Dielectric Materials and Polarization Chapter 6

Total Page:16

File Type:pdf, Size:1020Kb

Dielectric Materials and Polarization Chapter 6 Dielectric Materials and Polarization Chapter 6 r E Dielectric Materials and Polarization (Chapter 4- 8 ) r In order to understand the relationship between electric field E and stored 2 energy (and power flux for travelling waves, E 2/ h), we needrr to take a microscopic look at a dielectric material to justify the relation DE= eeor . After we establish this relationship, we must consider energy storage in a dielectric. All matter is composed of atoms in some physical arrangement in space with other atoms. An atom is composed of a positively charged nucleus, surrounded by one or more electrons. The composite bulk material may be arranged in such a way that the electrons are free, or nearly free, to move about within the material. Metals and doped semiconductors are examples. Many more solids are insulators. In an insulator, all of the electrons are bound in atomic ore molecular orbitals and are not free to move about the material. In the case of a metal, an applied electric field will induce a current composed of the freely mobile electrons. In an insulator, or dielectric, some- thing else must happen because there are no free electrons. What can, and does, happen is that the electric field pulls the electron and pushes the positively charged nucleus. The result is a distorted object with a net atomic dipole moment, or polarization. This is electronic polarization. There is also orientational polarization (water) and ionic polarization (salt crystals). r This microscopic polarization, p , of an individual atom, molecule,r unit cell, etc. must be summed up to form the macroscopic polarization P . Formally: nvD r r 1 rr P = lim pnpnQdia== a =r+ d a, DvÆ0  Dv iÆ1 where nv∆ = number of dipoles in a volume ∆v . r p is the average dipole moment per atom or molecule. r a d a is the average vector separation distance between positive and negative charges. r+ = nQ, the density of positive charge created in the polarized region. Note that, in the absence of an applied field, there is no polarization. Polarization Current Suppposer we apply a time varying field to a polarizable medium (dielectric), $ where EE= oxcosw te. The result of this field is graphically depicted below: Dy r r + + + + + + + + E + + E + + + + + + + + + + - - - - Dz - - - - d - - - - - - - - - - - - wt = 0 p p wt = wt = 4 2 r r r - - - - - - - - E E - - E - - - - - - - - - - - - - + + + + - - - - + + + + + + + + + + + + + + + + + + + + + + + + 3p wpt = 5p wt = wt = 4 4 r r r + + + + + + + + E E E + + + + + + + + + + - + - - + - - - - - - - - - - - - - - - - - 3p 7p wpt = 2 wt = wt = 2 4 The flow of charge across the area ∆∆yz is equivalent to an induced oscil- lating current, called the polarization current. We need to quantify this polar- izationrr current. Let us assume a linear relationship, where the field PE= ecoe ; ce is called the electric susceptibility. It merely quantifies how easy itr is for the field to produce a polarization in the particular material. We $ have PEte= ecoeocos w x. The polarization is defined by the dipole moment per unit volume, so the total dipole moment in the volume dyz∆∆ is: r $ PvDDD= dyzecoeo Ecos w te x This is equivalent to two charges, each equal to QyzEt= ecoeDD ocos w, separated by distance d . The associated current is: r I 1 dQ J ==etE$ =-bgwe csin w DDyz DD yzdt xoeo r $ Recalling that PEte= ecoeocos w x, we can identify: r r r ∂ P ∂ecdioeE J == p ∂ t ∂ t The induced polarization current is equal to the time rate of change of the polarization. r r r —¥B ∂edio E Ampere’s Law is: =+J m ∂ t o r But now we need to add J p , the polarization current. r r r r —¥B ∂edio E ∂ P =+J + m ∂ t ∂ t o rr r ∂ediooeE ∂e d cE i =+J + ∂ t ∂ t rr∂ =+J ecb1 +g E ∂ t oe ecre=+1 Then Ampere’s Law is (in a dielectric): r r r —¥B ∂eediorE =+J m ∂ t o r r ∂ediE =+J ∂rt r ∂ D rr =+J , where DE= e ∂ t Polarization Charge Density r —=-◊ P r p polarization charge density. More on this later. Gauss’ Law for Electric Fields in Materials We have this new charge density that we must include: r —=+◊ errovpE r v = external free charge r p = induced charge in the dielectric (This is a “bound”T charge. It rrdisappears if E is removed.) —=-—◊◊erovEP, rr or —+=◊dierovEP A external, “free” charge only (or “placed”) rr Now we make the linearity assumption: PE= ceo Then: rr r r —+=—+=◊◊dideecerooovEP E E i, r or —+=◊ ecrovE a1 f rr But DEE==+eeor e o af1 c, so that: r rr —=◊ D r v , where DE= eeor ecre=+1 rr Note that —+=◊dierovEP r is the most fundamental form rof thisr equation which holds, even when P is not linearlyr proportional to E . If P has terms proportional to 2nd, 3rd, etc. powers of E , we have nonlinear material not covered in this course. But lots of important devices are based on it; for example, nonlinear optics, modulation of lasers (which are important in opti- cal [fiber optics] communication). Dielectric Materialsr (alternate derivation of —=-◊ P r p ) Consider a region of space, filled with some linear and isotropicr material. $ If, in that region of space,r there exists a constant E fieldEEe= ox , then $ there is polarization Pe= xoec e E, also uniform. Since the polarization is uniform, the number of atomic dipoles per unit volume is constant and, as can be seen in the sketch, the effects of all the charges cancel out (except at boundary, which we examine separately). - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + r - + - + - + - + E Now, considerr that the E field is not constant, but increases linearly with $ x; that is, EAxe= x . Then the polarization also increases linearly with x. That is to say, the number of aligned dipoles per unit volume increases lin- early with x. Something like this is shown on the sketch. - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + r - + $ - + - + EAxe= x - + - + - + Obviously, now the plus and minus charges don’t cancel out. There is always more negative charge to the right, so the effect is a net negative $ charge in any given volume. If Penxp= xaaf , where pa is the atomic dipole and nxa f is the number per unit volume (which is now not constant, but a function of x), then: dn dP -=-=p r b dx avdx Note that this charge density was not placed in as an excess charge, but comes from the non-uniform aligned dipoles. These charges are part of the material. If the field is removed, the dipoles randomize in orientation or dis- appear. So we distinguish these charges as a “bound” charge density. In a more general form, we can write bound charge density due to dipoles as: r b r v =-—◊ P Any discontinuity at boundaries is also taken care of by the divergence of the polarization. r b *** nP◊ch12-=- P r s r r r r r If P is uniform, but discontinuous at a boundary, -—◊◊PnP fi , where n is b b outward normal and rrv fi s r r b Thus, r s = nP◊ . (This is a special case of above.) This is clearly seen on the firstr sketch, which shows that, although all the charges cancel out for uniform P , at the boundary x = 0, there is an effective negative surface = charge density; and, at xa, therer r is an effective positive surface charge b density.r This agrees with r s = nP◊ . This is the physical meaning of —=-◊P r s .*** r b Note that r v =-—◊rP r is an expression of vector algebra that already b accounts for r s = nP◊ . This now allows us to simplify greatly how we deal with the dipoles in mate- rials: r —=◊ e E all charges =+rrb o A vvA placed charges bound charges rr r —=-—=-—◊◊◊erovEP rec voe E rr Thus, —+=◊ erovEP r r ⇒ —+◊ ecoebg1 E = r v —=◊ D r v , DE= eeor r —=◊ eeorE r v.
Recommended publications
  • Physics 112: Classical Electromagnetism, Fall 2013 Birefringence Notes
    Physics 112: Classical Electromagnetism, Fall 2013 Birefringence Notes 1 A tensor susceptibility? The electrons bound within, and binding, the atoms of a dielectric crystal are not uniformly dis- tributed, but are restricted in their motion by the potentials which confine them. In response to an applied electric field, they may therefore move a greater or lesser distance, depending upon the strength of their confinement in the field direction. As a result, the induced polarization varies not only with the strength of the applied field, but also with its direction. The susceptibility{ and properties which depend upon it, such as the refractive index{ are therefore anisotropic, and cannot be characterized by a single value. The scalar electric susceptibility, χe, is defined to be the coefficient which relates the value of the ~ ~ local electric field, Eloc, to the local value of the polarization, P : ~ ~ P = χe0Elocal: (1) As we discussed in the last seminar we can `promote' this relation to a tensor relation with χe ! (χe)ij. In this case the dielectric constant is also a tensor and takes the form ij = [δij + (χe)ij] 0: (2) Figure 1: A cartoon showing how the electron is held by anisotropic springs{ causing an electric susceptibility which is different when the electric field is pointing in different directions. How does this happen in practice? In Fig. 1 we can see that in a crystal, for instance, the electrons will in general be held in bonds which are not spherically symmetric{ i.e., they are anisotropic. 1 Therefore, it will be easier to polarize the material in certain directions than it is in others.
    [Show full text]
  • 4 Lightdielectrics.Pdf
    4. The interaction of light with matter The propagation of light through chemical materials is described by a wave equation similar to the one that describes light travel in a vacuum (free space). Again, using E as the electric field of light, v as the speed of light in a material and z as its direction of propagation. !2 1 ! 2E ! 2E 1 ! 2E # n2 & ! 2E # & . 2 E= 2 2 " 2 = % 2 ( 2 = 2 2 !z c !t !z $ v ' !t $% c '( !t (Read the variation in the electric field with respect distance traveled is proportional to its variation with respect to time.) The refractive index, n, (also represented η) describes how matter affects light propagation: through the electric permittivity, ε, and the magnetic permeability, µ. ! µ n = !0 µ0 These properties describe how well a medium supports (permits the transmission of) electric and magnetic fields, respectively. The terms ε0 and µ0 are reference values: the permittivity and permeability of free space. Consequently, the refractive index for a vacuum is unity. In chemical materials ε is always larger than ε0, reflecting the interaction of the electric field of the incident beam with the electrons of the material. During this interaction, the energy from the electric field is transiently stored in the medium as the electrons in the material are temporarily aligned with the field. This phenomenon is referred to as polarization, P, in the sense that the charges of the medium are temporarily separated. (This must not be confused with the polarization, which refers to the orientation or behavior of the electric field.) This stored energy is re-radiated, but the beam travel is slowed by interaction with the material.
    [Show full text]
  • EM Dis Ch 5 Part 2.Pdf
    1 LOGO Chapter 5 Electric Field in Material Space Part 2 iugaza2010.blogspot.com Polarization(P) in Dielectrics The application of E to the dielectric material causes the flux density to be grater than it would be in free space. D oE P P is proportional to the applied electric field E P e oE Where e is the electric susceptibility of the material - Measure of how susceptible (or sensitive) a given dielectric is to electric field. 3 D oE P oE e oE oE(1 e) oE( r) D o rE E o r r1 e o permitivity of free space permitivity of dielectric relative permitivity r 4 Dielectric constant or(relative permittivity) εr Is the ratio of the permittivity of the dielectric to that of free space. o r permitivity of dielectric relative permitivity r o permitivity of free space 5 Dielectric Strength Is the maximum electric field that a dielectric can withstand without breakdown. o r Material Dielectric Strength εr E(V/m) Water(sea) 80 7.5M Paper 7 12M Wood 2.5-8 25M Oil 2.1 12M Air 1 3M 6 A parallel plate capacitor with plate separation of 2mm has 1kV voltage applied to its plate. If the space between the plate is filled with polystyrene(εr=2.55) Find E,P V 1000 E 500 kV / m d 2103 2 P e oE o( r1)E o(1 2.55)(500k) 6.86 C / m 7 In a dielectric material Ex=5 V/m 1 2 and P (3a x a y 4a z )nc/ m 10 Find (a) electric susceptibility e (b) E (c) D 1 (3) 10 (a)P e oE e 2.517 o(5) P 1 (3a x a y 4a z ) (b)E 5a x 1.67a y 6.67a z e o 10 (2.517) o (c)D E o rE o rE o( e1)E 2 139.78a x 46.6a y 186.3a z pC/m 8 In a slab of dielectric
    [Show full text]
  • Notes 4 Maxwell's Equations
    ECE 3317 Applied Electromagnetic Waves Prof. David R. Jackson Fall 2020 Notes 4 Maxwell’s Equations Adapted from notes by Prof. Stuart A. Long 1 Overview Here we present an overview of Maxwell’s equations. A much more thorough discussion of Maxwell’s equations may be found in the class notes for ECE 3318: http://courses.egr.uh.edu/ECE/ECE3318 Notes 10: Electric Gauss’s law Notes 18: Faraday’s law Notes 28: Ampere’s law Notes 28: Magnetic Gauss law . D. Fleisch, A Student’s Guide to Maxwell’s Equations, Cambridge University Press, 2008. 2 Electromagnetic Fields Four vector quantities E electric field strength [Volt/meter] D electric flux density [Coulomb/meter2] H magnetic field strength [Amp/meter] B magnetic flux density [Weber/meter2] or [Tesla] Each are functions of space and time e.g. E(x,y,z,t) J electric current density [Amp/meter2] 3 ρv electric charge density [Coulomb/meter ] 3 MKS units length – meter [m] mass – kilogram [kg] time – second [sec] Some common prefixes and the power of ten each represent are listed below femto - f - 10-15 centi - c - 10-2 mega - M - 106 pico - p - 10-12 deci - d - 10-1 giga - G - 109 nano - n - 10-9 deka - da - 101 tera - T - 1012 micro - μ - 10-6 hecto - h - 102 peta - P - 1015 milli - m - 10-3 kilo - k - 103 4 Maxwell’s Equations (Time-varying, differential form) ∂B ∇×E =− ∂t ∂D ∇×HJ = + ∂t ∇⋅B =0 ∇⋅D =ρv 5 Maxwell James Clerk Maxwell (1831–1879) James Clerk Maxwell was a Scottish mathematician and theoretical physicist.
    [Show full text]
  • The Response of a Media
    KTH ROYAL INSTITUTE OF TECHNOLOGY ED2210 Lecture 3: The response of a media Lecturer: Thomas Johnson Dielectric media The theory of dispersive media is derived using the formalism originally developed for dielectrics…let’s refresh our memory! • Capacitors are often filled with a dielectric. • Applying an electric field, the dielectric gets polarised • Net field in the dielectric is reduced. Dielectric media + - E - + E - + - + LECTURE 3: THE RESPONSE OF A MEDIA, ED2210 2016-01-26 2 Polarisation Electric field - Polarisation is the response of e.g. - - - • bound electrons, or + - • molecules with a dipole moment - - Emedia - In both cases the particles form dipoles. Electric field Definition: The polarisation, �, is the electric dipole moment per unit volume. Linear media: % � = � �'� where �% is the electric susceptibility LECTURE 3: THE RESPONSE OF A MEDIA, ED2210 2016-01-26 3 Magnetisation Magnetisation is due to induced dipoles, either from Induced current • induced currents B-field • quantum mechanically from the particle spin + Definition: The magnetisation, �, is the magnetic dipole Bmedia moment per unit volume. Linear media: Spin + � = � �/�' B-field Magnetic susceptibility : �+ NOTE: Both polarisation and magnetisation fields Bmedia are due to dipole fields only; not related to higher order moments like the quadropoles, octopoles etc. LECTURE 3: THE RESPONSE OF A MEDIA, ED2210 2016-01-26 4 Field calculations with dielectrics The capacitor problem includes two types of charges: • Surface charge, �0, on metal surface (monopole charges) • Induced dipole charges, �123, within the dielectric media Total electric field strength, �, is generated by �0 + �123, The polarisation, �, is generated by �123 The electric induction, �, is generated by �0, where % �: = �'� + � = � + � �'� = ��'� = �� Here � is the dielectric constant and � is the permittivity.
    [Show full text]
  • Two New Experiments on Measuring the Permanent Electric
    Clear evidence of charge conjugation and parity violation in K atoms from atomic permanent electric dipole moment experiments Pei-Lin You1 Xiang-You Huang 2 1. Institute of Quantum Electronics, Guangdong Ocean University, Zhanjiang Guangdong 524025, China. 2. Department of Physics , Peking University, Beijing 100871,China. Quantum mechanics thinks that atoms do not have permanent electric dipole moment (EDM) because of their spherical symmetry. Therefore, there is no polar atom in nature except for polar molecules. The electric susceptibilityχe caused by the orientation of polar substances is inversely proportional to the absolute temperature T while the induced susceptibility of atoms is temperature independent. This difference in temperature dependence offers a means of separating the polar and non-polar substances experimentally. Using special capacitor our experiments discovered that the relationship betweenχe of Potassium atom vapor and T is justχe=B/T, where the slope B≈283(k) as polar molecules, but appears to be disordered using the traditional capacitor. Its capacitance C at different voltage V was measured. The C-V curve shows that the saturation polarization of K vapor has be observed when E≥105V/m and nearly all K atoms (more than 98.9%) are lined up with the field! The ground state neutral K atom is polar atom -9 with a large EDM : dK >2.3×10 e.cm.The results gave clear evidence for CP (charge conjugation and parity) violation in K atoms. If K atom has a large EDM, why the linear Stark effect has not been observed? The article discussed the question thoroughly. Our results are easy to be repeated because the details of the experiment are described in the article.
    [Show full text]
  • Quantum Mechanics Polarization Density
    Quantum Mechanics_polarization density In classical electromagnetism, polarization density (or electric polarization, or simplypolarization) is the vector field that expresses the density of permanent or induced electric dipole moments in a dielectric material. When a dielectric is placed in an external Electric field, its molecules gain Electric dipole moment and the dielectric is said to be polarized. The electric dipole moment induced per unit volume of the dielectric material is called the electric polarization of the dielectric.[1][2] Polarization density also describes how a material responds to an applied electric field as well as the way the material changes the electric field, and can be used to calculate the forces that result from those interactions. It can be compared to Magnetization, which is the measure of the corresponding response of a material to a Magnetic field in Magnetism. TheSI unit of measure is coulombs per square metre, and polarization density is represented by a vectorP.[3] Definition The polarization density P is defined as the average Electric dipole moment d per unit volume V of the dielectric material:[4] which can be interpreted as a measure of how strong and how aligned the dipoles are in a region of the material. For the calculation of P due to an applied electric field, the electric susceptibility χ of the dielectric must be known (see below). Polarization density in Maxwell's equations The behavior of electric fields (E and D), magnetic fields (B, H), charge density (ρ) and current density (J) are described by Maxwell's equations in matter. The role of the polarization density P is described below.
    [Show full text]
  • Active Metamaterials with Negative Static Electric Susceptibility
    Active metamaterials with negative static electric susceptibility F. Castles1,2*, J. A. J. Fells3, D. Isakov1,4, S. M. Morris3, A. Watt1 and P. S. Grant1* 1 Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK. 2 School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Road, London E1 4FZ, UK. 3 Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK. 4 Warwick Manufacturing Group, University of Warwick, Coventry CV4 7AL, UK. * email: [email protected]; [email protected] 1 Well-established textbook arguments suggest that static electric susceptibility must be positive in “all bodies”1. However, it has been pointed out that media that are not in thermodynamic equilibrium are not necessarily subject to this restriction; negative static electric susceptibility has been predicted theoretically in systems with inverted populations of atomic and molecular energy levels2,3, though this has never been confirmed experimentally. Here we exploit the design freedom afforded by metamaterials to fabricate active structures that exhibit the first experimental evidence of negative static electric susceptibility. Unlike the systems envisioned previously— which were expected to require reduced temperature and pressure4—negative values are readily achieved at room temperature and pressure. Further, values are readily tuneable throughout the negative range of stability − (0) , resulting in magnitudes that are over one thousand times greater than predicted previously4. This opens the door to new technological capabilities such as stable electrostatic levitation. Although static magnetic susceptibility may take positive or negative values in paramagnetic and diamagnetic materials respectively, a standard theoretical argument by Landau et al.
    [Show full text]
  • Electromagnetic Optics
    Electromagnetic optics • Optics IS a branch of electromagnetism • Electromagnetic optics include both – Wave optics (scalar approximation) – Ray optics (limit when λ → 0) • Can also describes the propagation of wave in media characterized by their e.m. properties. P. Piot, PHYS 630 – Fall 2008 Maxwell’s equations • Macroscopy Maxwell’s equations P. Piot, PHYS 630 – Fall 2008 Maxwell’s equations II • Consider a linear, homogenous, isotropous, and non dispersive medium then Maxwell’s equations simplify to • For now on we consider non-magnetic media (M=0) and µ=µ0. P. Piot, PHYS 630 – Fall 2008 Wave equation (revisited) • From Faraday’s law • From Ampere’s law • So both equation can be cast in the form P. Piot, PHYS 630 – Fall 2008 Dielectric Media • A dielectric medium is characterized by the medium equation, i.e. the relation between polarization and electric field vectors. • Can also be viewed as a system with E as input and P as output characterized by an impulse-response function h E(r,t) P(r,t) h(r,t) • The E-field generates electron oscillations in the medium that are responsible for polarization (and medium-induced E-fields) P. Piot, PHYS 630 – Fall 2008 Dielectric Media: some definitions • Linear media: medium equation is of the form • Nondispersive media: P(t) depends on E(t) [at the SAME time]: the time-history of E is not involved (assumed infinitely fast material, this is an idealization, but good approximation • Homogenous media: the medium equation P=f(E) is independent of the position r • Isotropic media: the medium P=f(E) equation is independent of the direction • Spatially nondispersive: the medium equation is local P.
    [Show full text]
  • Electrostatics in Material
    Electrostatics in material Bound charges Laplacean methods and dielectrics θ q zˆ ˆ z ˆ η zˆ Z ηˆ PPz= 0 ε 0 σ R E zˆ R s b ε 0 α ε Image methods Separation of variables ε I D top σ Displacement f Q σb < 0 field V r Stored E ε d energy in a dielectric Dbottom σb > 0 −σ above f E ε 0 Dielectric below E ε ε 0 F Forces d ε H Dielectric boundary F conditions 1 x − x xˆ From Physics 212, one might get the impression that going from electrostatics in vacuum to electrostatics in a material is equivalent to replacing epsilon_0 to epsilon > epsilon_0. This is more-or-less true for some dielectric materials such as Class A dielectrics but other types of materials exist. For example, there are permanent electrets which are analogous to permanent magnets. Here the electric field is produced by “bound” charges created by a permanently “frozen-in” polarizability. The polarizability is the electric dipole moment per unit volume that is often induced in the material by an external electric field. We will introduce the displacement field (or D-field) which obeys a Gauss’s Law that only depends on free charges. Free charges are the charges controllable by batteries, currents and the like. To a large extent one cannot totally control bound charges. We discuss the boundary conditions that E-fields and D-fields obey across a dielectric boundary. We turn next to a discussion of Laplace’s Equation in the presence of dielectrics.
    [Show full text]
  • ELECTRIC DISPLACEMENT If You Put a Dielectric in an External Field
    ELECTRIC DISPLACEMENT If you put a dielectric in an external field Eext, it polarizes, adding a new field, Einduced (from the bound charges). These superpose, making a total field Etot. What is the vector equation relating these three fields? A) Etot + Eext + Einduced = 0 B) Etot = Eext − Einduced C) Etot = Eext + Einduced D) Etot = −Eext + Einduced E) Something else! We define "Electric Displacement" or "D" field: D =ε0E + P. If you put a dielectric in an external field Eext, it polarizes, adding a new field, Einduced (from the bound charges). These superpose, making a total field Etot. Which of these three E fields is the "E" in the formula for D above? A) Eext B) Einduced C) Etot Linear Dielectric: P = ε0 χeE χe is the “Electric Susceptibility (Usually small, always positive) Linear Dielectric: P = ε0 χeE χe is the “Electric Susceptibility” D = ε0E + P = ε0E +ε0 χeE = ε0 (1+ χe )E ≡ ε0εrE εr is the dielectric constant ε ≡ ε0εr is the permittivity We define D =ε E + P, with 0 D⋅da = Q ∫ free, enclosed A point charge +q is placed at the center of a dielectric sphere (radius R). There are no other free charges anywhere. What is |D(r)|? R + +q A) q/(4 π r2) everywhere 2 B) q/(4 π ε0 r ) everywhere 2 2 C) q/(4 π r ) for r<R, but q/(4 π ε0 r ) for r>R D) None of the above, it's more complicated E) We need more info to answer! A solid non-conducting dielectric rod has been injected ("doped") with a fixed, known charge distribution ρ(s).
    [Show full text]
  • "Wave Optics" Lecture 21 (PDF)
    Lecture 21 Reminder/Introduction to Wave Optics Program: 1. Maxwell’s Equations. 2. Magnetic induction and electric displacement. 3. Origins of the electric permittivity and magnetic permeability. 4. Wave equations and optical constants. 5. The origins and frequency dependency of the dielectric constant. Questions you should be able to answer by the end of today’s lecture: 1. What are the equations determining propagation of the waves in the media? 2. What are the relationships between the electric field and electric displacement and magnetic field and magnetic induction? 3. What is the nature of the polarization? How can we gain intuition about the dielectric constant for a material? 4. How do Maxwell’s equations lead to the wave nature of light? 5. What is refractive index and how it relates to the dielectric constant? How does it relate to the speed of light inside the material? 6. What is the difference between the phase and group velocity? 1 Response of materials to electromagnetic waves – propagation of light in solids. We classified materials with respect to their conductivity and related the observed differences to the existence of band gaps in the electron energy eigenvalues. The optical properties are determined to a large extent by the electrons and their ability to interact with the electromagnetic field, thus the conductivity classification of materials, which was a result of the band structure and band filling, is also useful for classifying the optical response. The most widely used metric for quantifying the optical behavior of materials is the index of refraction, which captures the extent to which the electromagnetic wave interacts with the material.
    [Show full text]