Stock Trend Prediction Using Deep Learning Approach on Technical Indicator and Industrial Specific Information
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Of Crashes, Corrections, and the Culture of Financial Information- What They Tell Us About the Need for Federal Securities Regulation
Missouri Law Review Volume 54 Issue 3 Summer 1989 Article 2 Summer 1989 Of Crashes, Corrections, and the Culture of Financial Information- What They Tell Us about the Need for Federal Securities Regulation C. Edward Fletcher III Follow this and additional works at: https://scholarship.law.missouri.edu/mlr Part of the Law Commons Recommended Citation C. Edward Fletcher III, Of Crashes, Corrections, and the Culture of Financial Information-What They Tell Us about the Need for Federal Securities Regulation, 54 MO. L. REV. (1989) Available at: https://scholarship.law.missouri.edu/mlr/vol54/iss3/2 This Article is brought to you for free and open access by the Law Journals at University of Missouri School of Law Scholarship Repository. It has been accepted for inclusion in Missouri Law Review by an authorized editor of University of Missouri School of Law Scholarship Repository. For more information, please contact [email protected]. Fletcher: Fletcher: Of Crashes, Corrections, and the Culture of Financial Information OF CRASHES, CORRECTIONS, AND THE CULTURE OF FINANCIAL INFORMATION-WHAT THEY TELL US ABOUT THE NEED FOR FEDERAL SECURITIES REGULATION C. Edward Fletcher, III* In this article, the author examines financial data from the 1929 crash and ensuing depression and compares it with financial data from the market decline of 1987 in an attempt to determine why the 1929 crash was followed by a depression but the 1987 decline was not. The author argues that the difference between the two events can be understood best as a difference between the existence of a "culture of financial information" in 1987 and the absence of such a culture in 1929. -
2020-2024 County Growth Policy Working Draft Appendices
2020-2024 WORKING DRAFT APPENDICES May 21, 2020 Prepared by Montgomery Planning www.MontgomeryPlanning.org [This page is intentionally blank.] Table of Contents Table of Contents ..................................................................................................................................... i Appendix A. Forecasting Future Growth ............................................................................................... 5 Summary ................................................................................................................................................... 5 Montgomery County Jurisdictional Forecast Methodology ...................................................................... 5 Overview ............................................................................................................................................... 5 Countywide Forecast ............................................................................................................................. 5 TAZ-level Small Area Forecast ............................................................................................................... 6 Projection Reconciliation ....................................................................................................................... 8 Appendix B. Recent Trends in Real Estate ........................................................................................... 11 Residential Real Estate ........................................................................................................................... -
Stock Market Movements Using Twitter Sentiment Analysis
ISSN: 2455-2631 © April 2019 IJSDR | Volume 4, Issue 4 Stock Market Movements Using Twitter Sentiment Analysis Nehal Shah Department of Computer Engineering Swaminarayan College of Engineering & Technology Saij-Kalol, Gujarat, India Abstract: in modern era, the utilization of social media has reached unprecedented levels. Among all social media, Twitter is such a well-liked micro-blogging service, that permits users to share short messages in real time concerning events or categorical own opinion. During this paper, we have a tendency to examine the effectiveness of varied machine learning techniques on retrieved tweet corpus. We have a tendency to apply machine learning model to predict tweet sentiment likewise as notice the correlation between twitter sentiment and stock costs. We have a tendency to accomplish this by mining tweets mistreatment Twitter’s search API and method it for additional analysis. To work out tweet sentiment, we have a tendency to check the effective 2 machine learning techniques: Naïve mathematic ian classification and Support vector machines. By evaluating every model, we have a tendency to discovered that support vector machine provides higher accuracy tho' cross validation. When predicting tweet sentiment, we've got mined stock historical information mistreatment Yahoo finance API. We’ve got designed feature matrix for exchange prediction mistreatment positive, negative, neutral and total sentiment score and stock worth for every day. We’ve got applied same machine learning rule to work out correlation between tweet sentiments and exchange costs and analyzed however tweet sentiments directly correlates with exchange costs Keywords: Stock market analysis; sentiment analysis; twitter; microblogging; prediction I. -
Stock-Market Simulations
Project DZT0518 Stock-Market Simulations An Interactive Qualifying Project Report: submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science By Bhanu Kilaru: _____________________________________ Tracyna Le: _______________________________________ Augustine Onoja: ___________________________________ Approved by: ______________________________________ Professor Dalin Tang, Project Advisor Table of Contents LIST OF TABLES....................................................................................................................... 4 LIST OF FIGURES..................................................................................................................... 5 ABSTRACT ..................................................................................................................................... 6 CHAPTER 1: INTRODUCTION ................................................................................................. 7 1.0 INTRODUCTION .................................................................................................................... 7 1.1 BRIEF HISTORY .................................................................................................................. 9 1.2 DOW .................................................................................................................................. 11 1.3 NASDAQ.......................................................................................................................... -
A Test of Macd Trading Strategy
A TEST OF MACD TRADING STRATEGY Bill Huang Master of Business Administration, University of Leicester, 2005 Yong Soo Kim Bachelor of Business Administration, Yonsei University, 200 1 PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF BUSINESS ADMINISTRATION In the Faculty of Business Administration Global Asset and Wealth Management MBA O Bill HuangIYong Soo Kim 2006 SIMON FRASER UNIVERSITY Fall 2006 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. APPROVAL Name: Bill Huang 1 Yong Soo Kim Degree: Master of Business Administration Title of Project: A Test of MACD Trading Strategy Supervisory Committee: Dr. Peter Klein Senior Supervisor Professor, Faculty of Business Administration Dr. Daniel Smith Second Reader Assistant Professor, Faculty of Business Administration Date Approved: SIMON FRASER . UNI~ER~IW~Ibra ry DECLARATION OF PARTIAL COPYRIGHT LICENCE The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection (currently available to the public at the "lnstitutional Repository" link of the SFU Library website <www.lib.sfu.ca> at: ~http:llir.lib.sfu.calhandlell8921112~)and, without changing the content, to translate the thesislproject or extended essays, if .technically possible, to any medium or format for the purpose of preservation of the digital work. -
Anatomy of a Meltdown
ISSUE 3 | VOLUME 4 | SEPTEMBER 2015 ANATOMY OF A MELTDOWN ................... 1-7 OUR THOUGHTS ......... 7 Cadence FOCUSED ON WHAT MATTERS MOST. clips Anatomy of a Meltdown When the stock market loses value quickly as it has done the process. It’s easier to remember the tumultuous fall this week, people get understandably nervous. It’s not months of 2008 than it is to remember the market actu- helpful to turn on CNBC to get live updates from the ally peaked a year earlier in 2007. We’ve seen a few trading floor and to listen to talking heads demand ac- smaller corrections over the past seven years, but tion from someone, anyone!, to stop this equity crash, as they’ve played out over months instead of years, and if things that go up up up should not be allowed to go relatively quick losses in value have been followed by down, especially this quickly. So much time has passed relatively quick, and in some cases astonishingly quick, since the pain of the 2007-2009 finan- recoveries, to the point that we cial crisis that it is easy to lose perspec- may be forgetting that most signifi- tive and forget how to prepare for and The key is to not change cant stock market losses take years how to react to a real stock market strategy during these volatile to fully occur. The key is to not decline, so every double digit drop change strategy during these vola- feels like a tragedy. periods and to plan ahead of tile periods and to plan ahead of time for the longer term time for the longer term moves By now we’ve convinced ourselves moves that cause the signifi- that cause the significant losses in that we should have seen the 2007- cant losses in value. -
Proquest Dissertations
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy sutxnitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indisünct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Bell & Howell Information and Leaming 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 800-521-0600 UMÏ METAPHORS OF EXCHANGE AND THE SHANGHAI STOCK MARKET DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School o f The Ohio State University By Susan Diane Menke, M A ***** The Ohio State University 2000 Dissertation committee: Approved by: Dr. -
Forecasting Direction of Exchange Rate Fluctuations with Two Dimensional Patterns and Currency Strength
FORECASTING DIRECTION OF EXCHANGE RATE FLUCTUATIONS WITH TWO DIMENSIONAL PATTERNS AND CURRENCY STRENGTH A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY MUSTAFA ONUR ÖZORHAN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PILOSOPHY IN COMPUTER ENGINEERING MAY 2017 Approval of the thesis: FORECASTING DIRECTION OF EXCHANGE RATE FLUCTUATIONS WITH TWO DIMENSIONAL PATTERNS AND CURRENCY STRENGTH submitted by MUSTAFA ONUR ÖZORHAN in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Engineering Department, Middle East Technical University by, Prof. Dr. Gülbin Dural Ünver _______________ Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Adnan Yazıcı _______________ Head of Department, Computer Engineering Prof. Dr. İsmail Hakkı Toroslu _______________ Supervisor, Computer Engineering Department, METU Examining Committee Members: Prof. Dr. Tolga Can _______________ Computer Engineering Department, METU Prof. Dr. İsmail Hakkı Toroslu _______________ Computer Engineering Department, METU Assoc. Prof. Dr. Cem İyigün _______________ Industrial Engineering Department, METU Assoc. Prof. Dr. Tansel Özyer _______________ Computer Engineering Department, TOBB University of Economics and Technology Assist. Prof. Dr. Murat Özbayoğlu _______________ Computer Engineering Department, TOBB University of Economics and Technology Date: ___24.05.2017___ I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name: MUSTAFA ONUR ÖZORHAN Signature: iv ABSTRACT FORECASTING DIRECTION OF EXCHANGE RATE FLUCTUATIONS WITH TWO DIMENSIONAL PATTERNS AND CURRENCY STRENGTH Özorhan, Mustafa Onur Ph.D., Department of Computer Engineering Supervisor: Prof. -
Revenue Growth in a Declining Market
Media Release Page 1/2 Winterthur, January 23, 2020 2019 financial year: revenue growth in a declining market Thanks to numerous new ramp-ups and the favorable portfolio of vehicle models supplied, Autoneum grew organically by 2.5% in a declining market. Adjusted for currency effects, Group revenue in Swiss francs amounted to CHF 2 297.4 million, 0.7% higher compared to the previous year. CHF million 2019 2018 Change Organic growth* Revenue Group 2 297.4 2 281.5 +0.7% +2.5% Revenue Business Groups (BG) - BG Europe 900.9 984.5 –8.5% –5.6% - BG North America 1 001.8 921.8 +8.7% +7.2% - BG Asia 275.7 260.3 +5.9% +8.1% - BG SAMEA 125.8 111.5 +12.8% +32.7% *Change in revenue in local currencies, adjusted for hyperinflation. For the second consecutive year, fewer vehicles were manufactured worldwide in 2019 than in the prior year. In particular, the persistently weak global economy and ongoing trade disputes have had an impact on vehicle demand. With only about 89 million vehicles produced, the market shrank by almost –6% compared to 2018. Despite this negative trend, Autoneum achieved an organic revenue growth of 2.5% through numerous production ramp-ups and a favorable mix of vehicle models supplied. Revenue consolidated in Swiss francs rose by 0.7% from CHF 2 281.5 million to CHF 2 297.4 million. Revenue growth in North America, Asia and SAMEA region significantly above market The Business Groups North America, Asia and SAMEA (South America, Middle East and Africa) not only outperformed the negative market trend in each case, but also reported higher revenues compared to the previous year. -
Market Trend, Company Size and Microstructure Characteristics of Intraday Stock Price Formations
European Research Studies Volume VI, Issue (1-2), 2003 Market Trend, Company Size and Microstructure Characteristics of Intraday Stock Price Formations Alexakis C. ∗∗∗ and Xanthakis E. ∗∗∗ Abstract The purpose of this study is to investigate whether there are certain price patterns during the trading session in the Athens Stock Exchange (ASE). We investigate statistically the series of stock returns, the volatility of stock returns and trading volume. In our analysis we use data from two different time periods; a period of rising prices (“bull” market) and a period of declining stock prices (“bear” market). We also use different categories of shares i.e. blue chips, medium capitalization stocks and small capitalization stocks. Our results indicate that there exist specific intraday patterns. The explanation of the revealed patterns can be based on investor sentiment and stock market microstructure characteristics Keywords : pattern, intraday, microstructure, regression JEL Classification : G14 1. Introduction The empirical research for stock price formation investigates a) if there is past available information which can help in predicting future returns profitably, and b) if non rational factors i.e. factors which are not predicted by the economic theory, influence stock prices (Muth 1961, Cootner 1962, Fama 1965, 1970, 1976, 1991, Gowland and Baker 1970, Cutler, Poterba and Summers 1989 and 1991, MacDonald and Taylor 1988, 1989, Spiro 1990, Cochrane 1991, Frennberg and Hansson 1993, Jung and Boyd 1996, Al-Loughani and Chappel 1997). Thus, according to the theory there should not be any patterns in the formation of stock prices or relevant variables i.e. trading volume, volatility which would imply a) and/or b) above. -
Stock Market Value Prediction Using Neural Networks
Stock Market Value Prediction Using Neural Networks Mahdi Pakdaman Naeini Hamidreza Taremian Homa Baradaran Hashemi IT & Computer Engineering Engineering Department School of Electrical and Computer Department Islamic Azad University Engineering Islamic Azad University Tehran East Branch University of Tehran Parand Branch Tehran, Iran Tehran, Iran Tehran, Iran email: e-mail: [email protected] e-mail: [email protected] [email protected] Abstract— Neural networks, as an intelligent data mining regression. These days Neural Networks are considered as a method, have been used in many different challenging pattern common Data Mining method in different fields like recognition problems such as stock market prediction. economy, business, industry, and science. [6] However, there is no formal method to determine the optimal The application of neural networks in prediction neural network for prediction purpose in the literatur. In this problems is very promising due to some of their special paper, two kinds of neural networks, a feed forward multi characteristics. layer Perceptron (MLP) and an Elman recurrent network, are First, traditional methods such as linear regression and used to predict a company’s stock value based on its stock logistic regression are model based while Neural Networks share value history. The experimental results show that the are self-adjusting methods based on training data, so they application of MLP neural network is more promising in have the ability to solve the problem with a little knowledge predicting stock value changes rather than Elman recurrent network and linear regression method. However, based on the about its model and without constraining the prediction standard measures that will be presented in the paper we find model by adding any extra assumptions. -
An Experiment in Integrating Sentiment Features for Tech Stock Prediction in Twitter
An Experiment in Integrating Sentiment Features for Tech Stock Prediction in Twitter Tien Thanh Vu1,3 Shu Chang2,3 Quang Thuy Ha1 Nigel Collier3 (1) University of Engineering and Technology, Vietnam National University Hanoi, 144 Xuanthuy street, Caugiay district, Hanoi, Vietnam (2) University of Bristol, Senate House, Tyndall Avenue, Bristol BS8 1TH, UK (3) National Institute of Informatics, National Center of Sciences Building 2-1-2 Hitotusbashi, Chiyoda-ku, Tokyo 101-8430, Japan [email protected], [email protected], [email protected], [email protected] ABSTRACT Economic analysis indicates a relationship between consumer sentiment and stock price move- ments. In this study we harness features from Twitter messages to capture public mood related to four Tech companies for predicting the daily up and down price movements of these com- panies’ NASDAQ stocks. We propose a novel model combining features namely positive and negative sentiment, consumer confidence in the product with respect to ‘bullish’ or ‘bearish’ lexicon and three previous stock market movement days. The features are employed in a Deci- sion Tree classifier using cross-fold validation to yield accuracies of 82.93%,80.49%, 75.61% and 75.00% in predicting the daily up and down changes of Apple (AAPL), Google (GOOG), Microsoft (MSFT) and Amazon (AMZN) stocks respectively in a 41 market day sample. KEYWORDS: Stock market prediction, Named entity recognition (NER), Twitter, Sentiment analysis. Proceedings of the Workshop on Information Extraction and Entity Analytics on Social Media Data, pages 23–38, COLING 2012, Mumbai, December 2012. 23 1 Introduction Recent research into social media has looked at the application of microblogs for predicting the daily rise and fall in stock prices.