Diet of Theropithecus from 4 to 1 Ma in Kenya

Total Page:16

File Type:pdf, Size:1020Kb

Diet of Theropithecus from 4 to 1 Ma in Kenya Diet of Theropithecus from 4 to 1 Ma in Kenya Thure E. Cerlinga,b,1, Kendra L. Chritzb, Nina G. Jablonskic, Meave G. Leakeyd,e,f, and Fredrick Kyalo Manthif Departments of aGeology and Geophysics and bBiology, University of Utah, Salt Lake City, UT 84013; cDepartment of Anthropology, Penn State, University Park, PA 16802; dTurkana Basin Institute, 00502 Nairobi, Kenya; eDepartment of Anthropology, Stony Brook University, Stony Brook, NY 11794; and fNational Museums of Kenya, 00100 Nairobi, Kenya Edited by James O’Connell, University of Utah, Salt Lake City, UT, and approved April 15, 2013 (received for review December 23, 2012) Theropithecus was a common large-bodied primate that co- grass as effectively as an equid, and they can also ferment cellular occurred with hominins in many Plio-Pleistocene deposits in East material from grass in their hindguts but less effectively than and South Africa. Stable isotope analyses of tooth enamel from T. a zebra, which may have aided in this adaptation (6, 12, 13). Even brumpti (4.0–2.5 Ma) and T. oswaldi (2.0–1.0 Ma) in Kenya show with the richness of the genus’s fossil record and the many pa- that the earliest Theropithecus at 4 Ma had a diet dominated by C4 leoecological and functional anatomical studies that have spec- resources. Progressively, this genus increased the proportion of ulated on the respective habitat and dietary preferences of the C4-derived resources in its diet and by 1.0 Ma, had a diet that was T. brumpti and T. oswaldi lineages, many questions remain about nearly 100% C4-derived. It is likely that this diet was comprised of their respective dietary specializations and how they may have grasses or sedges; stable isotopes cannot, by themselves, give an contributed to the eventual extinction of both lineages. indication of the relative importance of leaves, seeds, or underground The present study of the stable isotopic composition of the storage organs to the diet of this primate. Theropithecus throughout molars of T. brumpti and T. oswaldi through time was undertaken the 4- to 1-Ma time range has a diet that is more C4-based than to shed light on this persistent and vexing set of questions. Stable contemporaneous hominins of the genera Australopithecus, Ken- isotope ratios of 13C/12C are ideally suited to test this hypothesis yanthropus Homo Theropithecus Paranthropus ,and ; however, and because of the difference in isotope ratios between C3 plants have similar proportions of C -based resources in their respec- 4 (most dicots) and C4 plants (grasses and sedges, both of which tive diets. are monocots) in the tropics; the dietary distinction between C3 and C4 plant-derived foods is preserved in the fossil record of 13 C3 | East Africa | Koobi Fora | Nachukui | baboon Africa for most of the past 10 Ma (14, 15). The δ C values of tooth enamel from modern and fossil browsers are about −12‰ ANTHROPOLOGY oday, the Old World monkey genus Theropithecus is repre- in open forests through grasslands, whereas grazers have δ13C Tsented by one species, T. gelada, which lives only in the high- values near 2‰, and mixed feeders have intermediate values lands of central Ethiopia. This unusual, grass-eating relict is all (16–19). We note that mammals from closed canopy forests are that remains of a previously widespread radiation that extended even more depleted in 13C than those mammals from open over much of Africa during the Pliocene and Pleistocene. From forests (20). Previous studies using isotopes in fossil primates ∼ the period from 4 to 0.25 Ma, fossils of Theropithecus are found show dietary preferences from pure C3-derived to predominantly in abundance at most of the well-known Plio-Pleistocene hominin C4-derived diets (21–27). Theropithecus from Southern Africa EARTH, ATMOSPHERIC, fossil localities of Africa (1). The nature and pattern of occurrence had a high component of C4 biomass in the diet during the Plio- AND PLANETARY SCIENCES of Theropithecus fossils attracted the attention of Clifford Jolly Pleistocene (21, 23); however, dating fossils from South African early in his career, and his famous 1970 paper (2) on the “seed- cave deposits is problematic, and a good chronology for the eater hypothesis” was one of the first to model early hominin history of dietary evolution in this genus cannot be established. ecology and functional morphology on the characteristics of a First, to address the comparison between preadult (during molar nonhuman primate. Most of the Theropithecus fossil record is formation and maturation) and adult diets (postmolar formation and dominated by members of the continuous and geographically maturation), we compare diets of modern baboons (Papio cyn- widespread T. darti–T. oswaldi lineage, but during the early and ocephalus) using stable isotope ratios of feces from known individ- middle Pliocene, the distinct T. brumpti lineage was found in the uals; baboons were from two groups monitored over a 3-wk period. Omo-Lake Turkana Basin (1, 3). The virtual absence of geographic We then present stable isotope data for 44 Theropithecus or temporal overlap between the two Theropithecus lineages has specimens from Kenya, principally from the Lake Turkana re- invited speculation as to their respective habitat preferences and gion but also from Olorgesailie, that range in age from ca. 4to diets (4–7). The association of T. brumpti fossils with presumed <1 Ma. For purposes of considering average carbon isotope ra- forest-dwelling bovid fossils and the species’ idiosyncratic pattern tios for the two main Theropithecus species under consideration, of dental wear led some to conclude that the species was a semi- we included one sample of T. darti; this species should be com- arboreal frugivore (7, 8). pared with T. oswaldi, because it is widely accepted that T. darti is Theropithecus exhibits a distinctive suite of dental, gnathic, and the earliest representative of the T. oswaldi chronospecies. We postcranial characteristics related to chewing and food harvest- discuss Theropithecus in the context of C3- and C4-derived diet ing. These characteristics include an elongated thumb and fore- resources and the overall context of isotope ecology in the shortened index finger; this morphology permits precise and Turkana Basin. The diet of Theropithecus is of interest compared efficient plucking and pinching of food items, notably grasses in with the diets of early hominins (26, 28) from the same deposits; the case of geladas (9, 10). The combination of features associ- hominins exhibit a change in the use of C4 resources over this ated with manual grazing along with craniodental specializations facilitating the comminution of high-fiber and/or silica-rich veg- etation was highly successful. During the Pliocene, Theropithecus Author contributions: T.E.C., N.G.J., M.G.L., and F.K.M. designed research; T.E.C., K.L.C., was thought to have occupied an ecological niche that is domi- N.G.J., M.G.L., and F.K.M. performed research; T.E.C., K.L.C., N.G.J., M.G.L., and F.K.M. nated today by ungulates, many of which are ruminants; thus, analyzed data; and T.E.C. and N.G.J. wrote the paper. Theropithecus may have shared some of the dietary features of The authors declare no conflict of interest. ungulates (such as being capable of chewing and digesting large This article is a PNAS Direct Submission. volumes of low-quality, high-fiber, and/or highly siliceous vege- 1To whom correspondence should be addressed. E-mail: [email protected]. fi tation), although Theropithecus did not have the bene t of hooves This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. or ruminant digestion (11). Modern geladas are able to masticate 1073/pnas.1222571110/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1222571110 PNAS Early Edition | 1of6 Downloaded by guest on September 25, 2021 time interval, and thus, these primates were in potential com- petition for dietary resources. East Africa Results South Africa modern Preadult Vs. Adult Diet. Isotope ratios measured in tooth enamel are set by the diet of preadults; therefore, to characterize the 0 species as a whole, it is important to establish whether the pre- adult diet differs from the adult diet. We measured δ13C values of fecal matter from two groups of baboons collected over a re- -5 stricted time period; preadults are not significantly different from adult baboons for each group. Group 1.1 has average δ13C values of −22.0 ± 1.7‰ (n = 12) and −22.6 ± 1.1‰ (n = 7) for preadult -10 and adult individuals, respectively; group 1.2 has average δ13C values of −24.2 ± 1.4‰ (n = 9) and −24.3 ± 1.0‰ (n = 4) for preadult and adult individuals, respectively (data in Table S1). -15 Theropithecus Isotope Results. The geological age ranges of the specimens of T. brumpti and T. oswaldi in this study are ca.4–2.5 AB BAB C D T. brumpti T. oswaldi P. boisei T. oswaldi P. robustus Papio sp. and 2–1 Ma, respectively. Most samples are from the Turkana Basin in northern Kenya, but the later time period includes three Fig. 2. Box and whisker diagrams showing the δ13C ranges for tooth enamel specimens from Olorgesailie in southern Kenya. The age ranges from Theropithecus (this study) and Paranthropus from the Turkana Basin (26, represented are discontinuous, with an important gap between 28), Theropithecus (17, 19) and Paranthropus from South Africa (21–23), and 2.5 and 2.0 Ma (Fig. 1); additional specimens from this critical baboons from Eastern and Central Africa (28). Letters correspond to statisti- cally different groups based on ANOVA analysis (Tukey posthoc; P > 0.05).
Recommended publications
  • Dietary Change Among Hominins and Cercopithecids in Ethiopia During the Early Pliocene
    Dietary change among hominins and cercopithecids in Ethiopia during the early Pliocene Naomi E. Levina,1, Yohannes Haile-Selassieb, Stephen R. Frostc, and Beverly Z. Saylord aDepartment of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218; bPhysical Anthropology Department, The Cleveland Museum of Natural History, Cleveland, OH 44106; cDepartment of Anthropology, University of Oregon, Eugene, OR 97403; and dDepartment of Earth, Environmental, and Planetary Sciences, Case Western Reserve University, Cleveland, OH 44106 Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved August 4, 2015 (received for review December 31, 2014) 13 The incorporation of C4 resources into hominin diet signifies in- signatures and that the δ C value of tooth enamel reflects the creased dietary breadth within hominins and divergence from the carbon isotope composition of an animal’s diet (5). Fossil teeth dietary patterns of other great apes. Morphological evidence in- from the Woranso-Mille paleontological study area are well- dicates that hominin diet became increasingly diverse by 4.2 mil- suited to fill the temporal gap in the isotopic record of hominin lion years ago but may not have included large proportions of C4 diet because they are part of a record of Pliocene mammalian foods until 800 thousand years later, given the available isotopic fossils that spans 3.76–3.2 Ma (6–11). The hominin fossils from evidence. Here we use carbon isotope data from early to mid Woranso-Mille include those that are morphologically inter- Pliocene hominin and cercopithecid fossils from Woranso-Mille mediate between Au. anamensis and Au. afarensis, some that are (central Afar, Ethiopia) to constrain the timing of this dietary definitively Au.
    [Show full text]
  • Cercopithecidae) from the Republic of Djibouti Denis Geraads, Louis De Bonis
    First record of Theropithecus (Cercopithecidae) from the Republic of Djibouti Denis Geraads, Louis de Bonis To cite this version: Denis Geraads, Louis de Bonis. First record of Theropithecus (Cercopithecidae) from the Republic of Djibouti. Journal of Human Evolution, Elsevier, 2020, 138, pp.102686. 10.1016/j.jhevol.2019.102686. hal-02468836 HAL Id: hal-02468836 https://hal.sorbonne-universite.fr/hal-02468836 Submitted on 6 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. First record of Theropithecus (Cercopithecidae) from the Republic of Djibouti Denis Geraads a, *, Louis de Bonis b a CR2P-UMR 7207, CNRS, MNHN, UPMC, Sorbonne Universit_es, CP 38, 8 rue Buffon, 75231 Paris cedex 05, France b PALEVOPRIM-UMR 7262, UFR SFA, Universit_e de Poitiers, 6 rue Michel-Brunet, B^at. 35, TSA 51106, 86073 Poitiers cedex 9, France Keywords: Primates; Cercopithecidae; systematics; biogeography; Eastern Africa Abstract: We describe here several specimens of the genus Theropithecus from the southern shore of Lake Assal in the Republic of Djibouti; they are the first record of the genus from this country. We assign them to a derived stage of T. oswaldi. This identification has implications for the age of the informal 'Formation 1' from this area, which should probably be assigned to the Middle Pleistocene.
    [Show full text]
  • Old World Monkeys
    OLD WORLD MONKEYS Edited by Paul F. Whitehead and Clifford J. Jolly The Pitt Building, Trumpington Street, Cambridge CB2 1RP, United Kingdom The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk 40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org 10 Stamford Road, Oakleigh, Melbourne 3166, Australia Ruiz de Alarco´n 13, 28014 Madrid, Spain © Cambridge University Press 2000 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2000 Printed in the United Kingdom at the University Press, Cambridge Typeface Times NR 10/13pt. System QuarkXPress® [] A catalogue record for this book is available from the British Library Library of Congress Cataloguing in Publication data Old world monkeys / edited by Paul F. Whitehead & Clifford J. Jolly. p. cm. ISBN 0 521 57124 3 (hardcover) 1. Cercopithecidae. I. Whitehead, Paul F. (Paul Frederick), 1954– . II. Jolly, Clifford J., 1939– . QL737.P930545 2000 599.8Ј6–dc21 99-20192 CIP ISBN 0 521 57124 3 hardback Contents List of contributors page vii Preface x 1 Old World monkeys: three decades of development and change in the study of the Cercopithecoidea Clifford J. Jolly and Paul F. Whitehead 1 2 The molecular systematics of the Cercopithecidae Todd R. Disotell 29 3 Molecular genetic variation and population structure in Papio baboons Jeffrey Rogers 57 4 The phylogeny of the Cercopithecoidea Colin P. Groves 77 5 Ontogeny of the nasal capsule in cercopithecoids: a contribution to the comparative and evolutionary morphology of catarrhines Wolfgang Maier 99 6 Old World monkey origins and diversification: an evolutionary study of diet and dentition Brenda R.
    [Show full text]
  • Areas 1- Ern Africa
    Kroeber Anthropological Society Papers, Nos. 71-72, 1990 Diet, Species Diversity and Distribution of African Fossil Baboons Brenda R. Benefit and Monte L. McCrossin Based on measurements ofmolarfeatures shown to befunctionally correlated with the proportions of fruits and leaves in the diets ofextant monkeys, Plio-Pleistocenepapionin baboonsfrom southern Africa are shown to have included more herbaceous resources in their diets and to have exploited more open country habitats than did the highlyfrugivorousforest dwelling eastern African species. The diets ofall species offossil Theropithecus are reconstructed to have included morefruits than the diets ofextant Theropithecus gelada. Theropithecus brumpti, T. quadratirostris and T. darti have greater capacitiesfor shearing, thinner enamel and less emphases on the transverse component ofmastication than T. oswaldi, and are therefore interpreted to have consumed leaves rather than grass. Since these species are more ancient than the grass-eating, more open country dwelling T. oswaldi, the origin ofthe genus Thero- pithecus is attributed tofolivorous adaptations by largepapionins inforest environments rather than to savannah adapted grass-eaters. Reconstructions ofdiet and habitat are used to explain differences in the relative abundance and diversity offossil baboons in eastern andsouthern Africa. INTRODUCTION abundance between eastern and southern Africa is observed for members of the Papionina (Papio, Interpretations of the dietary habits of fossil Cercocebus, Parapapio, Gorgopithecus, and Old World monkeys have been based largely on Dinopithecus). [We follow Szalay and Delson analogies to extant mammals with lophodont teeth (1979) in recognizing two tribes of cercopithe- (Jolly 1970; Napier 1970; Delson 1975; Andrews cines, Cercopithecini and Papionini, and three 1981; Andrews and Aiello 1984; Temerin and subtribes of the Papionini: Theropithecina (gela- Cant 1983).
    [Show full text]
  • Phylogenetic Relationships of Living and Fossil African Papionins: Combined Evidence from Morphology and Molecules
    City University of New York (CUNY) CUNY Academic Works Publications and Research Hunter College 2018 Phylogenetic relationships of living and fossil African papionins: Combined evidence from morphology and molecules Kelsey D. Pugh The Graduate Center, City University of New York Christopher C. Gilbert CUNY Hunter College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/hc_pubs/647 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Journal of Human Evolution 123 (2018) 35e51 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol Phylogenetic relationships of living and fossil African papionins: Combined evidence from morphology and molecules * Kelsey D. Pugh a, b, , Christopher C. Gilbert a, b, c a PhD Program in Anthropology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA b New York Consortium in Evolutionary Primatology (NYCEP), USA c Department of Anthropology, Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10065, USA article info abstract Article history: African papionins are a highly successful subtribe of Old World monkeys with an extensive fossil record. Received 7 November 2017 On the basis of both molecular and morphological data, crown African papionins are divided into two Accepted 1 June 2018 clades: Cercocebus/Mandrillus and Papio/Lophocebus/Rungwecebus/Theropithecus (P/L/R/T), though Available online 26 July 2018 phylogenetic relationships in the latter clade, among both fossil and extant taxa, remain difficult to resolve.
    [Show full text]
  • Partial Skeleton of Theropithecus Brumpti (Primates, Cercopithecidae) from the Chemeron Formation of the Tugen Hills, Kenya
    Journal of Human Evolution 61 (2011) 347e362 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol Partial skeleton of Theropithecus brumpti (Primates, Cercopithecidae) from the Chemeron Formation of the Tugen Hills, Kenya Christopher C. Gilbert a,b,c,*, Emily D. Goble d, John D. Kingston e, Andrew Hill d a Department of Anthropology, Hunter College of the City University of New York, 695 Park Avenue, NY 10021, USA b Department of Anthropology, Graduate Center of the City University of New York, 365 Fifth Avenue, NY 10016, USA c New York Consortium in Evolutionary Primatology, New York, NY, USA d Department of Anthropology, Yale University, PO Box 208277, New Haven, CT 06520-8277, USA e Department of Anthropology, Emory University, 1557 Dickey Drive, Atlanta, GA 30322, USA article info abstract Article history: Here we describe a complete skull and partial skeleton of a large cercopithecoid monkey (KNM-TH Received 27 October 2010 46700) discovered in the Chemeron Formation of the Tugen Hills at BPRP Site #152 (2.63 Ma). Associated Accepted 21 April 2011 with the skeleton was a mandible of an infant cercopithecoid (KNM-TH 48364), also described here. KNM-TH 46700 represents an aged adult female of Theropithecus brumpti, a successful Pliocene papionin Keywords: taxon better known from the Omo Shungura Formation in Ethiopia and sites east and west of Lake Cercopithecoid Turkana, Kenya. While the morphology of male T. brumpti is well-documented, including a partial Papionin skeleton with both cranial and postcranial material, the female T. brumpti morphotype is not well- Crania fi Postcrania known.
    [Show full text]
  • 'Utilization of Savanna-Based Resources By
    Codron, D; Luyt, J; Lee-Thorp, J A; Sponheimer, M; de Ruiter, D J; Codron, J (2005). Utilization of savanna-based resources by Plio-Pleistocene baboons. South African Journal of Science, 101(5-6):245-248. Postprint available at: http://www.zora.uzh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.uzh.ch Originally published at: South African Journal of Science 2005, 101(5-6):245-248. Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2005 Utilization of savanna-based resources by Plio-Pleistocene baboons Codron, D; Luyt, J; Lee-Thorp, J A; Sponheimer, M; de Ruiter, D J; Codron, J Codron, D; Luyt, J; Lee-Thorp, J A; Sponheimer, M; de Ruiter, D J; Codron, J (2005). Utilization of savanna-based resources by Plio-Pleistocene baboons. South African Journal of Science, 101(5-6):245-248. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: South African Journal of Science 2005, 101(5-6):245-248. Utilization of savanna-based resources by Plio-Pleistocene baboons Abstract We have determined the tooth enamel carbonate 13C values of five cercopithecoid taxa from the Plio-Pleistocene deposits of Swartkrans Members 1 and 2 and Sterkfontein Member 4. These data were used to determine the relative proportions of C3 and C4 biomass consumed by extinct baboons and contemporary non-human primates. We compared these results with data on modern Papio hamadryas ursinus from different savanna areas in South Africa, as well as with published isotopic data and dietary interpretations based on molar morphology of these taxa.
    [Show full text]
  • Diet of Theropithecus from 4 to 1 Ma in Kenya
    Diet of Theropithecus from 4 to 1 Ma in Kenya Thure E. Cerlinga,b,1, Kendra L. Chritzb, Nina G. Jablonskic, Meave G. Leakeyd,e,f, and Fredrick Kyalo Manthif Departments of aGeology and Geophysics and bBiology, University of Utah, Salt Lake City, UT 84013; cDepartment of Anthropology, Penn State, University Park, PA 16802; dTurkana Basin Institute, 00502 Nairobi, Kenya; eDepartment of Anthropology, Stony Brook University, Stony Brook, NY 11794; and fNational Museums of Kenya, 00100 Nairobi, Kenya Edited by James O’Connell, University of Utah, Salt Lake City, UT, and approved April 15, 2013 (received for review December 23, 2012) Theropithecus was a common large-bodied primate that co- grass as effectively as an equid, and they can also ferment cellular occurred with hominins in many Plio-Pleistocene deposits in East material from grass in their hindguts but less effectively than and South Africa. Stable isotope analyses of tooth enamel from T. a zebra, which may have aided in this adaptation (6, 12, 13). Even brumpti (4.0–2.5 Ma) and T. oswaldi (2.0–1.0 Ma) in Kenya show with the richness of the genus’s fossil record and the many pa- that the earliest Theropithecus at 4 Ma had a diet dominated by C4 leoecological and functional anatomical studies that have spec- resources. Progressively, this genus increased the proportion of ulated on the respective habitat and dietary preferences of the C4-derived resources in its diet and by 1.0 Ma, had a diet that was T. brumpti and T. oswaldi lineages, many questions remain about nearly 100% C4-derived.
    [Show full text]
  • Late Pliocene Homo and Oldowan Tools from the Hadar Formation
    Current events W. H. Kimbel, Late Pliocene Homo and Oldowan Tools R. C. Walter, from the Hadar Formation (Kada Hadar D. C. Johanson & Member), Ethiopia K. E. Reed Institute of Human Origins, 1288 Ninth St, Berkeley, California 94710, U.S.A. J. L. Aronson Department of Geological Sciences, Case Western Reserve University, Cleveland, Ohio 44106, U.S.A. Z. Assefa Doctoral Program in Anthropological Sciences, State University of New York, Stony Brook, New York 11794, U.S.A. C. W. Marean Department of Anthropology, State University of New York, Stony Brook, New York 11794, U.S.A. G. G. Eck & R. Bobe Department of Anthropology, University of Washington, Seattle, Washington 98105, U.S.A. E. Hovers Institute of Archaeology, Hebrew University, Jerusalem, Israel Y. Rak Department of Anatomy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel & Institute of Human Origins, 1288 Ninth St, Berkeley, California 94710, U.S.A. C. Vondra & T. Yemane Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011, U.S.A. D. York, Y. Chen, N. M. Evensen & P. E. Smith Department of Physics, University of Toronto, Toronto, M5S 1A7, Canada Journal of Human Evolution (1996) 31, 549–561 Correspondence to: W. H. Kimbel. 0047–2484/96/120549+13 $25.00/0 ? 1996 Academic Press Limited 550 . ET AL. A broad consensus among paleoanthropologists holds that the Homo clade originated in Africa sometime between 2·0 and 3·0 Ma ago. However, a gap in the east African hominid fossil record spans the better part of this million year temporal interval.
    [Show full text]
  • How Has the Diet of Theropithecus Changed Over Time?
    Georgia State University ScholarWorks @ Georgia State University Anthropology Honors Theses Department of Anthropology Spring 5-7-2011 Creating a Chronocline of the Diet of Theropithecus From Low- magnification Stereomicroscopy: How Has the Diet of Theropithecus Changed Over Time? Meri K. Hatchett Follow this and additional works at: https://scholarworks.gsu.edu/anthro_hontheses Recommended Citation Hatchett, Meri K., "Creating a Chronocline of the Diet of Theropithecus From Low-magnification Stereomicroscopy: How Has the Diet of Theropithecus Changed Over Time?." Thesis, Georgia State University, 2011. https://scholarworks.gsu.edu/anthro_hontheses/5 This Thesis is brought to you for free and open access by the Department of Anthropology at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Anthropology Honors Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. CREATING A CHRONOCLINE OF THE DIET OF THEROPITHECUS FROM LOW- MAGNIFICATION STEREOMICROSCOPY: HOW HAS THE DIET OF THEROPITHECUS CHANGED OVER TIME? by Meri Kathryn Hatchett Under the Direction of Dr. Frank L. Williams ABSTRACT The primate genus Theropithecus is represented at various Plio-Pleistocene sites including the Pliocene site of Makapansgat (2.9 mya), the early Pleistocene cave of Swartkrans (1.8 mya), the late Pleistocene deposits from Elandsfontein (700,000 ka) and by extant gelada baboons from Ethiopia. To examine how diet has changed over time in this genus, dental microwear features of Theropithecus darti (n=2), Theropithecus danieli (n=8), Theropithecus gelada (n=2) Theropithecus oswaldi (n=1) Parapapio whitei (n=14), Papio robinsoni (n=16) and Papio ursinus (n=13) were examined under low-magnification (35x) using light refractive technology.
    [Show full text]
  • Bilingual Italian/English Theropithecus: the Rise and Fall Ofa Primate
    Book Reviews 681 The Anatomical Waxes by Clemente Susini of the species of early hominids coexisted: therefore as a group University of Cagliari. (Bilingual Italian/English hominids were much more diverse during their evolutionary history than they are today. Much the same can be said for edition.) By LUIGI CATTANES and ALESSANDRO Theropithecus. The first fossil evidence is known from the RIVA. (Pp. 70; 25 colour plates; 80,000 lire; ISBN Hadar and Usno Formations in Ethiopia, and from the 88 7343 254 9.) University of Cagliari; Edizioni Koobi Fora Formation in Kenya, and the earliest remains date from around 3.6 ma (and are perhaps as old as 4 ma if della Torre. 1993. fossils from the Chemeron Formation are included). These This beautifully produced book is the 2nd edition of the fossil Theropithecus remains are assigned to 1 of 2 extinct catalogue of the University of Cagliari's small but valuable lineages; the modern gelada has no fossil record. In the first collection of anatomical wax models made by Susini and his of these lineages at least 2 time-successive species are coworkers. These were prepared in Florence between 1803 recognised; Theropithecus darti is the early species which is and 1805, and were the last of over 2000. The majority are replaced by Theropithecus oswaldi. This lineage spans the housed in the Museum of the Speculo in Florence and the time interval between 3.2 and 0.4 ma. The second lineage Josephinum in Vienna. A few are in other European and consists of a single species, Theropithecus brumpti, although Italian Anatomical Institutes.
    [Show full text]
  • Calcium Isotopic Ecology of Turkana Basin Hominins Jérémy Martin, Theo Tacail, José Braga, Thure Cerling, Vincent Balter
    Calcium isotopic ecology of Turkana Basin hominins Jérémy Martin, Theo Tacail, José Braga, Thure Cerling, Vincent Balter To cite this version: Jérémy Martin, Theo Tacail, José Braga, Thure Cerling, Vincent Balter. Calcium isotopic ecol- ogy of Turkana Basin hominins. Nature Communications, Nature Publishing Group, 2020, 11 (1), 10.1038/s41467-020-17427-7. hal-02904941 HAL Id: hal-02904941 https://hal.archives-ouvertes.fr/hal-02904941 Submitted on 22 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ARTICLE https://doi.org/10.1038/s41467-020-17427-7 OPEN Calcium isotopic ecology of Turkana Basin hominins ✉ Jeremy E. Martin 1 , Théo Tacail 2, José Braga 3,4, Thure E. Cerling 5 & Vincent Balter 1 Diet is a major driver of hominin evolution, but most of the geochemical evidence relies on carbon isotopes (δ13C). Here, we report enamel stable calcium isotope (δ44/42Ca) values against δ13C values for several hominins and co-existing primates in the Turkana Basin area, 1234567890():,; circa 4 to 2 Ma. Australopithecus anamensis clusters with mammal browsers, Kenyanthropus platyops is distinct from A. anamensis in foraging into more open environments and the coexisting Theropithecus brumpti encompasses both the grazer and omnivore/carnivore domains.
    [Show full text]