte recirculation. The Journal of Immunology, 2011, 187: 000–000. http://www.jimmunol.org/ he high diversity of the Ag-receptor repertoire and the along the luminal surface of HEV, which is covered with high resulting low frequency of Ag-specific T cells in an or- levels of the CCL21 chemokine (4). Binding of CCL21 to its re- T ganism pose an important logistic challenge, which is to ceptor CCR7 induces rapid (.1 s) conformational activation of quickly allow for efficient encounters between APCs and rare the LFA-1 integrin required for firm arrest of rolling lymphocytes, specific T cells close to potential microbial entry sites. To meet and it induces over the next tens of seconds to few minutes the this challenge, strategically positioned secondary lymphoid organs, acquisition of a polarized phenotype (5–7). Polarized lymphocytes including spleen, peripheral lymph nodes (PLNs), and bone then crawl in an ICAM-1–dependent manner along the HEV by guest on September 26, 2021 marrow (BM), have evolved, and these secondary lymphoid organs surface prior to transendothelial migration (TEM) through narrow serve as meeting points for tissue-borne APCs and continuously pores of the endothelial barrier and negotiate their passage passing lymphocytes (1–3). Recruitment of blood-borne lympho- through the cuff of basement membrane meshworks surrounding cytes in PLNs occurs in high endothelial venules (HEVs), spe- fibroblast reticular cells (FRCs) and occasional pericytes (8–12). cialized postcapillary venules characterized by their expression FRCs constitute the stromal backbone of the T cell area in the of peripheral node addressin (PNAd). PNAd serves as a ligand for PLN parenchyma and form a three-dimensional (3D) network, L-selectin expressed on naive lymphocytes, allowing cells to roll which T cells use as contact guidance cues during their scanning of APCs inside the tightly packed lymphoid microenvironment (13). This migration is mediated, in part, by ICAM-1 and CCL21 † *Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland; Hof- presumably presented on the FRC surface, before T cells exit PLNs schneider Group Leukocyte Migration, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; and ‡Institute of Science and Technology Austria, 3400 Klos- through efferent lymphatic vessels after an average dwelling time of terneuburg, Austria a few hours (14–16). CXCL12 and a4 integrins are likely candi- 1S.F.S. and M.H. contributed equally to this study. dates for inducing firm adhesion and guiding naive lymphocytes Received for publication April 6, 2011. Accepted for publication June 24, 2011. through BM sinusoids into BM parenchyme (17). This work was supported by a Marie Curie Excellence grant (MEXT-CT-2005- The chemokine-driven rapid transition of spherical blood-borne 025405) from the European Union and Swiss National Foundation Grants 31-120640 lymphocytes to fully polarized cells with a leading edge and a and CRSII3-125447 (to J.V.S.). uropod is orchestrated by the concerted activation of small Address correspondence and reprint requests to Dr. Jens V. Stein, Theodor Kocher GTPases of the Ras and Rho family (7, 18). Although Rac1 and Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland. E-mail address: [email protected] Rac2 direct T cell protrusion at the leading edge (19), the for- The online version of this article contains supplemental material. mation of the uropod depends on the activity of Rho, and, at least in part, of its downstream effector Rho-p160 coiled-coil kinase Abbreviations used in this article: BM, bone marrow; CMAC, 7-amino-4-chlorome- thylcoumarin; CMFDA, 5-chloromethyfluorescein diacetate; CMTMR, (5-(and-6)- (ROCK) (5, 20). Nonmuscle myosin IIA also localizes to the (((4-chloromethyl)benzoyl)amino) tetramethylrhodamine); 2D, two-dimensional; 3D, uropod, where it promotes actin–myosin contractions downstream three-dimensional; 3-DIF, 3D immunofluorescence; FRC, fibroblast reticular cell; HEV, high endothelial venule; PFA, paraformaldehyde; PLN, peripheral lymph node; of ROCK-dependent phosphorylation of the myosin L chain, ei- 2PM, two-photon microscopy; pMBMEC, primary mouse brain microvascular endo- ther directly or indirectly by inactivating MLC phosphatase (21, thelial cell; PNAd, peripheral node addressin; ROCK, Rho-p160 coiled-coil kinase; 22). In vitro experiments support an important role for the Rho– TEM, transendothelial migration; WT, wild type. ROCK–myosin signaling axis and uropod contraction during Copyright Ó 2011 by The American Association of Immunologists, Inc. 0022-1767/11/$16.00 leukocyte migration in at least three processes. First, in two- www.jimmunol.org/cgi/doi/10.4049/jimmunol.1100935 2 IN VIVO FUNCTION OF ROCK IN T CELLS dimensional (2D) systems, Rho–ROCK activity limits the adhe- Reagents sion interface, probably by promoting cortical tension. Therefore, Y27632 and blebbistatin were purchased from Calbiochem (San Diego, upon blocking ROCK activity using the pharmacological inhibi- CA). CCL21 and CXCL12 were provided by PeproTech (London, U.K.), tor Y27632 or myosin II ATPase activity with blebbistatin, cells and CXCL13 was from R&D Systems (Minneapolis, MN). CFSE, 5- spread more, even on nonadhesive substrates, thereby limiting chloromethyfluorescein diacetate (CMFDA; CellTracker Green), 7-amino- migration speed (23–27). Second, myosin contractility is required 4-chloromethylcoumarin (CMAC; CellTracker Blue), and (5-(and-6)-(((4- chloromethyl)benzoyl)amino) tetramethylrhodamine) (CMTMR; Cell- for LFA-1 de-adhesion during migration on ICAM-1–coated 2D Tracker Orange) were purchased from Molecular Probes (Eugene, OR). surfaces. Upon cell treatment with Y27632 or blebbistatin, leu- kocytes remain attached with their uropod, restraining net cell Lymphocyte-polarization assay displacement promoted by the probing leading edge (28–30). Fi- T cells were treated with DMSO (wild type [WT]), Y27632 (20 mM), or nally, uropod contractility is required for integrin-independent blebbistatin (30 mM) for 1 h; stimulated in suspension with 100 nM dendritic cell squeezing through 3D meshworks. This is mainly CCL21 final concentration; and immediately plated on fibronectin-coated due to the trapping of the relatively large nucleus in narrow pores; chamber slides for incubation at 37˚C.
Recommended publications
  • CD2 Molecules Redistribute to the Uropod During T Cell Scanning: Implications for Cellular Activation and Immune Surveillance
    CD2 molecules redistribute to the uropod during T cell scanning: Implications for cellular activation and immune surveillance Elena V. Tibaldi*†, Ravi Salgia†‡, and Ellis L. Reinherz*†§ *Laboratory of Immunobiology and ‡Division of Adult Oncology, Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, and †Department of Medicine, Harvard Medical School, Boston, MA 02115 Communicated by Stuart F. Schlossman, Dana-Farber Cancer Institute, Boston, MA, April 9, 2002 (received for review February 14, 2002) Dynamic binding between CD2 and CD58 counter-receptors on op- cells, whereas its counter-receptor CD58 is expressed on a posing cells optimizes immune recognition through stabilization of diverse array of nucleated and non-nucleated cells including cell–cell contact and juxtaposition of surface membranes at a distance APCs and stromal cells (reviewed in refs. 11 and 12). CD2 suitable for T cell receptor–ligand interaction. Digitized time-lapse functions in both T cell adhesion and activation processes (13). Ϸ differential interference contrast and immunofluorescence micros- Of note, the weak affinity of the CD2-CD58 interaction (Kd copy on living cells now show that this binding also induces T cell 1 ␮M) is associated with remarkably fast on and off rates that polarization. Moreover, CD2 can facilitate motility of T cells along foster rapid and extensive exchange between CD2 and CD58 antigen-presenting cells via a movement referred to as scanning. Both partners on opposing cell surfaces (14–16). These biophysical activated CD4 and CD8 T cells are able to scan antigen-presenting cells characteristics are reminiscent of the selectin–ligand interactions surfaces in the absence of cognate antigen.
    [Show full text]
  • A Single Class II Myosin Modulates T Cell Motility and Stopping, but Not Synapse Formation
    ARTICLES A single class II myosin modulates T cell motility and stopping, but not synapse formation Jordan Jacobelli1, Stephen A Chmura1, Denis B Buxton2, Mark M Davis3 & Matthew F Krummel1 Upon encountering an antigen, motile T cells stop crawling, change morphology and ultimately form an ‘immunological synapse’. Although myosin motors are thought to mediate various aspects of this process, the molecules involved and their exact roles are not defined. Here we show that nonmuscle myosin heavy chain IIA, or MyH9, is the only class II myosin expressed in T cells and is associated with the uropod during crawling. MyH9 function is required for maintenance of the uropod and for T cell motility but is dispensable for synapse formation. Phosphorylation of MyH9 in its multimerization domain by T cell receptor–generated signals indicates that inactivation of this motor may be a key step in the ‘stop’ response during http://www.nature.com/natureimmunology antigen recognition. T lymphocytes circulate through vasculature into peripheral lym- signaling10. Over time, these microclusters coalesce into a charac- phoid tissues, scanning antigen-presenting cells (APCs) for pep- teristic mature synapse, defined by a central core of TCR-CD3 com- tide–major histocompatibility complex (MHC) ligands for their T plexes surrounded by a ring of adhesion molecules11,12. The cell receptors (TCRs). After leaving the vasculature, T cells acquire a MTOC, formerly in the uropod, translocates to the contact site13. polarized morphology and initiate crawling, probably as a result of In this process, the nucleus is displaced away from the nascent chemotactic stimuli, earlier activating stimuli or both1–3.
    [Show full text]
  • Non-Muscle Myosin 2A (NM2A): Structure, Regulation and Function
    cells Review Non-Muscle Myosin 2A (NM2A): Structure, Regulation and Function Cláudia Brito 1,2 and Sandra Sousa 1,* 1 Group of Cell Biology of Bacterial Infections, i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, 4200-135 Porto, Portugal; [email protected] 2 Programa Doutoral em Biologia Molecular e Celular (MCBiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4099-002 Porto, Portugal * Correspondence: [email protected] Received: 19 May 2020; Accepted: 29 June 2020; Published: 1 July 2020 Abstract: Non-muscle myosin 2A (NM2A) is a motor cytoskeletal enzyme with crucial importance from the early stages of development until adulthood. Due to its capacity to convert chemical energy into force, NM2A powers the contraction of the actomyosin cytoskeleton, required for proper cell division, adhesion and migration, among other cellular functions. Although NM2A has been extensively studied, new findings revealed that a lot remains to be discovered concerning its spatiotemporal regulation in the intracellular environment. In recent years, new functions were attributed to NM2A and its activity was associated to a plethora of illnesses, including neurological disorders and infectious diseases. Here, we provide a concise overview on the current knowledge regarding the structure, the function and the regulation of NM2A. In addition, we recapitulate NM2A-associated diseases and discuss its potential as a therapeutic target. Keywords: non-muscle myosin 2A (NM2A); NM2A activity regulation; NM2A filament assembly; actomyosin cytoskeleton; cell migration; cell adhesion; plasma membrane blebbing 1. Superfamily of Myosins The cell cytoskeleton is an interconnected and dynamic network of filaments essential for intracellular organization and cell shape maintenance.
    [Show full text]
  • Segregation of Leading-Edge and Uropod Components Into Specific Lipid Rafts During T Cell Polarization
    Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization Concepcio´ nGo´ mez-Mouto´ n*, Jose Luis Abad*, Emilia Mira*, Rosa Ana Lacalle*, Eduard Gallardo†, Sonia Jime´ nez-Baranda*, Isabel Illa†, Antonio Bernad*, Santos Man˜ es*‡, and Carlos Marti´nez-A.* *Department of Immunology and Oncology, Centro Nacional de Biotecnologı´a,Consejo Superior de Investigaciones Cientı´ficas,Universidad Auto´noma de Madrid, Cantoblanco, E-28049 Madrid, Spain; and †Laboratorio de Neurologı´aExperimental, Santa Creu i Sant Pau Hospital, 08025 Barcelona, Spain Edited by Kai Simons, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany, and approved June 11, 2001 (received for review April 2, 2001) Redistribution of specialized molecules in migrating cells develops CCR5, and other raft-associated proteins accumulate preferentially asymmetry between two opposite cell poles, the leading edge and at the leading lamella of migrating cells (4). Modification of the uropod. We show that acquisition of a motile phenotype in T raft-located proteins such that they no longer associate with rafts lymphocytes results in the asymmetric redistribution of ganglioside inhibits their asymmetric redistribution. The functional role of GM3- and GM1-enriched raft domains to the leading edge and to the asymmetric raft redistribution is shown in this article, as membrane uropod, respectively. This segregation to each cell pole parallels the cholesterol depletion impairs cell polarization and chemotaxis. specific redistribution of membrane proteins associated to each raft Cholesterol-depleted cells showed isotropic pseudopodial protru- subfraction. Our data suggest that raft partitioning is a major deter- sion, suggesting that raft redistribution is needed for location- minant for protein redistribution in polarized T cells, as ectopic specific induction of pseudopod protrusion during cell polarization.
    [Show full text]
  • Cross-Talk Between Shigella and Cells of the Adaptive Immunity: the TTS Effector Ipgd Inhibits T Cell Migration
    Cross-talk between Shigella and cells of the adaptive immunity: The TTS effector IpgD inhibits T cell migration Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Christoph Konradt aus Schäßburg Würzburg, 2010 Eingereicht am: ........................................................................... Mitglieder der Promotionskommission: Vorsitzender: ............................................................................... 1. Gutachter: Prof. Dr. Dr. h.c. mult. Jörg Hacker 2. Gutachter: Prof. Dr. Ulrich Dobrindt Tag des Promotionskolloquiums: ................................................... Doktorurkunde ausgehändigt am: .................................................. Erklärung Die vorliegende Arbeit wurde von mir selbständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel angefertigt. Weiterhin erkläre ich, dass die Dissertation bisher nicht in gleicher oder ähnlicher Form in einem anderen Prüfungsverfahren vorgelegen hat, und ich bisher keine akademischen Grade erworben oder zu erwerben versucht habe. Würzburg, August 2010 Christoph Konradt Acknowledgements First of all I want to thank Prof. Dr. Dr. h. c. mult. Jörg Hacker for accepting the responsibility of supervising my PhD in the distance while the experiments where carried out in France and I also want to thank him for his support through all this time. I want to thank Prof. Dr. Ulrich Dobrindt for his kindness of being my second examiner. A special thanks goes to Prof. Philippe Sansonetti for giving me the opportunity of joining the Unité de Pathogénie Microbienne Moléculaire at the Institut Pasteur, for offering me an exciting PhD topic and for his scientific expertise and support during my thesis. I especially want to thank my supervisor Dr. Armelle Phalipon for her strong guidance during this work. I am grateful for the excellent supervision I received. She was a great support in so many situations in and beside the lab.
    [Show full text]
  • In Migrating Cells, the Golgi Complex and the Position of the Centrosome Depend on Geometrical Constraints of the Substratum
    2406 Research Article In migrating cells, the Golgi complex and the position of the centrosome depend on geometrical constraints of the substratum François Pouthas, Philippe Girard, Virginie Lecaudey, Thi Bach Nga Ly, Darren Gilmour, Christian Boulin, Rainer Pepperkok and Emmanuel G. Reynaud* Cell Biology and Cell Biophysics Programme, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany *Author for correspondence (e-mail: [email protected]) Accepted 9 April 2008 Journal of Cell Science 121, 2406-2414 Published by The Company of Biologists 2008 doi:10.1242/jcs.026849 Summary Although cells migrate in a constrained 3D environment in vivo, primordium as an in-vivo model of cells migrating in a in-vitro studies have mainly focused on the analysis of cells constrained environment and observe a similar localization of moving on 2D substrates. Under such conditions, the Golgi both the Golgi and the centrosome in the leading cells. We complex is always located towards the leading edge of the cell, propose that the positioning of the Golgi complex and the suggesting that it is involved in the directional movement. centrosome depends on the geometrical constraints applied to However, several lines of evidence indicate that this location the cell rather than on a precise migratory function in the can vary depending on the cell type, the environment or the leading region. developmental processes. We have used micro contact printing (μCP) to study the migration of cells that have a geometrically constrained shape within a polarized phenotype. Cells migrating Supplementary material available online at on micropatterned lines of fibronectin are polarized and migrate http://jcs.biologists.org/cgi/content/full/121/14/2406/DC1 in the same direction.
    [Show full text]
  • The Prion Protein Inhibits Monocytic Cell Migration by Stimulating Β1 Integrin Adhesion and Uropod Formation Dion D
    © 2015. Published by The Company of Biologists Ltd | Journal of Cell Science (2015) 128, 3018-3029 doi:10.1242/jcs.165365 RESEARCH ARTICLE The prion protein inhibits monocytic cell migration by stimulating β1 integrin adhesion and uropod formation Dion D. Richardson1,*, Simon Tol1,*, Eider Valle-Encinas1, Cayetano Pleguezuelos1, Ruben Bierings2, Dirk Geerts3 and Mar Fernandez-Borja1,‡ ABSTRACT PrP is highly expressed in the hematopoietic system, particularly The broad tissue distribution and evolutionary conservation of the in hematopoietic stem cells and in mature mononuclear leukocytes glycosylphosphatidylinositol (GPI)-anchored prion protein (PrP, also (Isaacs et al., 2006). Accordingly, PrP has been reported to have a in vivo known as PRNP) suggests that it plays a role in cellular homeostasis. role in several hematopoietic and immune cell functions , Given that integrin adhesion determines cell behavior, the proposed such as the self-renewal of long-term repopulating hematopoietic role of PrP in cell adhesion might underlie the various in vitro and stem cells (Kent et al., 2009; Zhang et al., 2006), macrophage in vivo effects associated with PrP loss-of-function, including the phagocytosis (de Almeida et al., 2005) and T cell activation immune phenotypes described in PrP−/− mice. Here, we investigated (Ballerini et al., 2006). However, the role of PrP in the innate the role of PrP in the adhesion and (transendothelial) migration of immune response has hardly been explored with the exception of −/− human (pro)monocytes. We found that PrP regulates β1-integrin- one study in which peritonitis was induced in PrP mice with −/− mediated adhesion of monocytes. Additionally, PrP controls the cell zymosan (de Almeida et al., 2005).
    [Show full text]
  • Contractility of the Cell Rear Drives Invasion of Breast Tumor Cells in 3D Matrigel
    Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel Renaud Poinclouxa,b,1, Olivier Collina,c,2, Floria Lizárragaa,b, Maryse Romaoa,d, Marcel Debraye, Matthieu Piela,c, and Philippe Chavriera,b,3 aResearch Center, Institut Curie, F-75248 Paris, France; bMembrane and Cytoskeleton Dynamics, cSystems Cell Biology of Cell Polarity and Cell Division, and dStructure and Membrane Compartments, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, 75248 Paris Cedex 05, France; and eDépartement de Santé Publique et Biostatistique, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris-Descartes, 75006 Paris, France Edited by Joan S. Brugge, Harvard Medical School, Boston, MA, and approved December 21, 2010 (received for review August 18, 2010) Cancer cells use different modes of migration, including integrin- modes of motility in 3D and, hence, are thought to adapt to variable dependent mesenchymal migration of elongated cells along environmental clues (17, 18, 20, 23–25). elements of the 3D matrix as opposed to low-adhesion-, contraction- Several methods have been developed for visualizing and an- based amoeboid motility of rounded cells. We report that MDA- alyzing forces generated by cells during 2D migration. These MB-231 human breast adenocarcinoma cells invade 3D Matrigel studies revealed that propulsive forces that are produced by with a characteristic rounded morphology and with F-actin and myosin II on the F-actin network, which is linked to adhesion myosin-IIa accumulating at the cell rear in a uropod-like structure. sites underneath the protruding lamellipodium, support migra- MDA-MB-231 cells display neither lamellipodia nor bleb extensions tion (26, 27).
    [Show full text]
  • Flotillin Microdomains Interact with the Cortical Cytoskeleton to Control Uropod Formation and Neutrophil Recruitment
    JCB: Report Flotillin microdomains interact with the cortical cytoskeleton to control uropod formation and neutrophil recruitment Alexander Ludwig,1 Grant P. Otto,1 Kirsi Riento,1 Emily Hams,2 Padraic G. Fallon,2 and Ben J. Nichols1 1MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK 2Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland e studied the function of plasma membrane flotillin microdomains, but the machinery required for microdomains defined by the proteins flotillin 1 sensing chemoattractant functions normally. Flotillin micro­ W and flotillin 2 in uropod formation and neu- domains specifically associate with myosin IIa, and spec- trophil chemotaxis. Flotillins become concentrated in the trins. Both uropod formation and myosin IIa activity are uropod of neutrophils after exposure to chemoattractants compromised in flotillin 1 knockout neutrophils. We con- such as N-formyl-Met-Leu-Phe (fMLP). Here, we show that clude that the association between flotillin microdomains mice lacking flotillin 1 do not have flotillin microdomains, and cortical cytoskeleton has important functions during and that recruitment of neutrophils toward fMLP in vivo is neutrophil migration, in uropod formation, and in the reduced in these mice. Ex vivo, migration of neutrophils regulation of myosin IIa. through a resistive matrix is reduced in the absence of Introduction Microdomains defined by the proteins flotillin 1 and flotillin 2 with the chemotactic bacterial peptide N-formyl-methionyl-leucyl- (also termed reggie 2 and reggie 1, respectively) are an appar- phenylalanine (fMLP; Rajendran et al., 2009; Rossy et al., ently ubiquitous feature of mammalian cells (Babuke and 2009). The uropod is a plasma membrane protrusion found at Tikkanen, 2007).
    [Show full text]
  • Entamoeba Histolytica
    INFECTION AND IMMUNITY, Nov. 1995, p. 4358–4367 Vol. 63, No. 11 0019-9567/95/$04.0010 Copyright q 1995, American Society for Microbiology Myosin II Is Involved in Capping and Uroid Formation in the Human Pathogen Entamoeba histolytica 1 2 1 1 PHILIPPE ARHETS, PIERRE GOUNON, PHILIPPE SANSONETTI, AND NANCY GUILLE´N * Unite´ de Pathoge´nie Microbienne Mole´culaire, Institut National de la Sante´ et de la Recherche Me´dicale U389,1 and Station Centrale de Microscopie Electronique,2 Institut Pasteur, 75724 Paris Ce´dex 15, France Received 7 April 1995/Returned for modification 30 May 1995/Accepted 20 July 1995 The redistribution and capping of surface receptors on the human pathogen Entamoeba histolytica was observed in the presence of concanavalin A (ConA). Capping was correlated with plasma membrane folding towards the rear of the amoeba and with uroid formation. The uroid is thought to play a role in the escape of amoebae from the host immune response. To localize myosin II during capping, amoebae were incubated in the presence of ConA and then analyzed by microscopy. Myosin II was three times more concentrated within the uroid compared with the rest of the cell, suggesting that the release of caps may depend upon mechanical contraction driven by myosin II activity. The use of drugs that disrupt cytoskeletal structure or that inhibit myosin heavy chain phosphorylation demonstrated that inhibition of capping prevents uroid formation. Biochemical analysis allowed the identification of two ConA receptors which have been previously described as major pathogenic antigens of this parasite: the 96-kDa antigen, which carries alcohol dehydrogenase 2 activity and binds extracellular matrix proteins, and the Gal-GalNAc-inhibitable surface lectin, which is involved in amoeba-cell interactions and in the degradation of complement particles attached to the parasite.
    [Show full text]
  • Αβ T Cell Receptor Mechanosensing Forces out Serial Engagement
    Opinion αb T Cell Receptor Mechanosensing Forces out Serial Engagement Yinnian Feng,1 Ellis L. Reinherz,2,3,* and Matthew J. Lang1,4,* T lymphocytes use αb T cell receptors (TCRs) to recognize sparse antigenic Highlights peptides bound to MHC molecules (pMHCs) arrayed on antigen-presenting The αb TCR is a mechanosensor cells (APCs). Contrary to conventional receptor–ligand associations exempli- whose force-dependent structural transition and allostery regulate pep- fied by antigen–antibody interactions, forces play a crucial role in nonequilib- tide discrimination and pMHC bond rium mechanosensor-based T cell activation. Both T cell motility and local lifetime. cytoskeleton machinery exert forces (i.e., generate loads) on TCR–pMHC Application of mechanical force on the bonds. We review biological features of the load-dependent activation process TCR during ligand recognition pro- as revealed by optical tweezers single molecule/single cell and other biophysi- motes its molecular translocation and fi initiates T cell immunological synapse cal measurements. The ndings link pMHC-triggered TCRs to single cytoskel- formation. etal motors; define the importance of energized anisotropic (i.e., force direction dependent) activation; and characterize immunological synapse formation as Synergy of external (cell motility based) and internal (cytoskeletal motor based) digital, revealing no serial requirement. The emerging picture suggests new forces supports a nonequilibrium approaches for the monitoring and design of cytotoxic T lymphocyte (CTL)- (energized) model for T cell activation fi α based immunotherapy. through recon guration of the b TCR complex at a critical force threshold. αb Biophysical Mechanism of TCR Triggering via an Energized Process A digital mechanosensing mechanism αb T cells specifically recognize foreign peptides displayed on infected or otherwise perturbed defines physicochemical thresholds cells through a process that discriminates with exquisite specificity.
    [Show full text]
  • Analysis of Close Associations of Uropod-Associated Proteins in Human T-Cells Using the Proximity Ligation Assay
    Analysis of close associations of uropod-associated proteins in human T-cells using the proximity ligation assay Tommy Baumann, Sarah AVentranger and Verena Niggli Institute of Pathology, University of Bern, Bern, Switzerland ABSTRACT We have shown previously that the raft-associated proteins flotillin-1 and -2 are rapidly recruited to the uropods of chemoattractant-stimulated human neutrophils and T-cells and are involved in cell polarization. Other proteins such as the adhesion receptor PSGL-1, the actin-membrane linker proteins ezrin/radixin/moesin (ERM) and the signaling enzyme phosphatidylinositol-4-phosphate 5-kinase type Iγ90 (PIPKIγ90) also accumulate in the T-cell uropod. Using the in situ proximity ligation assay (PLA) we now have investigated putative close associations of these proteins in human freshly isolated T-cells before and after chemokine addition. The PLA allows in situ subcellular localization of close proximity of endogenous proteins at single- molecule resolution in fixed cells. It allows detection also of weaker and transient complexes that would not be revealed with co-immunoprecipitation approaches. We previously provided evidence for heterodimer formation of tagged flotillin-1 and -2 in T-cells before and after chemokine addition using fluorescence resonance energy transfer (FRET). We now confirm these findings using PLA for the endogenous flotillins in fixed human T-cells. Moreover, in agreement with the literature, our PLA findings confirm a close association of endogenous PSGL-1 and ERM proteins both in resting and chemokine-activated human T-cells. In addition, we provide novel evidence using the PLA for close associations of endogenous activated ERM proteins with PIPKIγ90 and of endogenous flotillins with PSGL-1 in human T-cells, before Submitted 28 August 2013 and after chemokine addition.
    [Show full text]