Record-Breaking Mite Uses Grappling Hook Tight Turns

Total Page:16

File Type:pdf, Size:1020Kb

Record-Breaking Mite Uses Grappling Hook Tight Turns © 2016. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2016) 219, 609-611 INSIDE JEB Water-skiing beetles get a limb back into the water ready for Fish hearts get O boost departure. Once balanced on the tips of all 2 bumpy ride four legs, the beetles open the wing case on from carbonic anhydrase their backs and beat the wings a couple of times to unfurl them before switching into flight mode, where they flap the wings in a characteristic figure-of-eight pattern at around 115 Hz to thrust themselves forward. However, instead of gliding Time-lapse image of Galerucella nymphaeae smoothly across the glassy surface, the flying on the water surface. Photo credit: insects looked as if they were careering Haripriya Mukundarajan. along a roller coaster as they flew across the ripple ridges that they generated as they Blink and you’ve missed it: Manu A salmon heart blood vessel collapsed into a moved. ‘Almost like going on a road full of heart shape. Photo credit: Sarah Alderman. Prakash from Stanford University, USA, potholes’,saysMukundarajan,‘Although describes how one moment a waterlily Fish plumbing is contrary. As the heart these potholes are being generated by the beetle (Galerucella nymphaeae)issaton is the last organ that blood passes insect itself’, laughs Prakash. the surface of a pond and the next it has through before it returns to the gills, and vanished. ‘The phenomenon is so with little direct blood supply to the incredibly fast that you don’tsee Puzzled by the beetles’ unexpectedly ceaselessly contracting muscle, there are anything’, says Prakash, describing the bumpy ride, Mukundarajan and Prakash occasions when it could be on the verge ripples that remain on the surface, which analysed the forces acting on them as they of failure. ‘We know this can happen are the only evidence that the insect was slide across the surface and realised that under certain conditions like exhaustive ever there. Having observed the beetles’ the insects were playing a finely tuned exercise in combination with hypoxia or remarkable disappearing act, Prakash balancing act between surface tension elevated water temperature’, says Sarah knew he had to find out how they pull off clinging to their tarsus claws and the lift Alderman from the University of the stunt. ‘Initially, I filmed them without generated by their wings, with surface Guelph, Canada. Added to the challenge confining them in my kitchen…because it tension keeping them firmly anchored at of keeping the heart supplied with is hard to find them [when they get loose] the surface. And when Mukundarajan oxygen, Alderman explains that the in the lab’, he chuckles, recalling that assembled a series of equations that haemoglobin that carries oxygen in fish dinner plates of water provided ideally described the insects’ movements, they blood is finely tuned to blood pH: the sized ponds when filming. And when he explained how the tell-tale ripples – the more acidic the red blood cells, the less saw the first movie, he knew that he was only visible indication of the insects’ able haemoglobin is to carry oxygen, on to something exceptional. The beetles high-speed performance – were produced. which could prevent the red blood cells looked as though they were water skiing, According to Prakash each wingbeat of exercising fish from picking up but travelling at incredible speeds of up to generates a force that momentarily pushes oxygen at the gills if they didn’thavean 0.5 m s−1 – equivalent to a human the insect down, making it bounce along effective pump to remove acid from the travelling at around 500 km h−1 – the surface of the water. An additional set cells and restore the pH balance. propelled by their wings alone, as if they of waves – known as capillary gravity were flying while remaining attached to waves – are also generated spontaneously But Alderman and her colleagues, Till the surface. Prakash was hooked and as the insect reaches a specific speed. The Harter, Tony Farrell and Colin Brauner knew he had to learn more about the duo adds that there are only a narrow from the University of British Columbia, mysterious beetles’ interfacial flight. range of situations where an insect can fly Canada, also knew that fish can take along the surface of a pond and remain advantage of a sudden drop in red blood ‘It was incredibly difficult to image these attached without popping off into the air. cell pH to release oxygen rapidly at tissues guys’, says Prakash, who worked with Prakash is also optimistic that the new – such as red muscle and the retina – when summer interns Thibaut Bardon and Dong mathematical model could explain how required urgently. An enzyme called Hyun Kim, and graduate student Haripriya other exotic species skate, including carbonic anhydrase – which combines marine flies that are content bobbing Mukundarajan, filming the beetles’ antics CO2 and water to produce bicarbonate and with a high-speed camera. Mukundarajan about on the waves. acidic protons, and vice versa – lies at the describes the insects’ movements, saying, heart of this mechanism. Normally there ‘They have an elaborate way of preparing 10.1242/jeb.138990 is no carbonic anhydrase in blood plasma; ’ for flight , before outlining how the insects Mukundarajan, H., Bardon, T. C., Kim, D. H. and however, the enzyme has been found in initially raise the middle pair of legs – to Prakash, M. (2016). Surface tension dominates salmon red muscle capillaries, where it prevent them from impeding the wings insect flight on fluid interfaces. J. Exp. Biol. 219, facilitates the reaction of protons – that during flight – before drying each leg and 752-766. have been extruded from the red blood gently dipping the claw at the end of the Kathryn Knight cell – with bicarbonate to produce CO2, Inside JEB highlights the key developments in Journal of Experimental Biology. Written by science journalists, the short reports give the inside viewof the science in JEB. Journal of Experimental Biology 609 INSIDE JEB Journal of Experimental Biology (2016) 219, 609-611 which then diffuses back into the red anhydrase in the lumen of salmon heart that may to see the leggy solitarious locusts outstrip blood cell. The CO is then converted enhance oxygen delivery to the myocardium. their stumpier gregarious counterparts, 2 J. Exp. Biol. 219, 719-724. back into bicarbonate and protons in the recording impressive 1.1 m-long leaps, in blood cell, causing the pH to plummet and Kathryn Knight comparison to the gregarious locusts’ release a burst of O2 from the modest 0.85 m-long bounds. And when haemoglobin. Could salmon take Riley and Brighton filmed the take-offs advantage of this mechanism to boost Long legs drive solitarious with a high-speed camera, they could see oxygen supplies to the heart when the the solitarious locusts hurl themselves animals are working full out? Possibly, locusts’ powerful leaps forward at speeds that were 23% faster but only if carbonic anhydrase was (3.26 m s−1) than the gregarious locusts’ accessible to blood passing through the 2.65 m s−1 take-off – although the heart. solitarious insects pay a higher price for their impressive leaps, consuming twice Alderman and Jonathan Wilson began as much energy per jump as the searching for the enzyme in salmon gregarious locusts. hearts. Using cobalt sulphide to stain sites where the enzyme accumulated, So, the solitarious locusts’ longer legs Alderman could clearly see the enzyme propelled the insects faster and farther, in on the surface of the heart chambers. She contradiction of what was already known also identified the gene that was Male gregarious locust (Schistocerca gregaria) about spring-loaded leaps. Burrows and expressed to produce the protein. Then, jumping. Photo credit: Malcolm Burrows. Greg Sutton had previously shown that to be sure that carbonic anhydrase could recoil speed due to elastic energy stored contribute to dumping residual oxygen Of all the biblical plagues, locusts are in the limb was the major factor that out of the blood in the heart, Alderman probably the most infamous. Stripping affected the speed of spring-assisted and Harter had to figure out a way of vegetation bare and devastating crops, an leapers, not leg length. So why were the directly measuring pH inside the heart advancing swarm can decimate solitarious locusts packing so much more chambers to see whether the enzyme thousands of hectares in a single day. of a punch than their shorter limbed altered it. This type of experiment is Explaining that locusts exist in one of cousins? usually performed using ground-up two forms – the benign solitarious locust ’ and the voracious gregarious locust – tissue in a test tube, but that wouldn t Rogers looked inside the locusts and all Stephen Rogers from Arizona State confirm that carbonic anhydrase in the became clear. Measuring the dimensions University, USA, says that field workers heart chamber walls could alter blood of the leg, he realised that the solitarious ‘ monitor how far solitarious locusts have pH, So we decided to modify the assay locusts’ hind limbs were longer to progressed on their transformation into and use the heart itself as the reaction accommodate the bulging muscle that is ’ swarming gregarious locusts by vessel , Alderman recalls. required to wind up the elastic energy measuring the length of the insects’ hind storage structures. And when Rogers legs: adult solitarious locusts have longer Working closely together, the duo scrutinised these springs – known as femurs than adult gregarious locusts. painstakingly developed a technique semi-lunar processes – on either side of Recalling a discussion during a meeting where they could measure the pH in the the locust’s knee joint, they were 25% less when he was in Malcolm Burrows’ lab in beating heart with pH probes that were stiff than the gregarious locusts’ and the Cambridge, UK, Rogers says, ‘We were thinner than a human hair.
Recommended publications
  • Nova Scotia Provincial Status Report Spotted Pondweed
    Nova Scotia Provincial Status Report on Spotted Pondweed (Potamogeton pulcher Tuckerm.) prepared for Nova Scotia Species at Risk Working Group by David Mazerolle and Sean Blaney Atlantic Canada Conservation Data Centre P.O. Box 6416, Sackville, NB E4L 1C6 DRAFT Funding provided by Nova Scotia Department of Natural Resources Submitted December 2010 EXECUTIVE SUMMARY i TABLE OF CONTENTS EXECUTIVE SUMMARY ..................................................................................................i WILDLIFE SPECIES DESCRIPTION AND SIGNIFICANCE...........................................1 Name and Classification............................................................................................1 Morphological Description ........................................................................................2 Field identification......................................................................................................3 Designatable Units .....................................................................................................4 Special Significance...................................................................................................5 DISTRIBUTION ...............................................................................................................7 Global Range ..............................................................................................................7 Canadian Range .........................................................................................................8
    [Show full text]
  • The Evolutionary Significance of Body Size in Burying Beetles
    Brigham Young University Masthead Logo BYU ScholarsArchive All Theses and Dissertations 2018-04-01 The volutE ionary Significance of Body Size in Burying Beetles Ashlee Nichole Momcilovich Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd BYU ScholarsArchive Citation Momcilovich, Ashlee Nichole, "The vE olutionary Significance of Body Size in Burying Beetles" (2018). All Theses and Dissertations. 7327. https://scholarsarchive.byu.edu/etd/7327 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. The Evolutionary Significance of Body Size in Burying Beetles Ashlee Nichole Momcilovich A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Mark C. Belk, Chair Seth M. Bybee Jerald B. Johnson Steven L. Peck G. Bruce Schaalje Department of Biology Brigham Young University Copyright © 2018 Ashlee Nichole Momcilovich All Rights Reserved ABSTRACT The Evolutionary Significance of Body Size in Burying Beetles Ashlee Nichole Momcilovich Department of Biology, BYU Doctor of Philosophy Body size is one of the most commonly studied traits of an organism, which is largely due to its direct correlation with fitness, life history strategy, and physiology of the organism. Patterns of body size distribution are also often studied. The distribution of body size within species is looked at for suggestions of differential mating strategies or niche variation among ontogenetic development. Patterns are also examined among species to determine the effects of competition, environmental factors, and phylogenetic inertia.
    [Show full text]
  • Adhesion Performance in the Eggs of the Philippine Leaf Insect Phyllium Philippinicum (Phasmatodea: Phylliidae)
    insects Article Adhesion Performance in the Eggs of the Philippine Leaf Insect Phyllium philippinicum (Phasmatodea: Phylliidae) Thies H. Büscher * , Elise Quigley and Stanislav N. Gorb Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany; [email protected] (E.Q.); [email protected] (S.N.G.) * Correspondence: [email protected] Received: 12 June 2020; Accepted: 25 June 2020; Published: 28 June 2020 Abstract: Leaf insects (Phasmatodea: Phylliidae) exhibit perfect crypsis imitating leaves. Although the special appearance of the eggs of the species Phyllium philippinicum, which imitate plant seeds, has received attention in different taxonomic studies, the attachment capability of the eggs remains rather anecdotical. Weherein elucidate the specialized attachment mechanism of the eggs of this species and provide the first experimental approach to systematically characterize the functional properties of their adhesion by using different microscopy techniques and attachment force measurements on substrates with differing degrees of roughness and surface chemistry, as well as repetitive attachment/detachment cycles while under the influence of water contact. We found that a combination of folded exochorionic structures (pinnae) and a film of adhesive secretion contribute to attachment, which both respond to water. Adhesion is initiated by the glue, which becomes fluid through hydration, enabling adaption to the surface profile. Hierarchically structured pinnae support the spreading of the glue and reinforcement of the film. This combination aids the egg’s surface in adapting to the surface roughness, yet the attachment strength is additionally influenced by the egg’s surface chemistry, favoring hydrophilic substrates.
    [Show full text]
  • UDC 595.786 E.V. Guskova, G.N. Kuftina NEW INFORMATION ON
    Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 177 UDC 595.786 E.V. Guskova, G.N. Kuftina NEW INFORMATION ON THE TROPHIC SPECIALIZATION OF GALERUCELLA NYMPHAEAE (LINNAEUS, 1758) (COLEOPTERA, CHRYSOMELIDAE) OF ALTAI KRAI Altai State University, Lenin Str. 61, RUS-656049, Barnaul, Russia. Тел. (913) 2202577. E-mail: [email protected] Feeding of Galerucella nymphaeae (Linnaeus, 1758) (Coleoptera, Chrysomelidae) on leaves of water chestnut (Trapa natans L.) was registered in Siberia for the first time. Key words: Galerucella nymphaeae L., Chrysomelidae, Trapa natans L., trophic relations, Altai Krai. INTRODUCTION Galerucella nymphaeae (Linnaeus, 1758) (Coleoptera, Chrysomelidae) is a widespread holarctic species (Beenen, 2010). The literature reports that the basic food plants of this leaf beetle are white water lily (Nymphaea alba) and yellow water- lily (Nuphar lutea) (Nymphaeaceae) (Medvedev & Roginskaya, 1988; Guskova, 2001). However the representatives of this species can feed on other plants: Polygonum, Rumex (Polygonaceae), Potentilla (Rosaceae) and others (Brovdiy, 1973), and its nutrition on currants has been registered in Siberia (Dubeshko & Medvedev, 1989). RESULTS In Zmeinogorskiy district of Altai Krai on Lake Kolyvanskoye on the 25th of August, 2013, G. nymphaea beetles and instar larvae actively feeding on leaves of water chestnut Trapa natans L. (Trapaceae) were registered in large quantity (Figs 1−2). Fig. 1. Russia, Altai Krai, Zmeinogorskii district, lake Kolyvanskoe. ISSN 2225-5486 (Print), ISSN 2226-9010 (Online). Біологічний вісник МДПУ. 2016. №1 178 Бiологiчний вiсник Despite the availability of large amounts of yellow and white water lilies in the lake, the larvae and beetles fed only on floating leaves of water chestnut.
    [Show full text]
  • Galerucella Nymphaeae
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/19064 Please be advised that this information was generated on 2021-10-08 and may be subject to change. Evolution in action: Host race formation in Galerucella nymphaeae Stephanie Pappers 6WHOOLQJHQ behorende bij het proefschrift Evolution in action: host race formation in Galerucella nymphaeae Stephanie Pappers 1. Het waterleliehaantje, Galerucella nymphaeae, bestaat uit minstens twee gastheerrassen. 2. Differentiatie is mogelijk zonder geografische barrière, ook in de natuur. 3. Nothing in biology makes sense except in the light of evolution. 'RE]KDQVN\ $PHULFDQ %LRORJ\ 7HDFKHU 4. Als de vroege christenen beter naar Empedocles in plaats van Aristoteles hadden geluisterd had Darwin het niet zo moeilijk gehad. 5. De biologie heeft mij over de Schepper geleerd dat Hij in ieder geval een bijzondere voorkeur voor kevers heeft. 'H %ULWVH JHQHWLFXV -%6 +DOGDQH YROJHQV +XWFKLQVRQ $PHULFDQ 1DWXUDOLVW 6. Met de toenemende vergrijzing bij de universiteit zal ook het papierverbruik toenemen, al is het alleen al omdat een steeds groter lettertype nodig is. 7. Aangezien de meeste stadsduiven afstammen van verwilderde uitheemse rotsduiven zouden ze dus, alleen al uit oogpunt van natuurbescherming en het tegengaan van genetische vervuiling van de inheemse duiven- soorten, bestreden moeten worden. 8. Natuur is overal waar je mobieltje
    [Show full text]
  • Forest Health Technology Enterprise Team Biological Control of Invasive
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control Biological Control of Invasive Plants in the Eastern United States Roy Van Driesche Bernd Blossey Mark Hoddle Suzanne Lyon Richard Reardon Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2002-04 Department of Service August 2002 Agriculture BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES Technical Coordinators Roy Van Driesche and Suzanne Lyon Department of Entomology, University of Massachusets, Amherst, MA Bernd Blossey Department of Natural Resources, Cornell University, Ithaca, NY Mark Hoddle Department of Entomology, University of California, Riverside, CA Richard Reardon Forest Health Technology Enterprise Team, USDA, Forest Service, Morgantown, WV USDA Forest Service Publication FHTET-2002-04 ACKNOWLEDGMENTS We thank the authors of the individual chap- We would also like to thank the U.S. Depart- ters for their expertise in reviewing and summariz- ment of Agriculture–Forest Service, Forest Health ing the literature and providing current information Technology Enterprise Team, Morgantown, West on biological control of the major invasive plants in Virginia, for providing funding for the preparation the Eastern United States. and printing of this publication. G. Keith Douce, David Moorhead, and Charles Additional copies of this publication can be or- Bargeron of the Bugwood Network, University of dered from the Bulletin Distribution Center, Uni- Georgia (Tifton, Ga.), managed and digitized the pho- versity of Massachusetts, Amherst, MA 01003, (413) tographs and illustrations used in this publication and 545-2717; or Mark Hoddle, Department of Entomol- produced the CD-ROM accompanying this book.
    [Show full text]
  • A Comprehensive DNA Barcode Database for Central European Beetles with a Focus on Germany: Adding More Than 3500 Identified Species to BOLD
    Molecular Ecology Resources (2015) 15, 795–818 doi: 10.1111/1755-0998.12354 A comprehensive DNA barcode database for Central European beetles with a focus on Germany: adding more than 3500 identified species to BOLD 1 ^ 1 LARS HENDRICH,* JEROME MORINIERE,* GERHARD HASZPRUNAR,*† PAUL D. N. HEBERT,‡ € AXEL HAUSMANN,*† FRANK KOHLER,§ andMICHAEL BALKE,*† *Bavarian State Collection of Zoology (SNSB – ZSM), Munchhausenstrasse€ 21, 81247 Munchen,€ Germany, †Department of Biology II and GeoBioCenter, Ludwig-Maximilians-University, Richard-Wagner-Strabe 10, 80333 Munchen,€ Germany, ‡Biodiversity Institute of Ontario (BIO), University of Guelph, Guelph, ON N1G 2W1, Canada, §Coleopterological Science Office – Frank K€ohler, Strombergstrasse 22a, 53332 Bornheim, Germany Abstract Beetles are the most diverse group of animals and are crucial for ecosystem functioning. In many countries, they are well established for environmental impact assessment, but even in the well-studied Central European fauna, species identification can be very difficult. A comprehensive and taxonomically well-curated DNA barcode library could remedy this deficit and could also link hundreds of years of traditional knowledge with next generation sequencing technology. However, such a beetle library is missing to date. This study provides the globally largest DNA barcode reference library for Coleoptera for 15 948 individuals belonging to 3514 well-identified species (53% of the German fauna) with representatives from 97 of 103 families (94%). This study is the first comprehensive regional test of the efficiency of DNA barcoding for beetles with a focus on Germany. Sequences ≥500 bp were recovered from 63% of the specimens analysed (15 948 of 25 294) with short sequences from another 997 specimens.
    [Show full text]
  • A Wolf in Sheep's Clothing: Potential Dangers of Using
    Abstracts: Theme 2 – Benefit/Risk—Cost Analyses A wolf in sheep’s clothing: potential dangers of using indigenous herbivores as biocontrol agents J. Ding1,2 and B. Blossey2 1,2Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China 2Department of Natural Resources, Cornell University, Ithaca, NY 14850, USA Concerns about non-target effects of introduced natural enemies on native species and the existence of indigenous natural enemies attacking invasive species stimulate an interest in using indigenous herbivores for control of invasive plants. According to proponents of this strategy, using indigenous species as biocontrol agents should receive priority over introductions of foreign natural enemies. Such an approach is considered safe with low risk to native species. In contrast, we are concerned that biological control using augmentation of indigenous herbivores may lead to more serious non-target effect on native species. Indigenous natural enemies are never host specific (they have incorporated a novel host into their diet!) and often they prefer their ancestral hosts over the novel invasive ones. Even if a population or host race derived from an indigenous herbivorous insect prefers its novel invasive host, it must also be of sufficient impact to control the target invasive plant. We examined a North American indigenous herbivore, the leaf beetle Galerucella nymphaeae, for its potential as biological control agent of water chestnut (Trapa natans), in particular for its potential non-target effect on native plant species. Although speciation or host race formation often occurs in the genus Galerucella, the North American G. nymphaeae preferred its ancestral host yellow water lily (Nuphar lutea) over water chestnut.
    [Show full text]
  • Multitrophic Interactions in Wetlands Infested by an Invasive Species Lythrum Salicaria L
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2005 Multitrophic interactions in wetlands infested by an invasive species Lythrum salicaria L. Bethzayda Matos Carrion Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Ecology and Evolutionary Biology Commons, Entomology Commons, and the Environmental Sciences Commons Recommended Citation Carrion, Bethzayda Matos, "Multitrophic interactions in wetlands infested by an invasive species Lythrum salicaria L." (2005). Retrospective Theses and Dissertations. 1758. https://lib.dr.iastate.edu/rtd/1758 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Multitrophic interactions in wetlands infested by an invasive species Lythrum salicaria L. by Bethzayda Matos Carrion A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Co-majors: Entomology; Horticulture Program of Study Committee: John J. Obrycki, Co-major Professor Gail R. Nonnecke, Co-major Professor Mark L. Gleason Donald R. Lewis Leslie C. Lewis Iowa State University Ames, Iowa 2005 Copyright © Bethzayda Matos Carrion, 2005. All rights reserved. UMI Number: 3200445 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.
    [Show full text]
  • Catalogue of Iranian Subfamily Galerucinae S. Str. (Coleoptera: Chrysomelidae)
    Iranian Journal of Animal Biosystematics (IJAB) Vol.12, No.2, 167-180, 2016 ISSN: 1735-434X (print); 2423-4222 (online) DOI: 10.22067/ijab.v12i2.52601 Catalogue of Iranian subfamily Galerucinae s. str. (Coleoptera: Chrysomelidae) Mirzaei, M. *a,b , Nozari, J b. a Iranian Research Institute of Plant Protection, Agricultural Zoology Research Department, Education and Extension Organization (AREEO), Tehran, Iran. bDepartment of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran (Received: 30 December 2015 ; Accepted: 22 November 2016 ) The first comprehensive catalogue of leaf beetles of subfamily Galerucinae s. str. from Iran is presented. In total, 44 species belonging to 18 genera of three tribes (Galerucini, Hylaspini and Luperini) are listed. In Iran, Galerucinae is represented by 11 endemic species. For every species provincial distributions are given based mainly on available literature records, along with some additional distributional records from a field survey of several localities in Iran in 2012-2015. All species deposited in Jalal Afshar Zoological Museum (University of Tehran) were also examined. Luperus perlucidus Iablokoff- Khnzorian, 1956 is reported as a new record for Iranian Chrysomelidae fauna. Moreover, Theone octocostata afghanistanica Mandl, 1968, Galerucella nymphaeae (Linnaeus, 1758), Galeruca pomonae (Scopoli, 1763), Exosoma thoracicum (Redtenbacher, 1843) and Luperus kiesenwetteri Joannis, 1865, which had been omitted in the catalogue of Palaearctic Coleoptera, were added again to the leaf beetle fauna of Iran. In addition, 13 new records for the administrative provinces of Iran are provided. Key words: Chrysomelidae, Galerucinae, Catalogue, New record, Iran INTRODUCTION Iran is one of the most diverse areas of the west Palaearctic. The country with 1.648 million kilometers features three main climatic zones including arid and semi-arid regions, Mediterranean climate (mainly in the western Zagros Mountains) and humid and semi-humid regions (mainly in the Caspian).
    [Show full text]
  • Surface Tension Dominates Insect Flight on Fluid Interfaces Haripriya Mukundarajan1, Thibaut C
    © 2016. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2016) 219, 752-766 doi:10.1242/jeb.127829 RESEARCH ARTICLE Surface tension dominates insect flight on fluid interfaces Haripriya Mukundarajan1, Thibaut C. Bardon2, Dong Hyun Kim1 and Manu Prakash3,* ABSTRACT evolutionary hypothesis poses directed gliding as the origin of Flight on the 2D air–water interface, with body weight supported by insect flight (Dudley and Yanoviak, 2011; Dudley et al., 2007), surface tension, is a unique locomotion strategy well adapted for the based on observations and biomechanical analysis of creatures such environmental niche on the surface of water. Although previously as the canopy ant Cephalotus atratus (Yanoviak et al., 2005). The described in aquatic insects like stoneflies, the biomechanics of relative merits of different flight origin hypotheses have so far been interfacial flight has never been analysed. Here, we report interfacial discussed by comparing observational, molecular and fossil flight as an adapted behaviour in waterlily beetles (Galerucella evidence, and lie outside the scope of our current study. However, nymphaeae) which are also dexterous airborne fliers. We present the a quantitative understanding of interfacial flight phenomena is a first quantitative biomechanical model of interfacial flight in insects, crucial requirement for a better appreciation and comparative uncovering an intricate interplay of capillary, aerodynamic and evaluation of these ideas. In this work, we present the first neuromuscular forces. We show that waterlily beetles use their biomechanical model describing the physics underlying flight tarsal claws to attach themselves to the interface, via a fluid contact along a fluid interface, to elucidate the roles of capillary, line pinned at the claw.
    [Show full text]
  • 1 the RESTRUCTURING of ARTHROPOD TROPHIC RELATIONSHIPS in RESPONSE to PLANT INVASION by Adam B. Mitchell a Dissertation Submitt
    THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell 1 A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology and Wildlife Ecology Winter 2019 © Adam B. Mitchell All Rights Reserved THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell Approved: ______________________________________________________ Jacob L. Bowman, Ph.D. Chair of the Department of Entomology and Wildlife Ecology Approved: ______________________________________________________ Mark W. Rieger, Ph.D. Dean of the College of Agriculture and Natural Resources Approved: ______________________________________________________ Douglas J. Doren, Ph.D. Interim Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Douglas W. Tallamy, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Charles R. Bartlett, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Jeffery J. Buler, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]