Appendix 9 Glossary Access Line (Wats)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Twisted-Pair Telephone Transmission Line
High Frequency Design From November 2002 High Frequency Electronics Copyright © 2002, Summit Technical Media, LLC TRANSMISSION LINES The Twisted-Pair Telephone Transmission Line By Richard LAO Sumida America Technologies elephone line is a This article reviews the prin- balanced twisted- ciples of operation and Tpair transmission measurement methods for line, and like any electro- twisted pair (balanced) magnetic transmission transmission lines common- line, its characteristic ly used for xDSL and ether- impedance Z0 can be cal- net computer networking culated from manufactur- ers’ data and measured on an instrument such as the Agilent 4395A (formerly Hewlett-Packard HP4395A) net- Figure 1. Lumped element model of a trans- work analyzer. For lowest bit-error-rate mission line. (BER), central office and customer premise equipment should have analog front-end cir- cuitry that matches the telephone line • Category 3: BWMAX <16 MHz. Intended for impedance. This article contains a brief math- older networks and telephone systems in ematical derivation and and a computer pro- which performance over frequency is not gram to generate a graph of characteristic especially important. Used for voice, digital impedance as a function of frequency. voice, older ethernet 10Base-T and commer- Twisted-pair line for telephone and LAN cial customer premise wiring. The market applications is typically fashioned from #24 currently favors CAT5 installations instead. AWG or #26 AWG stranded copper wire and • Category 4: BWMAX <20 MHz. Not much will be in one of several “categories.” The used. Similar to CAT5 with only one-fifth Electronic Industries Association (EIA) and the bandwidth. the Telecommunications Industry Association • Category 5: BWMAX <100 MHz. -
Digital Subscriber Line (DSL) Technologies
CHAPTER21 Chapter Goals • Identify and discuss different types of digital subscriber line (DSL) technologies. • Discuss the benefits of using xDSL technologies. • Explain how ASDL works. • Explain the basic concepts of signaling and modulation. • Discuss additional DSL technologies (SDSL, HDSL, HDSL-2, G.SHDSL, IDSL, and VDSL). Digital Subscriber Line Introduction Digital Subscriber Line (DSL) technology is a modem technology that uses existing twisted-pair telephone lines to transport high-bandwidth data, such as multimedia and video, to service subscribers. The term xDSL covers a number of similar yet competing forms of DSL technologies, including ADSL, SDSL, HDSL, HDSL-2, G.SHDL, IDSL, and VDSL. xDSL is drawing significant attention from implementers and service providers because it promises to deliver high-bandwidth data rates to dispersed locations with relatively small changes to the existing telco infrastructure. xDSL services are dedicated, point-to-point, public network access over twisted-pair copper wire on the local loop (last mile) between a network service provider’s (NSP) central office and the customer site, or on local loops created either intrabuilding or intracampus. Currently, most DSL deployments are ADSL, mainly delivered to residential customers. This chapter focus mainly on defining ADSL. Asymmetric Digital Subscriber Line Asymmetric Digital Subscriber Line (ADSL) technology is asymmetric. It allows more bandwidth downstream—from an NSP’s central office to the customer site—than upstream from the subscriber to the central office. This asymmetry, combined with always-on access (which eliminates call setup), makes ADSL ideal for Internet/intranet surfing, video-on-demand, and remote LAN access. Users of these applications typically download much more information than they send. -
Leased-Line Replacement
Leased-Line REPLACEMENT Utilizing gigabit wireless links to provide fiber-like performance at significant savings compared to leased lines. WHITE PAPER Leased-Line Replacement T1 (1.5 Mbps) line is not enough capacity to handle the need, four T1s When considering high-bandwidth connections between locations, the are ordered from the telco at a monthly rate of $500 each ($2,000 per thinking used to be that the only way to get service was to pick up the month). This twelve month commitment also requires a startup fee of phone, call the Local Exchange Carrier (LEC) and order a circuit. As long $1,000 to cover equipment and provisioning of the circuits. This amounts as the startup costs and monthly recurring charges were within the IT to $25,000 for the one year lease to provide a 6 Mbps connection budget, and the IT manager and business administrators were content between the corporate headquarters and the satellite office. with the level of service provided, writing a monthly check to the LEC was not a problem. If troubles were encountered with the service, a In the second scenario, a DS3 leased line is used to connect a school’s phone call to the provider was all that was necessary to resolve the LAN to the district office backbone three miles away. Services such as problem. voice, data, Internet access, and classroom video are transported over the circuit. To establish service, the local carrier requires a startup fee Businesses relying on leased lines find a wide range of performance of $3,000 that covers the cost of edge devices, as well as installation options tailored to suit their needs, from T1/E1 (1.5/2 Mbps), multiple and commissioning. -
Historical Perspectives of Development of Antique Analog Telephone Systems Vinayak L
Review Historical Perspectives of Development of Antique Analog Telephone Systems Vinayak L. Patil Trinity College of Engineering and Research, University of Pune, Pune, India Abstract—Long distance voice communication has been al- ways of great interest to human beings. His untiring efforts and intuition from many years together was responsible for making it to happen to a such advanced stage today. This pa- per describes the development time line of antique telephone systems, which starts from the year 1854 and begins with the very early effort of Antonio Meucci and Alexander Graham magnet core Bell and ends up to the telephone systems just before digiti- Wire 1Coil with permanent Wire 2 zation of entire telecommunication systems. The progress of development of entire antique telephone systems is highlighted in this paper. The coverage is limited to only analog voice communication in a narrow band related to human voice. Diaphragm Keywords—antique telephones, common battery systems, cross- bar switches, PSTN, voice band communication, voice commu- nication, strowger switches. Fig. 1. The details of Meucci’s telephone. 1. Initial Claims and Inventions Since centuries, telecommunications have been of great cally. Due to this idea, many of the scientific community interest to the human beings. One of the dignified per- consider him as one of the inventors of telephone [10]. sonality in the field of telecommunication was Antonio Boursuel used term “make and break” telephone in his Meucci [1]–[7] (born in 1808) who worked relentlessly for work. In 1850, Philip Reis [11]–[13] began work on tele- communication to distant person throughout his life and in- phone. -
The Panel Dial Telephone Switching System Douglas A. Kerr Issue 6 June 15, 2018
The panel dial telephone switching system Douglas A. Kerr Issue 6 June 15, 2018 ABSTRACT In the 1910s, AT&T, the parent of the Bell Telephone System, anxious to reduce the stupendous labor costs of manual telephone switching (especially in large metropolitan areas), and realizing that the most prominent available switching system (the Strowger system) had serious limitations of its use in such areas, undertook the development from the ground up of a switching system based on many entirely new concepts. This system, the panel dial switching system, came to be the mainstay of the Bell System’s program of mechanizing telephone service in many of the largest cities in the U.S. In this article, we will learn of the evolution of this system, of the unique mechanisms around which it revolves, and of the implications of its basic operational principle, known as common control. Considerable detail in system operation is given, although not usually at the circuit level, except where necessary to illustrate an important concept. 1 HISTORICAL CONTEXT 1.1 The telephone industry in 1910 By 1910, the telephone industry in the United States was well on the way to its “classical” structure, which existed until about 1984. The Bell Telephone System, owned by American Telephone and Telegraph Company (AT&T), was becoming the major force in the industry, and provided local telephone service in most of the nation’s largest cities (often after acquiring existing locally-owned telephone companies, sometime several competing ones in the same city, whose operations had to be harmonized and consolidated). In about 1907, AT&T adopted the slogan, “One Policy, One System, Universal Service”. -
Introduction to Digital Subscriber's Line (DSL) Chapter 2 Telephone
Introduction to Digital Subscriber’s Line (DSL) Professor Fu Li, Ph.D., P.E. © Chapter 2 Telephone Infrastructure · Telephone line dates back to Bell in 1875 · Digital Transmission technology using complex algorithm based on DSP and VLSI to compensate impairments common to phone lines. · Phone line carries the single voice signal with 3.4 KHz bandwidth, DSL conveys 100 Compressed voice signals or a video signals. 1 · 15% phones require upgrade activities. · Phone company spent approximately 1 trillion US dollars to construct lines; · 700 millions are in service in 1997, 900 millions by 2001. · Most lines will support 1 Mb/s for DSL and many will support well above 1Mb/s data rate. Typical Voice Network 2 THE ACCESS NETWORK • DSL is really an access technology, and the associated DSL equipment is deployed in the local access network. • The access network consists of the local loops and associated equipment that connects the service user location to the central office. • This network typically consists of cable bundles carrying thousands of twisted-wire pairs to feeder distribution interfaces (FDIs). Two primary ways traditionally to deal with long loops: • 1.Use loading coils to modify the electrical characteristics of the local loop, allowing better quality voice-frequency transmission over extended distances (typically greater than 18,000 feet). • Loading coils are not compatible with the higher frequency attributes of DSL transmissions and they must be removed before DSL-based services can be provisioned. 3 Two primary ways traditionally to deal with long loops • 2. Set up remote terminals where the signals could be terminated at an intermediate point, aggregated and backhauled to the central office. -
Sangamo Data
TCI Library www.telephonecollectors.info INSTALLATION AND OPERATION MANUAL RIXON-SANGAMO TlOlCSC SERIES DATA SET SYSTEM Rixon, Inc. A Subsidiary of Sangamo 2120 Industrial Parkway Silver Spring, Maryland 20904 BULLETIN 5367 ISSUE 1 Part No. 693729 November, 1 972 TCI Library www.telephonecollectors.info '-- -- TCI Library www.telephonecollectors.info ISS. 1, BULLETIN 5367 INTRODUCTION This manual contains the information series. A list of equipment necessary to install and operate the various specifications is also included. T101 CSC Data Set Systems, manufactured by Sangamo Electric Company, in conjunction with 2-0 INSTALLATION AND the teletypewriter and data access arrangement CONNECTION - Supplies detailed ( DAA). Instructions are also provided for procedures for unpacking, installing, teletypewriter modification. For maintenance and connecting the different data set and troubleshooting assistance, contact the systems. Also provides teletypewriter Communication Systems Data Service Center, modification procedures. Sangamo Electric Company, Springfield, Illinois. The information provided by this manual is 3-0 OPERATION - Describes the grouped into four sections. A brief description complete procedures for operating the of each section is provided below: different data set systems with the various teletypewriters. 1-0 GENERAL DESCRIPTION - 4-0 DRAWINGS AND DIAGRAMS Provides general information about Furnishes the connection diagrams for data set and auxiliary equipment. each data set system when connected Describes the various applications -
A Data Communications Glossary of Terms
DOCUMENT RESUME ED 108 612 IR 002 1 -27 AUTHOR Teplitzky, Frank TITLE A'Data Communications Glossary of Terms. INSTITUTION Southwest Regional Laboratory for Educational Research, and Development, Los Alamitos, Calif. REPORT NO SWRL-TN-5-72-09 PUB DATE' 28 Feb 72 NOTE 18p. -EDRS TRICE MF-$0.76 HC-$1.5e PLUS ,POSTAGE DESCRIPTORS Computer Science; Data Processing; *Glossaries; *Media Technology; Programing Languages; *Reference Materials; Research Tools; *Telecommunication ' ABSTRACT General and specialized terms developed in data communications in recent years are listed al abetically and defined. The list is said to be more representative thaexhaustive and is ' intended for use as a reference source. Approximately 140 terms are included. (Author/SK) Gjr ,r ************************************************************A******** Doduments acquired byERIC inclUde =many informal unpublis4e& * * materials not available from other sources. ERIC makes every effort * *.to obtain the best copy c.vpilable. nevertheless, items of marginal * * reproducibility are often enCountered and this,affects the quality * * of the microfiche =and hardcopy reproductionsERIC makes available 4` * =via= the, ERIC Document Re -prod_ uc =tion= Service,(EDRS). EDRS= is not * responsible for the quality of the original document. Reproductions * * supplied =by EDRS are the best that can be made -from= =the original. * ********************************************************************** C I. SOUTHWEST REGIONAL LABORATORY TECHNICAL NOTE DATE: Febr-uary 28, 1972 NO: TN -
Digital Subscriber Lines and Cable Modems Digital Subscriber Lines and Cable Modems
Digital Subscriber Lines and Cable Modems Digital Subscriber Lines and Cable Modems Paul Sabatino, [email protected] This paper details the impact of new advances in residential broadband networking, including ADSL, HDSL, VDSL, RADSL, cable modems. History as well as future trends of these technologies are also addressed. OtherReports on Recent Advances in Networking Back to Raj Jain's Home Page Table of Contents ● 1. Introduction ● 2. DSL Technologies ❍ 2.1 ADSL ■ 2.1.1 Competing Standards ■ 2.1.2 Trends ❍ 2.2 HDSL ❍ 2.3 SDSL ❍ 2.4 VDSL ❍ 2.5 RADSL ❍ 2.6 DSL Comparison Chart ● 3. Cable Modems ❍ 3.1 IEEE 802.14 ❍ 3.2 Model of Operation ● 4. Future Trends ❍ 4.1 Current Trials ● 5. Summary ● 6. Glossary ● 7. References http://www.cis.ohio-state.edu/~jain/cis788-97/rbb/index.htm (1 of 14) [2/7/2000 10:59:54 AM] Digital Subscriber Lines and Cable Modems 1. Introduction The widespread use of the Internet and especially the World Wide Web have opened up a need for high bandwidth network services that can be brought directly to subscriber's homes. These services would provide the needed bandwidth to surf the web at lightning fast speeds and allow new technologies such as video conferencing and video on demand. Currently, Digital Subscriber Line (DSL) and Cable modem technologies look to be the most cost effective and practical methods of delivering broadband network services to the masses. <-- Back to Table of Contents 2. DSL Technologies Digital Subscriber Line A Digital Subscriber Line makes use of the current copper infrastructure to supply broadband services. -
Tone Commander RT-3600 Tone-Rotary Dial Intercom
TONE COMMANDER SYSTEMS, INC. 4320 l'Oth Ave. N.E., Redmond, WA 980'2, U.s.A Telephone: (206) 883-3600, Telex: 32-8055 RT-3600 KEY TELEPHONE UNIT TONE AND ROTARY DIAL INTERCOM TECHNICAL INSTRUCTION Document #13-100444 REV. E April 1981 CONTENTS 1. GENERAL INFORMAnON 2. PRODUCT IDENTIFICAnON 3. INSTALLAnON 4. OPERATING INSTRUCnONS ,. SERVICE INFORMAnON 1. GENERAL INFORMATION , Description of Product Fig. 1 - RT-3600 Key Telephone Unit 1.01 The RT-3600 is a thirty-six code selective signaling unit. It provides • This unit must be installed by telephone common talk path intercom service for most company personnel or agents authorized Key Telephone Systems that use rotary, tone under Part 68 of FCC Rules and or mixed dialing. Regulations. Manual Changes • This unit must not be installed on coin operated or party line telephones. 1.02 This document is reissued to change the warranty date from 18 months to 36 • If this unit malfunctions, the telephone months. company may· disconnect service temporarily. If disconnection is Federal Communications Commission necessary, the telephone company must (FCC) Regulations attempt to notify the user in advance, 1.03 To comply with FCC regulations, the if possible. If not, they must notify the following requirements must be met: user as soon as they are able. • Upon installation, the FCC registration • Repair work on this unit must be done number of this unit must be reported to by TeS. the telephone company. Page 1 of 6 DOCUMENT 1113-100444 REV. E RT-3600 KEY TELEPHONE UNIT 2. PRODUCT IDENTIFICATION _ 2.05 Tone Decoder Features -- Application • Digital decoding process offers superior tone decoding. -
CALRAD 70 Series - Telephone Accessories
CALRAD 70 series - telephone accessories CALRAD’S NEW TELEPHONE HEADSETS HANDS FREE TELEPHONE HEADSETS Calrad’s telephone headsets help reduce phone fatigue and provides hands-free convenience for working on computer data entry, taking notes, and in fact do the work you need to do and talk on the phone at the same time. Adjustable volume control, telephone/headset selection switch, voice mute button. All units come with base unit, headset, and cables. 70-600 TELEPHONE LINE POWERED This unit works directly when connected to your telephone. Requires two AA batteries, not included. 70-601 BATTERY POWERED This unit works with most home type instruments. A selectable configuration switch is provided on the side of the unit for easy interfacing to your telephone equipment. This unit connects to your handset jack on the telephone. Two AA batteries not included. 70-602 BATTERY / DC POWERED This unit works with most business type instruments. A selectable configuration switch is provided on the side of the unit for easy interfacing to your telephone equipment. This unit easily connects to your handset jack on the telephone. A small opening on the front of the unit is provided so that a small phillips screwdriver can be used to adjust the microphone gain. Two AA batteries/AC adapter not included. AC adapter is 45-756-S. FLUSH MOUNT, SINGLE-JACK FLUSH MOUNT, MODULAR WALL PLATES DECORA STYLE For new construction or conversion to modular instruments. Screw terminals. MODULAR WALL PLATES 70-403 ..................................................4-Wire, Ivory Wall plates designed to accept 70-403-W ..........................................4-Wire, White modular plugs. -
Glossary of Communications Terms for Relay Engineers
Glossary of Communications Terms For Relay Engineers A Working Group Report from the H14 WG Of the H – Relaying Communications Subcommittee May 2008 Participants Roger Ray, Chairman Ray Young, Vice Chairman Marc Benou Oscar Bolado Jim Huddelston Stan Klein Ken Martin John Miller Tim Phillippe Mark Simon Mal Swanson Disclaimer This document has been prepared in order to give the Protective Relay Engineer an insight and understanding of communication terms that they may encounter in their work. It is not meant to be a substitute for or replace the IEEE Dictionary. Glossary of Communications Terms For Relay Engineers AAL - ATM Adaptation Layer The standards layer that allows multiple applications to have data converted to and from the ATM cell. A protocol used that translates higher layer services into the size and format of an ATM cell. ACCUNET Switched 56 An AT&T digital service providing switched (dialup) digital service at 56 Kbps. ACCUNET T1.5 An AT&T tariffed data oriented digital service that provides leased end-to-end customer premises terminated T-1 links. ACCUNET T1.5 Reserved A disaster recovery service whereby a switched 1.544 Mbps link is available between COs and is activated when AT&T is notified of the T-1 link failure. ACCUNET T45 An AT&T tariffed service that provides 45 Mbps, DS3 service which can carry 28 T-1 connections (672 voice channels). ACD - Automatic Call Distributor A telephone facility that manages incoming calls and handles them based on the number called and an associated database of handling instructions. ADPCM - Adaptive Differential Pulse Code Modulation A speech coding method which uses fewer bits than the traditional PCM (Pulse Code Modulation).