Basic Concepts in Computational Physics Benjamin A

Total Page:16

File Type:pdf, Size:1020Kb

Basic Concepts in Computational Physics Benjamin A Basic Concepts in Computational Physics Benjamin A. Stickler • Ewald Schachinger Basic Concepts in Computational Physics 123 Benjamin A. Stickler Ewald Schachinger Faculty of Physics Institute of Theoretical and Computational University of Duisburg-Essen Physics Duisburg Graz University of Technology Germany Graz Austria ISBN 978-3-319-02434-9 ISBN 978-3-319-02435-6 (eBook) DOI 10.1007/978-3-319-02435-6 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2013949666 Ó Springer International Publishing Switzerland 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Traditionally physics was divided into two fields of activities: theoretical and experimental. As a consequence of the stunning increase in computer power and of the development of more powerful numerical techniques, a new branch of physics was established over the last decades: Computational Physics. This new branch introduced as a spin-off what nowadays is commonly called computer simulations, which play an increasingly important role in physics and in related sciences as well as in industrial applications. They serve two purposes • Direct simulation of physical processes (theoretical-experimental-physics) such as for instance – molecular dynamics or – Monte Carlo simulation of physical processes. • Solution of complex mathematical problems such as – differential equations, – minimization problems as well as – high dimensional integrals or sums. This book addresses all these scenarios on a very basic level. It is addressed to lecturers who will have to teach a basic course/basic courses in Computational Physics or Numerical Methods and to students as a companion in their first steps into the realm of this fascinating field of modern research. Following these intentions, this book was divided into two parts. Part I deals with deterministic methods in Computational Physics. We discuss, in particular, numerical differ- entiation and integration, the treatment of ordinary differential equations, and we present some notes on the numerics of partial differential equations. Each chapter within this part of the book is complemented by numerous applications. Part II of this book provides an introduction to stochastic methods in Computational Physics. In particular, we will examine how to generate random numbers fol- lowing a given distribution, summarize the basics of stochastics in order to establish the necessary background to understand techniques like MARKOV-Chain Monte Carlo. Finally, algorithms of stochastic optimization are discussed. Again, numerous examples out of physics like diffusion processes or the POTTS model are v vi Preface investigated exhaustively. Finally, this book contains an Appendix that augments the main parts of the book with a detailed discussion of supplementary topics. This book is not meant to be just a collection of algorithms which can immediately be applied to various problems which may arise in Computational Physics. On the contrary, the scope of this book is to provide the reader with a mathematically well founded glance behind the scene of Computational Physics. Thus, particular emphasis is on a clear mathematical analysis of the various topics and to even provide, in some cases, the necessary mathematical means to under- stand the very background of these methods. Although there is a barely compre- hensible amount of excellent literature on Computational Physics, most of these books seem to concentrate either on deterministic methods or on stochastic methods. It is not our goal to compete with these rather specific works. On the contrary, it is the particular focus of this book to discuss deterministic methods on a par with stochastic methods. Nevertheless, a certain overlap with existing literature was unavoidable and we apologize if we were not able to cite appropriately all existing works which are of importance and which influenced this book. However, we believe that by putting the emphasis on an exact mathematical analysis of both the deterministic as well as the stochastic methods we created a stimulating presentation of the basic concepts applied in Computational Physics. If we assume two basic courses in Computational Physics to be part of the curriculum, nick-named here: Computational Physics 101 and Computational Physics 102, then we would like to suggest to present/study the various topics of this book according to the following syllabus: • Computational Physics 101: – Chapter 1: Some Basic Remarks. – Chapter 2: Numerical Differentiation. – Chapter 3: Numerical Integration. – Chapter 4:TheKEPLER Problem. – Chapter 5: Ordinary Differential Equations: Initial Value Problems. –(Chapter 6: The Double Pendulum). – Chapter 7: Molecular Dynamics. – Chapter 8: Numerics of Ordinary Differential Equations: Boundary Value Problems. –(Chapter 9: The One-Dimensional Stationary Heat Equation). – Chapter 10: The One-Dimensional Stationary SCHRÖDINGER Equation. – Chapter 12: Pseudo Random Number Generators. • Computational Physics 102: – Chapter 11: Partial Differential Equations. – Chapter 13: Random Sampling Methods. – Chapter 14: A Brief Introduction to Monte-Carlo Methods. – Chapter 15:TheISING Model. Preface vii – Chapter 16: Some Basics of Stochastic Processes. – Chapter 17: The Random Walk and Diffusion Theory. – Chapter 18:MARKOV-Chain Monte Carlo and the POTTS Model. – Chapter 19: Data Analysis. – Chapter 20: Stochastic Optimization. The various chapters are augmented by problems of medium complexity which help to understand better the numerical part of the topics discussed within this book. Although the manuscript has been carefully checked several times, we cannot exclude that some errors escaped our scrutiny. We apologize in advance and would highly appreciate reports of potential mistakes or typos to Benjamin A. Stickler ([email protected]). Throughout the book SI-units are used except stated otherwise. Graz, July 2013 Benjamin A. Stickler Ewald Schachinger Acknowledgments The Authors are grateful to Prof. Dr. C. Gattringer (Karl-Franzens Universität, Graz), to Profs. Dr. W. von der Linden, Dr. H.-G. Evertz, and Dr. H. Sormann (Graz University of Technology, Austria). They inspired this book with their lectures on various topics of Computational Physics, computer simulation, and numerical analysis. Last but not least the Authors thank Dr. Chris Theis (CERN) for meticulously reading the manuscript, for pointing out inconsistencies, and for suggestions to improve the text. ix Contents 1 Some Basic Remarks ................................. 1 1.1 Motivation . 1 1.2 Rounding Errors . 6 1.3 Methodological Errors. 8 1.4 Stability. 9 1.5 Concluding Remarks. 12 References . 13 Part I Deterministic Methods 2 Numerical Differentiation .............................. 17 2.1 Introduction . 17 2.2 Finite Differences . 18 2.3 Finite Difference Derivatives . 20 2.4 A Systematic Approach: The Operator Technique . 22 2.5 Concluding Discussion . 25 Summary . 27 Problems. 28 References . 28 3 Numerical Integration ................................ 29 3.1 Introduction . 29 3.2 Rectangular Rule . 30 3.3 Trapezoidal Rule . 33 3.4 The SIMPSON Rule . 35 3.5 General Formulation: The NEWTON-COTES Rules . 36 3.6 GAUSS-LEGENDRE Quadrature. 38 3.7 An Example. 44 3.8 Concluding Discussion . 45 Summary . 47 Problems. 48 References . 49 xi xii Contents 4 The KEPLER Problem ................................. 51 4.1 Introduction . 51 4.2 The Problem . 52 4.3 Numerical Treatment . 54 Summary . 59 References . 59 5 Ordinary Differential Equations: Initial Value Problems ....... 61 5.1 Introduction . 61 5.2 Simple Integrators . 62 5.3 RUNGE-KUTTA Methods . 66 5.4 Hamiltonian Systems: Symplectic Integrators. 71 5.5 An Example: The KEPLER Problem, Revisited . 73 Summary
Recommended publications
  • Advances in Theoretical & Computational Physics
    ISSN: 2639-0108 Review Article Advances in Theoretical & Computational Physics Cosmology: Preprogrammed Evolution (The problem of Providence) Besud Chu Erdeni Unified Theory Lab, Bayangol disrict, Ulan-Bator, Mongolia *Corresponding author Besud Chu Erdeni, Unified Theory Lab, Bayangol disrict, Ulan-Bator, Mongolia. Submitted: 25 March 2021; Accepted: 08 Apr 2021; Published: 18 Apr 2021 Citation: Besud Chu Erdeni (2021) Cosmology: Preprogrammed Evolution (The problem of Providence). Adv Theo Comp Phy 4(2): 113-120. Abstract This is continued from the article Superunification: Pure Mathematics and Theoretical Physics published in this journal and intended to discuss the general logical and philosophical consequences of the universal mathematical machine described by the superunified field theory. At first was mathematical continuum, that is, uncountably infinite set of real numbers. The continuum is self-exited and self- organized into the universal system of mathematical harmony observed by the intelligent beings in the Cosmos as the physical Universe. Consequently, cosmology as a science of evolution in the Uni- verse can be thought as a preprogrammed natural phenomenon beginning with the Big Bang event, or else, the Creation act pro- (6) cess. The reader is supposed to be acquinted with the Pythagoras’ (Arithmetization) and Plato’s (Geometrization) concepts. Then, With this we can derive even the human gene-chromosome topol- the numeric, Pythagorean, form of 4-dim space-time shall be ogy. (1) The operator that images the organic growth process from nothing is where time is an agorithmic (both geometric and algebraic) bifur- cation of Newton’s absolute space denoted by the golden section exp exp e.
    [Show full text]
  • Journal of Computational Physics
    JOURNAL OF COMPUTATIONAL PHYSICS AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Audience p.2 • Impact Factor p.2 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.6 ISSN: 0021-9991 DESCRIPTION . Journal of Computational Physics has an open access mirror journal Journal of Computational Physics: X which has the same aims and scope, editorial board and peer-review process. To submit to Journal of Computational Physics: X visit https://www.editorialmanager.com/JCPX/default.aspx. The Journal of Computational Physics focuses on the computational aspects of physical problems. JCP encourages original scientific contributions in advanced mathematical and numerical modeling reflecting a combination of concepts, methods and principles which are often interdisciplinary in nature and span several areas of physics, mechanics, applied mathematics, statistics, applied geometry, computer science, chemistry and other scientific disciplines as well: the Journal's editors seek to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract. Review articles providing a survey of particular fields are particularly encouraged. Full text articles have a recommended length of 35 pages. In order to estimate the page limit, please use our template. Published conference papers are welcome provided the submitted manuscript is a significant enhancement of the conference paper with substantial additions. Reproducibility, that is the ability to reproduce results obtained by others, is a core principle of the scientific method.
    [Show full text]
  • Computational Science and Engineering
    Computational Science and Engineering, PhD College of Engineering Graduate Coordinator: TBA Email: Phone: Department Chair: Marwan Bikdash Email: [email protected] Phone: 336-334-7437 The PhD in Computational Science and Engineering (CSE) is an interdisciplinary graduate program designed for students who seek to use advanced computational methods to solve large problems in diverse fields ranging from the basic sciences (physics, chemistry, mathematics, etc.) to sociology, biology, engineering, and economics. The mission of Computational Science and Engineering is to graduate professionals who (a) have expertise in developing novel computational methodologies and products, and/or (b) have extended their expertise in specific disciplines (in science, technology, engineering, and socioeconomics) with computational tools. The Ph.D. program is designed for students with graduate and undergraduate degrees in a variety of fields including engineering, chemistry, physics, mathematics, computer science, and economics who will be trained to develop problem-solving methodologies and computational tools for solving challenging problems. Research in Computational Science and Engineering includes: computational system theory, big data and computational statistics, high-performance computing and scientific visualization, multi-scale and multi-physics modeling, computational solid, fluid and nonlinear dynamics, computational geometry, fast and scalable algorithms, computational civil engineering, bioinformatics and computational biology, and computational physics. Additional Admission Requirements Master of Science or Engineering degree in Computational Science and Engineering (CSE) or in science, engineering, business, economics, technology or in a field allied to computational science or computational engineering field. GRE scores Program Outcomes: Students will demonstrate critical thinking and ability in conducting research in engineering, science and mathematics through computational modeling and simulations.
    [Show full text]
  • COMPUTER PHYSICS COMMUNICATIONS an International Journal and Program Library for Computational Physics
    COMPUTER PHYSICS COMMUNICATIONS An International Journal and Program Library for Computational Physics AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Audience p.2 • Impact Factor p.2 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.4 ISSN: 0010-4655 DESCRIPTION . Visit the CPC International Computer Program Library on Mendeley Data. Computer Physics Communications publishes research papers and application software in the broad field of computational physics; current areas of particular interest are reflected by the research interests and expertise of the CPC Editorial Board. The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
    [Show full text]
  • Computational Complexity for Physicists
    L IMITS OF C OMPUTATION Copyright (c) 2002 Institute of Electrical and Electronics Engineers. Reprinted, with permission, from Computing in Science & Engineering. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the discussed products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by sending a blank email message to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it. COMPUTATIONALCOMPLEXITY FOR PHYSICISTS The theory of computational complexity has some interesting links to physics, in particular to quantum computing and statistical mechanics. This article contains an informal introduction to this theory and its links to physics. ompared to the traditionally close rela- mentation as well as the computer on which the tionship between physics and mathe- program is running. matics, an exchange of ideas and meth- The theory of computational complexity pro- ods between physics and computer vides us with a notion of complexity that is Cscience barely exists. However, the few interac- largely independent of implementation details tions that have gone beyond Fortran program- and the computer at hand. Its precise definition ming and the quest for faster computers have been requires a considerable formalism, however. successful and have provided surprising insights in This is not surprising because it is related to a both fields.
    [Show full text]
  • Computational Complexity: a Modern Approach
    i Computational Complexity: A Modern Approach Sanjeev Arora and Boaz Barak Princeton University http://www.cs.princeton.edu/theory/complexity/ [email protected] Not to be reproduced or distributed without the authors’ permission ii Chapter 10 Quantum Computation “Turning to quantum mechanics.... secret, secret, close the doors! we always have had a great deal of difficulty in understanding the world view that quantum mechanics represents ... It has not yet become obvious to me that there’s no real problem. I cannot define the real problem, therefore I suspect there’s no real problem, but I’m not sure there’s no real problem. So that’s why I like to investigate things.” Richard Feynman, 1964 “The only difference between a probabilistic classical world and the equations of the quantum world is that somehow or other it appears as if the probabilities would have to go negative..” Richard Feynman, in “Simulating physics with computers,” 1982 Quantum computing is a new computational model that may be physically realizable and may provide an exponential advantage over “classical” computational models such as prob- abilistic and deterministic Turing machines. In this chapter we survey the basic principles of quantum computation and some of the important algorithms in this model. One important reason to study quantum computers is that they pose a serious challenge to the strong Church-Turing thesis (see Section 1.6.3), which stipulates that every physi- cally reasonable computation device can be simulated by a Turing machine with at most polynomial slowdown. As we will see in Section 10.6, there is a polynomial-time algorithm for quantum computers to factor integers, whereas despite much effort, no such algorithm is known for deterministic or probabilistic Turing machines.
    [Show full text]
  • COMPUTATIONAL SCIENCE 2017-2018 College of Engineering and Computer Science BACHELOR of SCIENCE Computer Science
    COMPUTATIONAL SCIENCE 2017-2018 College of Engineering and Computer Science BACHELOR OF SCIENCE Computer Science *The Computational Science program offers students the opportunity to acquire a knowledge in computing integrated with knowledge in one of the following areas of study: (a) bioinformatics, (b) computational physics, (c) computational chemistry, (d) computational mathematics, (e) environmental science informatics, (f) health informatics, (g) digital forensics and cyber security, (h) business informatics, (i) biomedical informatics, (j) computational engineering physics, and (k) computational engineering technology. Graduates of this program major in computational science with a concentration in one of the above areas of study. (Amended for clarification 12/5/2018). *Previous UTRGV language: Computational science graduates develop emphasis in two major fields, one in computer science and one in another field, in order to integrate an interdisciplinary computing degree applied to a number of emerging areas of study such as biomedical-informatics, digital forensics, computational chemistry, and computational physics, to mention a few examples. Graduates of this program are prepared to enter the workforce or to continue a graduate studies either in computer science or in the second major. A – GENERAL EDUCATION CORE – 42 HOURS Students must fulfill the General Education Core requirements. The courses listed below satisfy both degree requirements and General Education core requirements. Required 020 - Mathematics – 3 hours For all
    [Show full text]
  • Computational Problem Solving in University Physics Education Students’ Beliefs, Knowledge, and Motivation
    Computational problem solving in university physics education Students’ beliefs, knowledge, and motivation Madelen Bodin Department of Physics Umeå 2012 This work is protected by the Swedish Copyright Legislation (Act 1960:729) ISBN: 978-91-7459-398-3 ISSN: 1652-5051 Cover: Madelen Bodin Electronic version available at http://umu.diva-portal.org/ Printed by: Print & Media, Umeå University Umeå, Sweden, 2012 To my family Thanks It has been an exciting journey during these years as a PhD student in physics education research. I started this journey as a physicist and I am grateful that I've had the privilege to gain insight into the fascination field of how, why, and when people learn. There are many people that have been involved during this journey and contributed with support, encouragements, criticism, laughs, inspiration, and love. First I would like to thank Mikael Winberg who encouraged me to apply as a PhD student and who later became my supervisor. You have been invaluable as a research partner and constantly given me constructive comments on my work. Thanks also to Sune Pettersson and Sylvia Benkert who introduced me to this field of research. Many thanks to Jonas Larsson, Martin Servin, and Patrik Norqvist who let me borrow their students and also have contributed with valuable ideas and comments. Special thanks to the students who shared their learning experiences during my studies. It has been a privilege to be a member of the National Graduate School in Science and Technology Education (FontD). Thanks for providing courses and possibilities to networking with research colleagues from all over the world.
    [Show full text]
  • Teaching Computational Physics
    ODERN PHYSICS RESEARCH is concerned M increasing1y with comple~ systems com­ posed of many interacting components - the Teaching many atoms making up a solid, the many stars in a galaxy, or the many values of a field in space-time describing an elementary parti­ Computational cle. In most of these cases, although we might know the simple general laws govern­ ing the interactions between the components, Physics it is difficult to predict or understand qualita­ tively new phenomena that can arise solely from the complexity of the problem. General insights in this regard are difficult, and the analytical pencil-and-paper approach that has served physics so well in the past quickly reaches its limits. Numerical simulations are therefore essential to further understanding, and computcrs and computing playa central role in much of modern research. Using a computer to model physical sys­ tems is, at its best, more art than science. The successful computational physicist is not a blind number-cruncher, but rather exploits the numerical power of the computer through by Steven E. Koonin a mix of numerical analysis, analytical models, and programing to solve otherwise intractable problems. It is a skill that can be acquired and refined - knowing how to set up the simulation, what numerical methods to employ, how to implement them effi­ ciently, when to trust the accuracy of the results. Despite its importance, computational physics has largely been neglected in the stan­ dard university physics curriculum. In part, this is because it requires balanced integration of three commonly disjoint disciplines: phys­ Caltech in the winter of 1983.
    [Show full text]
  • Computational Complexity: a Modern Approach PDF Book
    COMPUTATIONAL COMPLEXITY: A MODERN APPROACH PDF, EPUB, EBOOK Sanjeev Arora,Boaz Barak | 594 pages | 16 Jun 2009 | CAMBRIDGE UNIVERSITY PRESS | 9780521424264 | English | Cambridge, United Kingdom Computational Complexity: A Modern Approach PDF Book Miller; J. The polynomial hierarchy and alternations; 6. This is a very comprehensive and detailed book on computational complexity. Circuit lower bounds; Examples and solved exercises accompany key definitions. Computational complexity: A conceptual perspective. Redirected from Computational complexities. Refresh and try again. Brand new Book. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying their computational complexity , i. In other words, one considers that the computation is done simultaneously on as many identical processors as needed, and the non-deterministic computation time is the time spent by the first processor that finishes the computation. Foundations of Cryptography by Oded Goldreich - Cambridge University Press The book gives the mathematical underpinnings for cryptography; this includes one-way functions, pseudorandom generators, and zero-knowledge proofs. If one knows an upper bound on the size of the binary representation of the numbers that occur during a computation, the time complexity is generally the product of the arithmetic complexity by a constant factor. Jason rated it it was amazing Aug 28, Seller Inventory bc0bebcaa63d3c. Lewis Cawthorne rated it really liked it Dec 23, Polynomial hierarchy Exponential hierarchy Grzegorczyk hierarchy Arithmetical hierarchy Boolean hierarchy. Convert currency. Convert currency. Familiarity with discrete mathematics and probability will be assumed. The formal language associated with this decision problem is then the set of all connected graphs — to obtain a precise definition of this language, one has to decide how graphs are encoded as binary strings.
    [Show full text]
  • Prospects for the Application of Data-Driven Methods for Computational Physics Modeling
    Prospects for the application of data-driven methods for computational physics modeling Karthik Duraisamy University of Michigan With the proliferation of high-resolution datasets and advances in computing and algorithms over the past decade, data science has risen as a discipline in its own right. Machine learning-driven models have attained spectacular success in commercial applications such as language translation, speech and face recognition, bioinformatics, and advertising. The natural question to ask then is: Can we bypass the traditional ways of intuition/hypothesis-driven model creation and instead use data to generate predictions of physical problems? The first part of this talk will review recent work in which inference and machine learning have been used to extract operator matrices, discover dynamical systems, and derive the solution of differential equations. The second part of the talk will discuss the challenges of extending these methods and data-driven modeling in general in the prediction of complex real-world problems. For instance, regardless of the quantity of interest, there may exist several latent variables that might not be identifiable without a knowledge of the physics; we may not have enough data in all regimes of interest; and the data may be noisy and of variable quality. A pragmatic solution, then, is to blend data with existing physical knowledge and enforcing known physical constraints. Thus, one can improve model robustness and consistency with physical laws and address gaps in data. This would constitute a data-augmented physics-based modeling paradigm. Examples of this hybrid paradigm will be highlighted in fluid flow and materials applications.
    [Show full text]
  • Path Optimization in Free Energy Calculations
    Path Optimization in Free Energy Calculations by Ryan Muraglia Graduate Program in Computational Biology & Bioinformatics Duke University Date: Approved: Scott Schmidler, Supervisor Patrick Charbonneau Paul Magwene Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Graduate Program in Computational Biology & Bioinformatics in the Graduate School of Duke University 2016 Abstract Path Optimization in Free Energy Calculations by Ryan Muraglia Graduate Program in Computational Biology & Bioinformatics Duke University Date: Approved: Scott Schmidler, Supervisor Patrick Charbonneau Paul Magwene An abstract of a thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Graduate Program in Computational Biology & Bioinformatics in the Graduate School of Duke University 2016 Copyright c 2016 by Ryan Muraglia All rights reserved except the rights granted by the Creative Commons Attribution-Noncommercial License Abstract Free energy calculations are a computational method for determining thermodynamic quantities, such as free energies of binding, via simulation. Currently, due to compu- tational and algorithmic limitations, free energy calculations are limited in scope. In this work, we propose two methods for improving the efficiency of free energy calcu- lations. First, we expand the state space of alchemical intermediates, and show that this expansion enables us to calculate free energies along lower variance paths. We use Q-learning, a reinforcement learning technique, to discover and optimize paths at low computational cost. Second, we reduce the cost of sampling along a given path by using sequential Monte Carlo samplers. We develop a new free energy estima- tor, pCrooks (pairwise Crooks), a variant on the Crooks fluctuation theorem (CFT), which enables decomposition of the variance of the free energy estimate for discrete paths, while retaining beneficial characteristics of CFT.
    [Show full text]