On a Subposet of the Tamari Lattice
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trivial Meet and Join Within the Lattice of Monotone Triangles John Engbers Marquette University, [email protected]
Marquette University e-Publications@Marquette Mathematics, Statistics and Computer Science Mathematics, Statistics and Computer Science, Faculty Research and Publications Department of 1-1-2014 Trivial Meet and Join within the Lattice of Monotone Triangles John Engbers Marquette University, [email protected] Adam Hammett Bethel College - Mishawaka Published version. Electronic Journal of Combinatorics, Vol. 21, No. 3 (2014). Permalink. © 2014 The Authors. Used with permission. Trivial Meet and Join within the Lattice of Monotone Triangles John Engbers Department of Mathematics, Statistics and Computer Science Marquette University Milwaukee, WI, U.S.A. [email protected] Adam Hammett Department of Mathematical Sciences Bethel College Mishawaka, IN, U.S.A. [email protected] Submitted: Jan 22, 2014; Accepted: Jul 10, 2014; Published: Jul 21, 2014 Mathematics Subject Classifications: 05A05, 05A16, 06A20 Abstract The lattice of monotone triangles (Mn; 6) ordered by entry-wise comparisons is studied. Let τmin denote the unique minimal element in this lattice, and τmax the unique maximum. The number of r-tuples of monotone triangles (τ1; : : : ; τr) with minimal infimum τmin (maximal supremum τmax, resp.) is shown to asymptotically r−1 approach rjMnj as n ! 1. Thus, with high probability this event implies that one of the τi is τmin (τmax, resp.). Higher-order error terms are also discussed. Keywords: monotone triangles; permutations; square ice; alternating sign matri- ces; meet; join 1 Introduction and statement -
Operations on Partially Ordered Sets and Rational Identities of Type a Adrien Boussicault
Operations on partially ordered sets and rational identities of type A Adrien Boussicault To cite this version: Adrien Boussicault. Operations on partially ordered sets and rational identities of type A. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2013, Vol. 15 no. 2 (2), pp.13–32. hal- 00980747 HAL Id: hal-00980747 https://hal.inria.fr/hal-00980747 Submitted on 18 Apr 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science DMTCS vol. 15:2, 2013, 13–32 Operations on partially ordered sets and rational identities of type A Adrien Boussicault Institut Gaspard Monge, Universite´ Paris-Est, Marne-la-Valle,´ France received 13th February 2009, revised 1st April 2013, accepted 2nd April 2013. − −1 We consider the family of rational functions ψw = Q(xwi xwi+1 ) indexed by words with no repetition. We study the combinatorics of the sums ΨP of the functions ψw when w describes the linear extensions of a given poset P . In particular, we point out the connexions between some transformations on posets and elementary operations on the fraction ΨP . We prove that the denominator of ΨP has a closed expression in terms of the Hasse diagram of P , and we compute its numerator in some special cases. -
Some Lattices of Closure Systems on a Finite Set Nathalie Caspard, Bernard Monjardet
Some lattices of closure systems on a finite set Nathalie Caspard, Bernard Monjardet To cite this version: Nathalie Caspard, Bernard Monjardet. Some lattices of closure systems on a finite set. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2004, 6 (2), pp.163-190. hal-00959003 HAL Id: hal-00959003 https://hal.inria.fr/hal-00959003 Submitted on 13 Mar 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science 6, 2004, 163–190 Some lattices of closure systems on a finite set Nathalie Caspard1 and Bernard Monjardet2 1 LACL, Universite´ Paris 12 Val-de-Marne, 61 avenue du Gen´ eral´ de Gaulle, 94010 Creteil´ cedex, France. E-mail: [email protected] 2 CERMSEM, Maison des Sciences Economiques,´ Universite´ Paris 1, 106-112, bd de l’Hopital,ˆ 75647 Paris Cedex 13, France. E-mail: [email protected] received May 2003, accepted Feb 2004. In this paper we study two lattices of significant particular closure systems on a finite set, namely the union stable closure systems and the convex geometries. Using the notion of (admissible) quasi-closed set and of (deletable) closed set we determine the covering relation ≺ of these lattices and the changes induced, for instance, on the irreducible elements when one goes from C to C ′ where C and C ′ are two such closure systems satisfying C ≺ C ′. -
On Comparability of Random Permutations
ON COMPARABILITY OF RANDOM PERMUTATIONS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Adam Hammett, B.S. ***** The Ohio State University 2007 Dissertation Committee: Approved by Dr. Boris Pittel, Advisor Dr. Gerald Edgar Advisor Dr. Akos Seress Graduate Program in Mathematics ABSTRACT Two permutations of [n] := {1, 2, . , n} are comparable in the Bruhat order if one can be obtained from the other by a sequence of transpositions decreasing the number of inversions. We show that the total number of pairs of permutations (π, σ) with π ≤ σ is of order (n!)2/n2 at most. Equivalently, if π, σ are chosen uniformly at random and independently of each other, then P (π ≤ σ) is of order n−2 at most. By a direct probabilistic argument we prove P (π ≤ σ) is of order (0.708)n at least, so that there is currently a wide qualitative gap between the upper and lower bounds. Next, emboldened by a connection with Ferrers diagrams and plane partitions implicit in Bressoud’s book [13], we return to the Bruhat order upper bound and show that for n-permutations π1, . , πr selected independently and uniformly at random, −r(r−1) P (π1 ≤ · · · ≤ πr) = O n , thus providing an extension of our result for pairs of permutations to chains of length r > 2. Turning to the related weak order “” – when only adjacent transpositions are ∗ admissible – we use a non-inversion set criterion to prove that Pn := P (π σ) is pn ∗ submultiplicative, thus showing existence of ρ = lim Pn . -
Single-Element Extensions of Matroids
JOURNAL OF RESEARCH of the National Bureau of Standards-B. Mathematics and Mathematical Physics Vol. 69B, Nos. 1 and 2, January-June 1965 Single-Element Extensions of Matroids Henry H. Crapo Assistant Professor of Mathematics, Northeastern University, Boston, Mass. (No ve mbe r 16, 1964) Extensions of matroids to sets containing one additional ele ment are c ha rac te ri zed in te rms or modular cuts of the lattice or closed s ubsets. An equivalent characterizati o n is given in terms or linear subclasse s or the set or circuits or bonds or the matroid. A scheme for the construc ti o n or finit e geo· me tric lattices is deri ved a nd th e existe nce of at least 2" no ni somorphic matroids on an II- ele ment set is established. Contents Page 1. introducti on .. .. 55 2. Differentials .. 55 3. Unit in crease runcti ons ... .... .. .... ........................ 57 4. Exact diffe re ntia ls .... ... .. .. .. ........ " . 58 5. Sin gle·ele me nt exte ns ions ... ... 59 6. Linear subclasses.. .. .. ... .. 60 7. Geo metric la ttices ................... 62 8. Numeri ca l c lassification of matroid s .... 62 9. Bibl iography.. .. ............... 64 1. Introduction I of ele ments Pi of a lattice L, in whic h Pi covers Pi - t for i = 1, . .. , n, is a path (of length n) from x to y. In order to facilitate induc tive proofs of matroid 2 theore ms, we shall set forth a characte rization of single A step is a path of length J. element extensions of matroid structures. -
Lecture Notes on Algebraic Combinatorics Jeremy L. Martin
Lecture Notes on Algebraic Combinatorics Jeremy L. Martin [email protected] December 3, 2012 Copyright c 2012 by Jeremy L. Martin. These notes are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. 2 Foreword The starting point for these lecture notes was my notes from Vic Reiner's Algebraic Combinatorics course at the University of Minnesota in Fall 2003. I currently use them for graduate courses at the University of Kansas. They will always be a work in progress. Please use them and share them freely for any research purpose. I have added and subtracted some material from Vic's course to suit my tastes, but any mistakes are my own; if you find one, please contact me at [email protected] so I can fix it. Thanks to those who have suggested additions and pointed out errors, including but not limited to: Logan Godkin, Alex Lazar, Nick Packauskas, Billy Sanders, Tony Se. 1. Posets and Lattices 1.1. Posets. Definition 1.1. A partially ordered set or poset is a set P equipped with a relation ≤ that is reflexive, antisymmetric, and transitive. That is, for all x; y; z 2 P : (1) x ≤ x (reflexivity). (2) If x ≤ y and y ≤ x, then x = y (antisymmetry). (3) If x ≤ y and y ≤ z, then x ≤ z (transitivity). We'll usually assume that P is finite. Example 1.2 (Boolean algebras). Let [n] = f1; 2; : : : ; ng (a standard piece of notation in combinatorics) and let Bn be the power set of [n]. We can partially order Bn by writing S ≤ T if S ⊆ T . -
A Selection of Maximal Elements Under Non-Transitive Indifferences
Munich Personal RePEc Archive A selection of maximal elements under non-transitive indifferences Alcantud, José Carlos R. and Bosi, Gianni and Zuanon, Magalì Universidad de Salamanca, University of Trieste, University of Brescia 4 August 2009 Online at https://mpra.ub.uni-muenchen.de/16601/ MPRA Paper No. 16601, posted 10 Aug 2009 08:03 UTC A selection of maximal elements under non-transitive indifferences Jos´eCarlos R. Alcantud ∗,1 Facultad de Econom´ıay Empresa, Universidad de Salamanca, E 37008 Salamanca, Spain Gianni Bosi Facolt`adi Economia, Universit`adegli Studi di Trieste, Piazzale Europa 1, 34127 Trieste, Italy Magal`ıZuanon Facolt`adi Economia, Universit`adegli Studi di Brescia, Contrada Santa Chiara 50, 25122 Brescia, Italy Abstract In this work we are concerned with maximality issues under intransitivity of the indifference. Our approach relies on the analysis of “undominated maximals” (cf., Peris and Subiza [7]). Provided that an agent’s binary relation is acyclic, this is a selection of its maximal elements that can always be done when the set of alterna- tives is finite. In the case of semiorders, proceeding in this way is the same as using Luce’s selected maximals. We put forward a sufficient condition for the existence of undominated maximals for interval orders without any cardinality restriction. Its application to certain type of continuous semiorders is very intuitive and accommodates the well-known “sugar example” by Luce. Key words: Maximal element, Selection of maximals, Acyclicity, Interval order, Semiorder JEL Classification: D11. Preprint submitted to Elsevier August 4, 2009 1 Introduction Even though there are arguments to ensure the existence of maximal elements for binary relations in very general settings, this concept does not always explain choice under non-transitive indifference well. -
Generalized Quotients in Coxeter Groups
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 308, Number 1, July 1988 GENERALIZED QUOTIENTS IN COXETER GROUPS ANDERS BJORNER AND MICHELLE L. WACHS ABSTRACT. For (W, S) a Coxeter group, we study sets of the form W/V = {w e W | l{wv) = l(w) + l(v) for all v e V}, where V C W. Such sets W/V, here called generalized quotients, are shown to have much of the rich combinatorial structure under Bruhat order that has previously been known only for the case when VCS (i.e., for minimal coset representatives modulo a parabolic subgroup). We show that Bruhat intervals in W/V, for general V C W, are lexicographically shellable. The Mobius function on W/V under Bruhat order takes values in { —1,0, +1}. For finite groups W, generalized quotients are the same thing as lower intervals in the weak order. This is, however, in general not true. Connections with the weak order are explored and it is shown that W/V is always a complete meet-semilattice and a convex order ideal as a subset of W under weak order. Descent classes Dj = {w e W \ l{ws) < l(w) o s 6 I, for all s G S}, I C S, are also analyzed using generalized quotients. It is shown that each descent class, as a poset under Bruhat order or weak order, is isomorphic to a generalized quotient under the corresponding ordering. The latter half of the paper is devoted to the symmetric group and to the study of some specific examples of generalized quotients which arise in combinatorics. -
Mathematical Supplement
Appendix A Mathematical Supplement A.1 Elements of the Theory of Binary Relations A.1.1 Basic Operations on Sets Let us recall the definitions of some operations that are often performed on sets, and define the sets resulting from these operations. The union (or sum) of two sets A and B is the set [ A B consisting of all elements that belong to at least one of the sets A and B. The union of any number of sets is defined analogously: if we are given an arbitrary indexed family of sets, that is, a collection of sets Aa in which the index a runs through an arbitrary set (the index set), the union of the sets Aa is denoted by [ Aa : a By definition, this union consists of all elements that belong to at least one of the sets Aa . In addition, we agree that if the domain of the index a is not indicated, then the union extends over all the values that a may take in the given problem. The same refers to the operation of intersection. The intersection of two sets A and B is the set \ A B that consists of all elements belonging to both A and B. Analogously, the inter- section of an arbitrary (finite or infinite) number of sets Aa is the set \ Aa a 209 210 A Mathematical Supplement of all elements that belong to all of the sets Aa . The difference of the sets A and B is the set A n B consisting of those elements in A that are not contained in B. -
Quasitrivial Semigroups: Characterizations and Enumerations Miguel Couceiro, Jimmy Devillet, Jean-Luc Marichal
Quasitrivial semigroups: Characterizations and enumerations Miguel Couceiro, Jimmy Devillet, Jean-Luc Marichal To cite this version: Miguel Couceiro, Jimmy Devillet, Jean-Luc Marichal. Quasitrivial semigroups: Characterizations and enumerations. Semigroup Forum, Springer Verlag, 2019, 98 (3), pp.472-498. 10.1007/s00233- 018-9928-3. hal-01826868v2 HAL Id: hal-01826868 https://hal.inria.fr/hal-01826868v2 Submitted on 2 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. QUASITRIVIAL SEMIGROUPS: CHARACTERIZATIONS AND ENUMERATIONS MIGUEL COUCEIRO, JIMMY DEVILLET, AND JEAN-LUC MARICHAL ABSTRACT. We investigate the class of quasitrivial semigroups and provide various char- acterizations of the subclass of quasitrivial and commutative semigroups as well as the subclass of quasitrivial and order-preserving semigroups. We also determine explicitly the sizes of these classes when the semigroups are defined on finite sets. As a byproduct of these enumerations, we obtain several new integer sequences. 1. INTRODUCTION Let X be an arbitrary nonempty set. We use the symbol Xn if X contains n ≥ 1 elements, in which case we assume w.l.o.g. that Xn = {1; : : : ; n}. In this paper we investigate the class of binary operations F ∶ X2 → X that are asso- ciative and quasitrivial, where quasitriviality means that F always outputs one of its input values. -
Lattice Thesis
Efficient Representation and Encoding of Distributive Lattices by Corwin Sinnamon A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics in Computer Science Waterloo, Ontario, Canada, 2018 c Corwin Sinnamon 2018 This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Statement of Contributions This thesis is based on joint work ([18]) with Ian Munro which appeared in the proceedings of the ACM-SIAM Symposium of Discrete Algorithms (SODA) 2018. I contributed many of the important ideas in this work and wrote the majority of the paper. iii Abstract This thesis presents two new representations of distributive lattices with an eye towards efficiency in both time and space. Distributive lattices are a well-known class of partially- ordered sets having two natural operations called meet and join. Improving on all previous results, we develop an efficient data structure for distributive lattices that supports meet and join operations in O(log n) time, where n is the size of the lattice. The structure occupies O(n log n) bits of space, which is as compact as any known data structure and within a logarithmic factor of the information-theoretic lower bound by enumeration. The second representation is a bitstring encoding of a distributive lattice that uses approximately 1:26n bits. -
Math 7409 Lecture Notes 10 Posets and Lattices a Partial Order on a Set
Math 7409 Lecture Notes 10 Posets and Lattices A partial order on a set X is a relation on X which is reflexive, antisymmetric and transitive. A set with a partial order is called a poset. If in a poset x < y and there is no z so that x < z < y, then we say that y covers x (or sometimes that x is an immediate predecessor of y). Hasse diagrams of posets are graphs of the covering relation with all arrows pointed down. A total order (or linear order) is a partial order in which every two elements are comparable. This is equivalent to satisfying the law of trichotomy. A maximal element of a poset is an element x such that if x ≤ y then y = x. Note that there may be more than one maximal element. Lemma: Any (non-empty) finite poset contains a maximal element. In a poset, z is a lower bound of x and y if z ≤ x and z ≤ y. A greatest lower bound (glb) of x and y is a maximal element of the set of lower bounds. By the lemma, if two elements of finite poset have a lower bound then they have a greatest lower bound, but it may not be unique. Upper bounds and least upper bounds are defined similarly. [Note that there are alternate definitions of glb, and in some versions a glb is unique.] A (finite) lattice is a poset in which each pair of elements has a unique greatest lower bound and a unique least upper bound.