Active metamaterials with negative static electric susceptibility F. Castles1,2*, J. A. J. Fells3, D. Isakov1,4, S. M. Morris3, A. Watt1 and P. S. Grant1* 1 Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK. 2 School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Road, London E1 4FZ, UK. 3 Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK. 4 Warwick Manufacturing Group, University of Warwick, Coventry CV4 7AL, UK. * email:
[email protected];
[email protected] 1 Well-established textbook arguments suggest that static electric susceptibility must be positive in “all bodies”1. However, it has been pointed out that media that are not in thermodynamic equilibrium are not necessarily subject to this restriction; negative static electric susceptibility has been predicted theoretically in systems with inverted populations of atomic and molecular energy levels2,3, though this has never been confirmed experimentally. Here we exploit the design freedom afforded by metamaterials to fabricate active structures that exhibit the first experimental evidence of negative static electric susceptibility. Unlike the systems envisioned previously— which were expected to require reduced temperature and pressure4—negative values are readily achieved at room temperature and pressure. Further, values are readily tuneable throughout the negative range of stability − (0) , resulting in magnitudes that are over one thousand times greater than predicted previously4. This opens the door to new technological capabilities such as stable electrostatic levitation. Although static magnetic susceptibility may take positive or negative values in paramagnetic and diamagnetic materials respectively, a standard theoretical argument by Landau et al.