Bimetallic Ruthenium(Ii) Polypyridyl Complexes Bridged by a Boron

Total Page:16

File Type:pdf, Size:1020Kb

Bimetallic Ruthenium(Ii) Polypyridyl Complexes Bridged by a Boron BIMETALLIC RUTHENIUM(II) POLYPYRIDYL COMPLEXES BRIDGED BY A BORON DIPYRROMETHENE (BODIPY): SYNTHESIS, SPECTROSCOPIC AND PLASMID DNA PHOTOREACTIONS AND THE IMPACT OF THE 515 NM EFFECT IN PHOTOSYNTHESIS: MODEL SYSTEM USING β-CAROTENE ACID COMPLEXES Thesis Submitted to The College of Arts and Sciences of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Chemistry By Ashlee Elizabeth Wertz Dayton, Ohio May 2019 BIMETALLIC RUTHENIUM(II) POLYPYRIDYL COMPLEXES BRIDGED BY A BORON DIPYRROMETHENE (BODIPY): SYNTHESIS, SPECTROSCOPIC AND PLASMID DNA PHOTOREACTIONS AND THE IMPACT OF THE 515 NM EFFECT IN PHOTOSYNTHESIS: MODEL SYSTEM USING β-CAROTENE ACID COMPLEXES Name: Wertz, Ashlee Elizabeth APPROVED BY: Shawn M. Swavey, Ph.D., Professor Mann Chair in the Sciences Committee Chair Mark B. Masthay, Ph.D. Associate Professor. Committee Chair Jeremy M. Erb, Ph.D. Assistant Professor. Committee Member ii © Copyright by Ashlee Elizabeth Wertz All rights reserved 2019 iii ABSTRACT BIMETALLIC RUTHENIUM(II) POLYPYRIDYL COMPLEXES BRIDGED BY A BORON DIPYRROMETHENE (BODIPY): SYNTHESIS, SPECTROSCOPIC AND PLASMID DNA PHOTOREACTIONS Name: Wertz, Ashlee Elizabeth University of Dayton Advisor: Dr. Shawn M. Swavey Photodynamic therapy (PDT) is a medical technique which utilizes a photosensitizing drug, light of a certain wavelength and molecular oxygen to generate singlet oxygen, a toxic oxidizing 1 species. When present, singlet oxygen ( O2) will rapidly react with surrounding biomolecules, causing cellular damage that ultimately leads to cell death. PDT is an approved medical technique and it has been used for multiple purposes including cases of acne and psoriasis, age-related macular degeneration, and more recently, in the treatment of cancer. To the ends of creating a photosensitizer for PDT, a new pi-extended dipyrrin containing isoquinolpyrrole has been synthesized by solvent free reactions with trifluoroacetic acid (TFA) as a catalyst. The boron- dipyrrin (Bodipy) of the isoquinolpyrrole was synthesized by standard procedures followed by synthesis of the bis-ruthenium(II) Bodipy analog. The spectroscopic properties of this complex show the typical intra-ligand charge transfer transitions (ILCT) along with the Ru(π) to ligand(π*) metal to ligand charge transfer (MLCT) transitions. An intense transition at 608 nm with molar absorptivity greater than 100,000 M-1cm-1 associated with the ππ* transition of the Bodipy core is observed. In acetonitrile solutions the bis-Ru(II)-Bodipy complex generates significant singlet oxygen when irradiated with low energy light. In aqueous solutions the complex is capable of photo-nicking plasmid DNA when irradiated within the photodynamic therapy (PDT) window of 600 to 850 nm. iv ACKNOWLEDGMENTS Special thanks are in order to Dr. Shawn M. Swavey who made this thesis possible by allowing me to join his lab and by keeping the project on track to completion. I would like to thank him for the patience he showed in explaining synthesis, electrochemistry and spectroscopy and for always being around to answer my numerous questions. In addition, I am grateful for the time he spent proof reading this thesis and for his valuable feedback. I would also like to thank the University of Dayton Chemistry Department for funding this work. Finally, I would like to express my gratitude to my parents, sisters and boyfriend for providing me with support and continuous encouragement throughout my years of study. This accomplishment would not have been possible without them. Thank you. v TABLE OF CONTENTS: PART 1 ABSTRACT…………………………………………………………………………………….... iv ACKNOWLEDGMENTS…………………………………………………………………..……..v LIST OF FIGURES ………………………………………………………………….…………..vii CHAPTER 1 INTRODUCTION TO PHOTODYNAMIC THERAPY…………………...............1 Chapter 1 References …………………………………………………………………... 20 CHAPTER 2 EXPERIMENTAL …………………………………………………………..….....29 Materials ……………………………………………………………………………….. 29 Electronic Absorption Spectra ………………………………………………..................29 Luminescence Spectra ……………………………………………………….………….29 DPBF Studies …………………………………………………………………................29 DNA Photocleavage Studies………………… ………………………………………..30 Synthesis ………………………………………………………………………...............30 Chapter 2 References ……………………………………………………………………32 CHAPTER 3 RESULTS AND DISCUSSION…………………………………………………...33 Synthesis ………………………………………………………………………...............33 Spectroscopy …………………………………………………………………………….34 DNA Studies …………………………………………………………………………….37 DPBF Studies ……………………………………………………………………………39 Conclusion ………………………………………………………………………………40 Chapter 3 References ……………………………………………………………………40 vi LIST OF FIGURES Figure 1. Modified Jablonski diagram …………………………………………………………….5 Figure 2. Structure of Porfimer Sodium …………………………………………………………..7 Figure 3. Chemical Structure of Levulan® ………………………………………………………..8 Figure 4. Chemical Structure of Metvixia® ……………………………………………................8 Figure 5. Bodipy core which can be extensively modified ………………………………………10 Figure 6. Structure of common Bodipy dyes …………………………………………………….12 Figure 7. Structure of common Bodipy dyes (II) ………………………………………...............13 Figure 8. Dibromo-aza-Bodipy (ADPM06) …………………………………………...…………13 Figure 9. BF2 -chelated azadipyrromethene dibrominated analogue …………………………….14 Figure 10. Structures of Ru-porphyrin conjugates ……………………………………………….17 2+ Figure 11. [Ru(bpy)2(N–N)] complexes ………………………………………………………..18 Figure 12. Structures of the six different DNA intercalating Ru complexes 18a–f ……... ……...19 Figure 13. Synthetic route for the Bodipy -dye, complex I, and complex II. ……………...…… 34 Figure 14. Absorption spectra of the carbazole Bodipy (blue) and Ru2 carbazole Bodipy (I) (red) in acetonitrile………………………………………………………………………………..35 Figure 15. UV/vis spectra of complex I (blue) and II (red) in dry acetonitrile at 298 K using a 1 cm quartz cuvette ………………………………………………………………………36 Figure 16. Spectroelectrochemistry of complex I in dry acetonitrile (298 K) with Et4NPF6 as supporting electrolyte ………………………………………………………………..37 Figure 17. Gel electrophoresis of circular plasmid DNA ………………………………………..38 Figure 18. Gel electrophoresis of circular plasmid DNA (II) ……………………………………39 Figure 19. Time-dependent generation of singlet oxygen upon irradiation at l > 550 nm……….40 vii CHAPTER 1 INTRODUCTION TO PHOTODYNAMIC THERAPY Discovery and Background The history of using light as a therapeutic agent go back many centuries as it had long been used by the Chinese, Egyptians and Indians in the treatment of disease 1. The ancient Greeks developed heliotherapy, a restorative health treatment that involved full body exposure to sunlight. Although the origins of using light as a treatment trace back centuries, it was not until more recently that phototherapy has been widely used in medicine 2. In the eighteenth and nineteenth centuries sunlight was used for the treatment of various conditions such as tuberculosis rickets, scurvy and muscle weakness 3. Phototherapy was developed into a science and popularized by the Danish physician Nils Finsen. Finsen described the successful treatment of smallpox using red light and used ultraviolet light to treat cutaneous tuberculosis. He also initiated the use of carbon arc phototherapy for lupus vulgaris and was awarded the Nobel Prize in 1903 for his work 4,5. The concept of cell death being induced by the interaction of both light and chemicals has been recognized for over a century. The technique was first reported by medical student Oscar Raab who observed that Paramecium spp. Protozoans were killed after staining with acridine orange and subsequent exposure to bright light 6. He, along with professor von Tappeiner, demonstrated that acridine exposed to light had a greater effect on Paramecium than either acridine alone, light alone or acridine exposed to light and then added to the paramecium. They had therefore discovered that it was not the light itself, but some product of fluorescence that induced toxicity. Von Tappeiner took over Raab’s research and, with dermatologist Jesionek, published clinical data using eosin as a photosensitizer in the treatment of skin cancer and lupus of the skin. In 1904, von Tappeiner and Jodlbauer reported that the presence of oxygen was a 1 requirement for photosensitizationon 5. In 1907 these experiments were collated into a book in which von Tappeiner coined the term ‘photodynamic therapy’ to describe the phenomenon of oxygen-dependent photosensitization 7. Uses for Photodynamic Therapy The field of PDT, a medical technique using light, a photosensitizing drug and molecular oxygen, truly began to form into a practiced medical technique in the 1960’s when Dougherty 9 brought this novel therapy to the attention of a worldwide audience. Skin conditions were among the first types of diseases to be studied for use with PDT. This is due to their easy accessibility to a photosensitizer and light. The Dougherty research group at the Roswell Park Cancer Institute in Buffalo pioneered skin cancer PDT using the first photosensitizer, a water-soluble mixture of porphyrins that was named ‘haematoporphyrin derivative’ (HpD) and a xenon arc lamp. A more purified preparation of HpD later became known as Photofrin® which will be discussed in detail later. In an early study by Dougherty, 48% of transplanted mouse mammary tumors were cured 10. In 1978, Dougherty reported success in one of the first patient trials with PDT. Twenty-five patients with either primary or secondary skin tumors were treated with HpD followed by exposure to red
Recommended publications
  • Real-Time Monitoring of Newly Acidified Organelles During Autophagy Enabled by Reaction-Based BODIPY Dyes
    ARTICLE https://doi.org/10.1038/s42003-019-0682-1 OPEN Real-time monitoring of newly acidified organelles during autophagy enabled by reaction-based BODIPY dyes Hanzhuang Liu 1,5, Wenting Song 1,5, Delia Gröninger2, Lei Zhang3, Yinghong Lu3, Kin Shing Chan 1,4, 1234567890():,; Zhikuan Zhou1, Knut Rurack 2* & Zhen Shen 1* Real-time monitoring of newly acidified organelles during autophagy in living cells is highly desirable for a better understanding of intracellular degradative processes. Herein, we describe a reaction-based boron dipyrromethene (BODIPY) dye containing strongly electron- withdrawing diethyl 2-cyanoacrylate groups at the α-positions. The probe exhibits intense red fluorescence in acidic organelles or the acidified cytosol while exhibiting negligible fluores- cence in other regions of the cell. The underlying mechanism is a nucleophilic reaction at the central meso-carbon of the indacene core, resulting in the loss of π-conjugation entailed by dramatic spectroscopic changes of more than 200 nm between its colorless, non-fluorescent leuco-BODIPY form and its red and brightly emitting form. The reversible transformation between red fluorescent BODIPY and leuco-BODIPY along with negligible cytotoxicity qua- lifies such dyes for rapid and direct intracellular lysosome imaging and cytosolic acidosis detection simultaneously without any washing step, enabling the real-time monitoring of newly acidified organelles during autophagy. 1 State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China. 2 Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany. 3 School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 225600, China.
    [Show full text]
  • 'A Fluorophore for the Future' Design and Synthesis of Novel BODIPY Derivatives
    ‘A Fluorophore for the Future’ Design and Synthesis of Novel BODIPY Derivatives A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Chemistry University of Canterbury 2017 Joseph Fee Bruce i “I have not failed. I have just found ten thousand things that do not work" Thomas Edison (1847-1931) ii Acknowledgements Firstly I would like to say thank you to everyone who has given me any wisdom, guidance, laughter or encouragement during my masters. Undeniably, both my moral and commitment have waivered at times as I have questioned myself, and through these interactions with all of you, I have persevered. My supervisor, Dr Chris Fitchett: Your sheer aura as a chemist and mentor has kept me in the lab when I needed to be and for the knowledge you have passed on to me both during my undergraduate studies and my thesis, thank you. To the rest of Team Fitchett; Sam, Will and Nic. You were there when I began my masters and you are still there as I finish. You’ve answered every annoying question I ever asked, provided me with all the practical skills I needed to get through my thesis and kept the office feeling alive the whole way, so cheers, you guys are the best. An extra thanks goes to all of the academic and technical staff within the chemistry department, in particular Dr’s Marie Squire and Matt Polson for their extra help with Mass-Spec and NMR and X-ray Crystallography, along with Wayne Mackay and Rob McCregor for their invaluable skills.
    [Show full text]
  • Design, Synthesis, and Evaluation of Innovative BODIPY-Peptidic Conjugates for Biological Application
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2017 Design, Synthesis, and Evaluation of Innovative BODIPY-Peptidic Conjugates for Biological Application Tyrslai Menyaee Williams Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Chemistry Commons Recommended Citation Williams, Tyrslai Menyaee, "Design, Synthesis, and Evaluation of Innovative BODIPY-Peptidic Conjugates for Biological Application" (2017). LSU Doctoral Dissertations. 4327. https://digitalcommons.lsu.edu/gradschool_dissertations/4327 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. DESIGN, SYNTHESIS, AND EVALUATION OF INNOVATIVE BODIPY-PEPTIDIC CONJUGATES FOR BIOLOGICAL APPLICATION A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Tyrslai Menyaeé Williams B.S., Southern University A&M College Baton Rouge, LA, 2011 August 2017 To my guardian angels Jency Williams, Libby Thompson, and Ann Glover we did it! To my heartbeats’ Marleigh Wright and Daviah Glover your unconditional love motivates me daily. ii ACKNOWLEDGEMENTS The impeccable journey of achieving my Doctorate of Philosophy in organic chemistry has been one of continuous learning and growth as a scientist and more importantly a woman. I would first like to thank God for being my light and salvation in everything that I do.
    [Show full text]
  • A BODIPY-Based Fluorescent Sensor for Amino Acids Bearing Thiol †
    Proceedings A BODIPY-Based Fluorescent Sensor for Amino Acids Bearing Thiol † Edurne Avellanal-Zaballa 1, Ágata Ramos-Torres 2, Alejandro Prieto-Castañeda 2, Fernando García-Garrido 2, Jorge Bañuelos 1,*, Antonia R. Agarrabeitia 2 and María J. Ortiz 2,* 1 Dpto Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Aptdo 644, 48080 Bilbao, Spain; [email protected] 2 Dpto Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; [email protected] (Á.R.-T.); [email protected] (A.P.-C.); [email protected] (F.G.-G.); [email protected] (A.R.A.) * Correspondence: [email protected] (J.B.); [email protected] (M.J.O.) † Presented at the 23rd International Electronic Conference on Synthetic Organic Chemistry, 15 November–15 December 2019; Available online: https://ecsoc-23.sciforum.net/. Published: 14 November 2019 Abstract: Herein, we describe the synthetic route to access a red-emitting BODIPY from its α- diformylated precursor. The photophysical signatures of this dye are sensitive to the presence of thiol-containing amino acids (like cysteine, homocysteine, and glutathione) in the surrounding environment. This sensor provides up to three detection channels to monitor and quantify these biomolecules, even at low concentrations (down to micromolar). Moreover, owing to the pronounced splitting of the spectral band profile induced by these amino acids, the detection can be visualized following just the evolution of the fluorescence color by the naked eye. Keywords: dye chemistry; fluorescent sensors; BODIPY; amino acids; Wittig reaction 1. Introduction The molecular design of fluorescent sensors to monitor and quantify the presence of biomolecules in physiological media is actually a hot research topic, owing to the key role of some of these biomolecules in biochemical events and diseases [1,2].
    [Show full text]
  • 1 University of Hull Dipyrrin Complexes and Their Uses
    UNIVERSITY OF HULL DIPYRRIN COMPLEXES AND THEIR USES AS SELF ASSEMBLING MATERIALS Being a thesis submitted for the Degree of Doctor of Philosophy in the University of Hull By Michael Benstead, MChem(hons) December 2010 1 Acknowledgements Firstly, my thanks go to my supervisors Ross Boyle and Georg Mehl for their continued help and support throughout this project. Thanks also to Julie Haley and Rob Lewis for their help with DSC, HPLC and NMR. Many thanks go to lab members of C120 and C302 both past and present for their help and interesting banter throughout my time in the lab. In particular Chris Welch, Cristina Alonso and Francesca Giuntini for their help with various reactions and NMR interpretation. Lastly, many thanks to both my parents and my lovely wife Michelle without whose support this work would not be possible as we look forward to the arrival of baby Benstead, who will have to read this at some point I‘m sure. 2 Abstract Several series of BODIPYs bearing mesogenic substituents were synthesised and their fluorescence and liquid crystal properties were characterized. Each compound prepared consisted of one BODIPY fluorophore and one, two or three mesogenic units based primarily on a cyanobiphenyl core. Initially, the mesogens were attached to the pyrrolic positions of the fluorophore, but it was found that mesogen attachment at the BODIPY 8- phenyl ring gave an increased preference for mesophase formation due to the molecules having a more ‗rod-like‘ (calamitic) shape. For several of the compounds, a monotropic nematic phase was exhibited, however, no layered phase (e.g.
    [Show full text]
  • Design, Synthesis, and Photophysical Properties of BODIPY
    Proceeding Paper Design, Synthesis, and Photophysical Properties of † BODIPY-Labeled Lupane Triterpenoids Rinat Gubaidullin, Darya Nedopekina, Adis Tukhbatullin, Eldar Davletshin and Anna Spivak * Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, 450075 Ufa, Russia; [email protected] (R.G.); [email protected] (D.N.); [email protected] (A.T.); [email protected] (E.D.) * Correspondence: [email protected]; Tel.: +79174217106 † Presented at the 24th International Electronic Conference on Synthetic Organic Chemistry, 15 November–15 December 2020; Available online: https://ecsoc-24.sciforum.net/. Abstract: Novel boron-dipyrromethene difluoride (4,4-difluoro-4-bora-3α,4α-diaza-s-indacene) (BODIPY)-lupane triterpenoid conjugates bearing a fluorescent marker at the C-2 position of ring A of the triterpene core were obtained via the Sonogashira reaction as a key step. The starting com- pounds in the cross-coupling reaction were C-2 propynyl derivatives of betulinic or betulonic acids and fluorescent dyes with an iodo-group at C-2 or meso position of BODIPY-platform. The newly elaborated coupling procedure might have applicability in the synthesis of fluorescently-labeled triterpenoid conjugates suitable for biological assays. Keywords: pentacyclic triterpenoids; betulinic acid; BODIPY; fluorescent derivatives; Sonogashira coupling Citation: Gubaidullin, R.; Nedopekina, D.; Tukhbatullin, A.; Davletshin, E.; Spivak, A. Design, 1. Introduction Synthesis, and Photophysical Pentacyclic triterpenic acids, including the lupane family of triterpenoids (betulin, Properties of BODIPY-Labeled betulinic, and betulonic acids), are an important class of natural plant products. The wide- Lupane Triterpenoids. Chem. Proc. spread availability in nature, beneficial biological and pharmacological properties (anti- 2021, 3, 11.
    [Show full text]
  • S2 Emission from Chemically Modified Bodipys
    Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012 S2 Emission from Chemically Modified BODIPYs Dae Won Cho,*a Mamoru Fujitsuka,b Jung Ho Ryu,c Myoung Hee Lee,a Hwan Kyu Kim,c Tetsuro Majima,b Chan Ima a Konkuk University MAT - Fraunhofer ISE Next Generation Solar Cell Research Center, Konkuk University, Seoul 143-701, Korea. Fax: 82 2 2201 0407; Tel: 82 2 450 0406; E-mail: [email protected], and [email protected] b Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan, E-mail: [email protected], and [email protected] c Department of Advanced Materials Chemistry and WCU Center for Next Generation Photovoltaic Systems, Korea University, Jochiwon, Chungnam 339-700, Korea, E-mail: [email protected] Experimental Synthetic General The synthesis of BODIPYs is depicted on Scheme 2. Intermediate compound (1) was prepared by treatment of pyrrole with 1,3-dibromo-5,5-dimethylhydantoin in the presence of AIBN followed by amine protection with p-toluenesulfonyl chloride. Reaction of (1) with 4-methoxyphenylboronic acid under the conditions of Suzuki cross-coupling reaction yielded (2). After protection of the tosyl group with 15% ethanolic NaOH in ethanol, the resulting intermediate (3) was reacted with methyl 4- formylbenzoate to obtain (4), the oxidation of which was achieved by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, a stronger reactant than 1,4-benzoquinone. The reaction proceeded smoothly but separating the highly colored compound by column chromatography was difficult, which explains the somewhat low yield of this step.
    [Show full text]
  • Improved Synthesis and Enhanced Reactivity of X-Bodipys by Travis Lee Lundrigan Submitted in Partial Fulfilment of the Requireme
    Improved Synthesis and Enhanced Reactivity of X-BODIPYs by Travis Lee Lundrigan Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia December 2017 © Copyright by Travis Lee Lundrigan, 2017 TABLE OF CONTENTS List of Tables ..................................................................................................................... vi List of Figures ................................................................................................................... vii List of Schemes .................................................................................................................. ix Abstract .............................................................................................................................. xi List of Abbreviations and Symbols Used ......................................................................... xii Acknowledgements .......................................................................................................... xiv Chapter 1 – Introduction ..................................................................................................... 1 1.1 – Structure and Properties of Dipyrrinato Ligands .................................................. 1 1.2 – Synthesis of Dipyrrins ........................................................................................... 2 1.3 – Dipyrrinato Complexes ......................................................................................... 4 1.4
    [Show full text]
  • Functionalized BODIPY Dyes for Near-Infrared Emission Of
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications 2017 Functionalized BODIPY Dyes for Near-Infrared Emission of Lanthanide Complexes Rukshani Wickrama Arachchi Eastern Illinois University This research is a product of the graduate program in Chemistry at Eastern Illinois University. Find out more about the program. Recommended Citation Arachchi, Rukshani Wickrama, "Functionalized BODIPY Dyes for Near-Infrared Emission of Lanthanide Complexes" (2017). Masters Theses. 2911. https://thekeep.eiu.edu/theses/2911 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. The GraduateSchool .EASTEH.N ILLINOISUNIVERSITY­ � Tbesis Maintenance and Reproduction Certificate FOR: Graduate Candidates Completing Theses in Partial Fulfillment of the Degree Graduate Faculty Advisors Directing the Theses RE: Preservation, Reproduction, and Distribution of Thesis Research Preserving, reproducing, and distributing thesis research is an important part of Booth Library's responsibility to provide access to scholarship. In order to further this goal, Booth Library makes all graduate theses completed as part of a degree program at EasternIllinois University available for personal study, research, and other not-for-profit educational purposes. Under 17 U.S.C. § 108, the library may reproduce and distribute a copy without infringing on copyright; however, professional courtesy dictates that pennission be requested from the author before doing so. Your signatures affirm the following: • The graduate candidate is the author of this thesis. • The graduate candidate retains the copyright and intellectual property rights associated with the original research, creative activity, and intellectual or artistic content of the thesis.
    [Show full text]
  • New BODIPY Dye with a Large Stokes Shift for Biopolymer Labelling †
    Proceeding Paper New BODIPY Dye with a Large Stokes Shift for Biopolymer Labelling † Valeria I. Raskolupova 1,2, Tatyana V. Popova 1, Olga D. Zakharova 1, Tatyana V. Abramova 1,* and Vladimir N. Silnikov 1 1 Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; [email protected] (V.I.R.); [email protected] (T.V.P.); [email protected] (O.D.Z.); [email protected] (V.N.S.) 2 Faculty of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia * Correspondence: [email protected] † Presented at the 24th International Electronic Conference on Synthetic Organic Chemistry, 15 November–15 December 2020; Available online: https://ecsoc-24.sciforum.net/. Abstract: As the most abundant protein with a variety of physiological functions, human serum albumin (HSA) has been used extensively for the delivery and improvement of therapeutic mole- cules. Thiolactone chemistry provides a powerful tool to prepare albumin-based multimodal imag- ing probes and agents for boron neutron capture therapy (BNCT). For this purpose, boron contain- ing 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dye was designed and synthesized. BOD- IPY dyes are photostable neutral derivatives of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene. These are widely used as chemosensors, laser materials and molecular probes. At the same time, BODIPY dyes, like most other fluorophores, have small or moderate Stokes shifts. Large Stokes shifts are preferred for fluorophores because of higher sensitivity of such probes and sensors. We succeeded in performing an annulation of pyrrole ring with coumarin heterocyclic system and achieved a re- markable difference in absorption and emission maximum of obtained fluorophore up to 100 nm.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,605,078 B2 Bertozzi Et Al
    US0096.05078B2 (12) United States Patent (10) Patent No.: US 9,605,078 B2 BertoZZi et al. (45) Date of Patent: Mar. 28, 2017 (54) PICTET-SPENGLER LIGATION FOR 5,166,309 A 11/1992 Majet al. PROTEIN CHEMICAL MODIFICATION 5,171,264 A 12, 1992 Merril 5,213,891 A 5/1993 Majet al. 5,219,564 A 6/1993 Zalipsky et al. (71) Applicant: THE REGENTS OF THE 5,225,539 A 7, 1993 Winter UNIVERSITY OF CALIFORNIA, 5,275,838 A 1, 1994 Merrill Oakland, CA (US) 5,281,698 A 1/1994 Nitecki 5,298,643 A 3, 1994 Greenwald (72) Inventors: Carolyn Bertozzi, Berkeley, CA (US); (Continued) Paresh Agarwal, Berkeley, CA (US); Ellen M. Sletten, Somerville, MA (US) FOREIGN PATENT DOCUMENTS (73) Assignee: THE REGENTS OF THE EP O239.400 9, 1987 UNIVERSITY OF CALIFORNIA, EP O519596 12/1992 Oakland, CA (US) (Continued) (*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 Van Maarseveen, Jan H. et al., “An approach to canthine derivatives U.S.C. 154(b) by 0 days. using the intramolecular pictet-Spengler condensation.” Tetrahedron (1995) 51(16) p. 4841-4852.* (21) Appl. No.: 14/443,149 Agarwal, Paresh and Bertozzi, Carolyn, “Modification of the pictet Spengler reaction for protein conjugation.” Abstracts of papers, (22) PCT Filed: Nov. 15, 2013 244th ACS national meeting and exposition (presented Aug. 21. 2012) ORGN-487.* (86). PCT No.: PCT/US2O13/070421 Van Maarseveen, Jan H. et al., “An approach to canthine derivatives using the intramolecular pictet-Spengler condensation.” Tetrahedron S 371 (c)(1), (1995) 51(6) p.
    [Show full text]
  • Preparation of Viscosity-Sensitive Isoxazoline/Isoxazolyl-Based Molecular Rotors and Directly Linked BODIPY−Fulleroisoxazoline
    Letter Cite This: Org. Lett. 2019, 21, 5713−5718 pubs.acs.org/OrgLett Preparation of Viscosity-Sensitive Isoxazoline/Isoxazolyl-Based Molecular Rotors and Directly Linked BODIPY−Fulleroisoxazoline from the Stable meso-(Nitrile Oxide)-Substituted BODIPY Yuriy V. Zatsikha,† Natalia O. Didukh,†,‡ Rachel K. Swedin,§ Viktor P. Yakubovskyi,‡ Tanner S. Blesener,† Andrew T. Healy,§ David E. Herbert,† David A. Blank,*,§ Victor N. Nemykin,*,† and Yuriy P. Kovtun*,‡ † Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada ‡ Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., 02660 Kyiv, Ukraine § Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States *S Supporting Information UTC). ABSTRACT: We developed a simple methodology for the preparation of stable meso-(nitrile oxide)-substituted BODI- PYs, which were characterized by spectroscopic methods and X-ray crystallography. These compounds were used for the preparation of isoxazoline− or isoxazolyl−BODIPYs by 1,3- dipolar cycloaddition reaction with dipolarophiles. Several o legitimately share published articles. BODIPYs possess molecular rotor behavior, including viscosity-dependent fluorescence. Transient absorption spec- troscopy and time-resolved fluorescence are indicative of a 3 orders of magnitude difference in the excited-state lifetime for dichloromethane and glycerol solutions. yes derived from the boron dipyrromethene (4,4- Scheme 1. Preparation of Stable BODIPY Nitrile
    [Show full text]