Advantage of Terahertz Radiation Versus X-Ray to Detect Hidden

Total Page:16

File Type:pdf, Size:1020Kb

Advantage of Terahertz Radiation Versus X-Ray to Detect Hidden View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Advantage of terahertz radiation versus X-ray to detect hidden organic materials in sealed vessels Maryelle Bessou, Henri Duday, Jean-Pascal Caumes, Simon Salort, Bruno Chassagne, Alain Dautant, Anne Ziéglé, Emmanuel Abraham To cite this version: Maryelle Bessou, Henri Duday, Jean-Pascal Caumes, Simon Salort, Bruno Chassagne, et al.. Advan- tage of terahertz radiation versus X-ray to detect hidden organic materials in sealed vessels. Optics Communications, Elsevier, 2012, 285 (21-22), pp.4175-4179. 10.1016/j.optcom.2012.07.007. hal- 00731822 HAL Id: hal-00731822 https://hal.archives-ouvertes.fr/hal-00731822 Submitted on 13 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License Advantage of terahertz radiation versus X-ray to detect hidden organic materials in sealed vessels Maryelle Bessou a, Henri Duday a, Jean-Pascal Caumes d, Simon Salort b, Bruno Chassagne b, Alain Dautant c, Anne Zie´gle´ d, Emmanuel Abraham e,n a Univ. Bordeaux, PACEA, UMR 5199, F-33400 Talence, France b ALPhANOV, 351 Cours de la Libe´ration, 33405 Talence, France c Univ. Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France d Museum of Aquitaine, 20 Cours Pasteur, 33000 Bordeaux, France e Univ. Bordeaux, LOMA,UMR 5798, F-33400 Talence, France article info abstract Keywords: Terahertz imaging and conventional X ray have been used to investigate a sealed Ancient Egyptian jar Terahertz imaging preserved at the Museum of Aquitaine (France). Terahertz radiation revealed an unknown content that X-ray imaging could not have been visualized by X ray. By comparison with a model object, we concluded that this Organic materials content was composed of organic materials explaining their relative radiolucency. Art conservation Cultural heritage 1. Introduction region, has recently emerged as a possible powerful candidate in the field of art conservation for the investigation of various Art conservation science is a large expertise domain devoting art related materials [9]. Being non destructive and contact less in to the preservation and the protection of our cultural heritage. For nature, this wave can penetrate into non conductive and non polar the restorers, the scientific analysis of art materials provides materials and offer complementary spectroscopic data for a better information about the artist’s technique and artefacts history diagnosis and understanding of artworks. [1,2]. It also allows an accurate material selection for future In the field of art painting, THz imaging has already shown a restoration. For this purpose, various physical methods of diag great ability for the analysis of pigments [10 12] and preparation nosis are available. From UV to infrared, multi spectral imaging layers [13 16], the evaluation of mural paintings [17] or for the methods make it possible the examination of the artwork under character recognition in medieval manuscripts [18]. THz imaging different ranges of the electromagnetic spectrum [3 5]. Conven has been used for the analysis of Ancient Egyptian mummy [19], tional X ray is also considered as an efficient technique with sub written papyrus [20] and clay artefacts [21]. For dendrochronol millimeter spatial resolution. It provides highly contrasted images ogy applications, THz imaging was applied for tree ring analysis depending on the radiodensity of the materials [6,7]. However, [22,23]. In 2009, Adam et al. have compared THz imaging of the use of X ray is sometimes not recommended regarding to the painting with X ray and infrared reflectography [24]. They con ionizing power of the radiation and the difficulty of sample radio firmed that THz radiation can give information on the thickness of metric dating after X ray irradiation [8]. Radiography also requires hidden paint layers. They also observed that X rays do not easily strict safety rules based on the knowledge of the radiation effects penetrate layers of high density pigments, such as lead paint, and on the principles of protection. Only licensed users can mani which is ubiquitous in historical painting. More recently, Fuku pulate X ray producing devices and perform radiographic examina naga et al. reported the first use of THz time domain reflection tion, respecting safe operating procedures and ensuring the wearing imaging for the analysis of textiles of an Egyptian human mummy of personal dosimeters. Besides, an under exploited domain of the preserved at the Metropolitan Museum of Art (New York) [25]. electromagnetic spectrum, known as the terahertz (THz) spectral They pointed out the difficulty of conventional X ray to visualize the bandages due to the low radiological contrast of the fabric n layers. Except these two studies, to our knowledge, no other Corresponding author at: Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence, France. Tel.: þ33 540003122; fax: þ33 540006970. results have been published concerning the direct comparison E-mail address: [email protected] (E. Abraham). between THz and X ray imaging applied to art related materials. 1 2 In this paper, we propose to demonstrate the high potential of XVIIIth Dynasty (inventory number 8608). Its size is 97 mm in THz imaging for the analysis of ancient clay artefacts. Especially, height with a maximum diameter of 64 mm (Fig. 1(b)). Without we analyze a 3500 years old sealed clay jar from Ancient Egypt any specific decoration, it looks like a simple red clay vessel preserved at the Museum of Aquitaine (Bordeaux, France). In a hermetically sealed with a clay cork. A sticker under the object previous work, 3D tomographic imaging of the jar had been indicates that it was purchased in 1861 in Gournah, on the successfully performed using a specific reconstruction algorithm famous necropolis of Thebes (on the west bank of Luxor) [30]. [26,27]. In the present study, we provide an experimental evi The existence of the Menkheperre Tuthmosis III’s cartouche dence of the specificity of THz imaging compared to conventional (1479 1425 B.C.) on the jar clay cork allows to infer that this X ray in order to analyze the inner volume of the sealed artifact. important object was probably used during the pharaoh’s funer More generally, we establish that THz imaging is a well suited ary rituals. However, its real purpose still remains an opened and sustainable method for the detection of hidden materials question for the curators. contained in sealed vessels. 3. Results and discussion 2. Experimental methods and investigated material First, we investigated the transmission properties of earthen The experimental setup of the continuous wave THz imaging material at 110 GHz in order to quantify the amplitude of the system shortly called the ‘‘THz scanner’’ has already been transmitted signal as a function of the sample thickness. For this described [28]. Briefly, it consists of a compact millimeter wave purpose, we used terracotta from Salernes (Provence, France), a Gunn diode (110 GHz, 20 mW) coupled with a horn antenna red ferruginous clay purchased in a pottery shop. The greenware (Fig. 1(a)). The output beam is focused on the sample which is was shaped into parallelepiped slices of different thicknesses positioned on two axes XY motorized stages. At the sample from 4 to 33 mm, which were then fired in a kiln at 900 1C during position, the beam diameter is diffraction limited and the final 5 h. The inserted photograph in Fig. 2 presents the unglazed final image is obtained point by point by raster scanning the sample in bisques. For the measurements, the slices were simply positioned both horizontal and vertical directions. For the detection, we used into the THz scanner and illuminated by the 110 GHz radiation at a commercial low cost pyroelectric sensor (Spectrum Detector normal incidence. Inc.) and an optical chopper connected to a lock in amplifier. A 2D The absorbance at 110 GHz as a function of the sample thickness transmission image of the sample is obtained by moving the is shown in Fig. 2. The classical calculation Absorbance ¼ logðI0=IÞ object in the X and Y directions with a scan step of 2 mm in both has been used, where I0 is the transmitted signal measured without directions. With a scan speed of 5 pixels/s, the acquisition time for any sample and I is the transmitted signal measured in the presence a (100 Â 100) pixels image size is about 30 min. This portable THz of the sample. We can observe a linear increase of the absorbance scanner is well adapted for on site imaging since its volume is as a function of the sample thickness, which indicates that the about (500 Â 500 Â 500) mm3 with a total weight less than 20 kg. attenuation of the transmitted signal follows the Beer Lambert’s Moreover, as pointed out in the Introduction, the imaging system law. Assuming that the samples are made of homogeneous terra is easy to install and completely safe for the sample and the cotta, we can estimate the 110 GHz absorption coefficient a of the operator, unlike radiography. clay according to the expression Absorbance ¼ ad where d is the For standard radiography, we used a medical X ray tube sample thickness.
Recommended publications
  • Generation of High-Power, Tunable Terahertz Radiation from Laser Interaction with a Relativistic Electron Beam
    PHYSICAL REVIEW ACCELERATORS AND BEAMS 20, 050701 (2017) Generation of high-power, tunable terahertz radiation from laser interaction with a relativistic electron beam Zhen Zhang,* Lixin Yan, Yingchao Du, Wenhui Huang, and Chuanxiang Tang Department of Engineering Physics, Tsinghua University, Beijing 100084, China † Zhirong Huang SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA (Received 6 February 2017; published 5 May 2017) We propose a method based on the slice energy spread modulation to generate strong subpicosecond density bunching in high-intensity relativistic electron beams. A laser pulse with periodic intensity envelope is used to modulate the slice energy spread of the electron beam, which can then be converted into density modulation after a dispersive section. It is found that the double-horn slice energy distribution of the electron beam induced by the laser modulation is very effective to increase the density bunching. Since the modulation is performed on a relativistic electron beam, the process does not suffer from strong space charge force or coupling between phase spaces, so that it is straightforward to preserve the beam quality for terahertz (THz) radiation and other applications. We show in both theory and simulations that the tunable radiation from the beam can cover the frequency range of 1–10 THz with high power and narrow-band spectra. DOI: 10.1103/PhysRevAccelBeams.20.050701 I. INTRODUCTION which copropagates with the electron beam inside an undulator can create energy modulation on the scale of High-brightness electron beams have been used to drive the laser wavelength. The energy modulation can be free-electron lasers (FELs) [1–3], high-intensity terahertz converted into density modulation by letting the beam (THz) radiation [4,5], advanced accelerators [6–8] and beyond.
    [Show full text]
  • High-Power Portable Terahertz Laser Systems
    ARTICLES https://doi.org/10.1038/s41566-020-00707-5 High-power portable terahertz laser systems Ali Khalatpour1, Andrew K. Paulsen1, Chris Deimert 2, Zbig R. Wasilewski 2,3,4,5 and Qing Hu 1 ✉ Terahertz (THz) frequencies remain among the least utilized in the electromagnetic spectrum, largely due to the lack of pow- erful and compact sources. The invention of THz quantum cascade lasers (QCLs) was a major breakthrough to bridge the so-called ‘THz gap’ between semiconductor electronic and photonic sources. However, their demanding cooling requirement has confined the technology to a laboratory environment. A portable and high-power THz laser system will have a qualitative impact on applications in medical imaging, communications, quality control, security and biochemistry. Here, by adopting a design strategy that achieves a clean three-level system, we have developed THz QCLs (at ~4 THz) with a maximum operat- ing temperature of 250 K. The high operating temperature enables portable THz systems to perform real-time imaging with a room-temperature THz camera, as well as fast spectral measurements with a room-temperature detector. he terahertz (THz) spectral range (~1–10 THz) is a fertile The range of frequencies in the middle, ~1–10 THz, is the so-called ground for many applications1. For example, in biochemistry, THz gap. The invention of THz quantum cascade lasers (QCLs) THz applications have been developed to explore the bioac- held great promise to bridge this gap10. However, the demanding T 2,3 tivity of chemical compounds and identify protein structures . In cooling requirements for THz QCLs have been a showstopper for astrophysics, there is a plan to launch a suborbital THz observatory, achieving compact and portable systems, confining THz QCL sys- named GUSTO (Galactic/Extragalactic Ultra long Duration Balloon tems to the laboratory environment.
    [Show full text]
  • Terahertz (Thz) Generator and Detection
    Electrical Science & Engineering | Volume 02 | Issue 01 | April 2020 Electrical Science & Engineering https://ojs.bilpublishing.com/index.php/ese REVIEW Terahertz (THz) Generator and Detection Jitao Li#,* Jie Li# School of Precision Instruments and OptoElectronics Engineering, Tianjin University, Tianjin, 300072, China #Authors contribute equally to this work. ARTICLE INFO ABSTRACT Article history In the whole research process of electromagnetic wave, the research of Received: 26 March 2020 terahertz wave belongs to a blank for a long time, which is the least known and least developed by far. But now, people are trying to make up the blank Accepted: 30 March 2020 and develop terahertz better and better. The charm of terahertz wave origi- Published Online: 30 April 2020 nates from its multiple attributes, including electromagnetic field attribute, photon attribute and thermal attribute, which also attracts the attention of Keywords: researchers in different fields and different countries, and also terahertz Terahertz technology have been rated as one of the top ten technologies to change the future world by the United States. The multiple attributes of terahertz make Generation it have broad application prospects in military and civil fields, such as med- Detection ical imaging, astronomical observation, 6G communication, environmental monitoring and material analysis. It is no exaggeration to say that mastering terahertz technology means mastering the future. However, it is because of the multiple attributes of terahertz that the terahertz wave is difficult to be mastered. Although terahertz has been applied in some fields, controlling terahertz (such as generation and detection) is still an important issue. Now- adays, a variety of terahertz generation and detection technologies have been developed and continuously improved.
    [Show full text]
  • Optical Frequency Combs for Stable Radiation in the Microwave, Terahertz and Optical Domains
    Optical frequency combs for stable radiation in the microwave, terahertz and optical domains Qudsia Quraishi Department of Physics, University of Colorado Time and Frequency Division, National Institute of Standards and Technology Boulder, CO 1 overview stabilized frequency combs from mode-locked femtosecond lasers provide new opportunities for…. § optical frequency metrology § optical clocks § measuring distance § time & frequency transfer § laboratory tests of fundamental physics § carrier-envelope phase control (key technology for attosecond science) § femtosecond pulse synthesis & arbitrary optical waveform generation § generation of ultralow noise microwaves § new spectroscopic techniques § harmonic generation § coherent control § spread-spectrum secure communications § part of a Nobel Prize! 2 overview stabilized frequency combs from mode-locked femtosecond lasers provide new opportunities for…. § optical frequency metrology § optical clocks § measuring distance § time & frequency transfer § laboratory tests of fundamental physics § carrier-envelope phase control (key technology for attosecond science) § femtosecond pulse synthesis & arbitrary optical waveform generation Jan Hall § generation of ultralow noise microwaves § new spectroscopic techniques § harmonic generation § coherent control Ted Hänsch § spread-spectrum secure communications § part of a Nobel Prize! 2 microwave frequency synthesizers power RF signal carrier frequenc y specifications 250 kHz – 20 GHz + low phase noise 10, 007, 482, 279 GHz Agilent E8257D frequency
    [Show full text]
  • Laser-Based Terahertz Generation & Applications
    Optical Spectroscopy Laser-based terahertz generation & applications Marion Lang, Anselm Deninger, Toptica Photonics AG, Gräfelfi ng, Germany Superior to alternative methods, optoelectronic techniques propel tera- hertz applications out of the lab and into the real world. One physical effect involves two laser beams at adjacent frequencies focusing on a semiconductor; another effect involves an ultrafast laser pulse separating charge carriers in a photoconductive switch. In combination with suitably structured antennas, these two effects generate electromagnetic radiation in the diffi cult-to-access terahertz region. Some of the principles of continuous-wave (CW) and pulsed terahertz sources are described here while exploring emerging applications. The label “terahertz-gap” for this part of tify different crystalline forms (polymorphs) the electromagnetic spectrum is used to of the active component. Further applica- pinpoint the lack of suitable sources and tions include the detection of counterfeit detectors in this frequency range. Thanks drugs and food quality monitoring. Because to modern laser technologies, however, terahertz radiation penetrates packaging robust, compact and cost-effi cient sources materials made of paper or plastics, pills can for terahertz imaging and spectroscopy are be analyzed in the blister, and food can be now readily available. The sources produce tested through air-tight packaging. terahertz radiation with suffi cient intensity Many applications benefi t from the imag- for scientifi c and industrial measurement ing capabilities of terahertz radiation. Tera- tasks, enabling many new applications, hertz waves can be focused with mirrors including basic research, material analysis, and lenses. Scanning a sample with a homeland security, and process control in terahertz beam delivers images with mil- biology, pharmacy and medicine.
    [Show full text]
  • Thz Pulsed Imaging in Biomedical Applications
    Review THz Pulsed Imaging in Biomedical Applications Annalisa D’Arco 1,* , Marta Di Fabrizio 2 , Valerio Dolci 1,2,3, Massimo Petrarca 1,3 and Stefano Lupi 2,4 1 INFN-Section of Rome ‘La Sapienza’, P.le Aldo Moro 2, 00185 Rome, Italy; [email protected] (V.D.); [email protected] (M.P.) 2 Physics Department, University of Rome ‘La Sapienza’, Piazzale Aldo Moro 5, 00185 Rome, Italy; [email protected] (M.D.F.); [email protected] (S.L.) 3 SBAI-Department of Basic and Applied Sciences for Engineering, Physics, University of Rome ‘La Sapienza’, Via Scarpa 16, 00161 Rome, Italy 4 INFN-LNF Via E. Fermi 40, 00044 Frascati, Italy * Correspondence: [email protected] Received: 13 December 2019; Accepted: 24 March 2020; Published: 1 April 2020 Abstract: Recent advances in technology have allowed the production and the coherent detection of sub-ps pulses of terahertz (THz) radiation. Therefore, the potentialities of this technique have been readily recognized for THz spectroscopy and imaging in biomedicine. In particular, THz pulsed imaging (TPI) has rapidly increased its applications in the last decade. In this paper, we present a short review of TPI, discussing its basic principles and performances, and its state-of-the-art applications on biomedical systems. Keywords: terahertz spectroscopy; terahertz time-domain spectroscopy; terahertz pulsed imaging; near-field imaging; biomedical imaging; cancer diagnosis; endoscopy 1. Introduction The increasing request for diagnosis techniques in the biomedical area, able to provide morphological, chemical and/or functional information for early, noninvasive and label-free detection, has led to hard cooperation in different scientific fields.
    [Show full text]
  • Overview of Terahertz Radiation Sources
    216 G.P. Gallerano et al. / Proceedings of the 2004 FEL Conference, 216-221 OVERVIEW OF TERAHERTZ RADIATION SOURCES G.P. Gallerano, ENEA, UTS Advanced Physics Technologies, P.O. Box 65, 00044 Frascati – Italy S. Biedron, Argonne National Laboratory, Energy Systems Division, 9700 South Cass Avenue, Argonne, Illinois 60439 USA Abstract average power level achievable in the region around 400 Although terahertz (THz) radiation was first observed GHz is typically in the range 0.1 to 1 mW. Due to their about hundred years ago, the corresponding portion of the compactness, the range of application of these sources is electromagnetic spectrum has been for long time rapidly growing. A 200 GHz Gunn diode is being used as considered a rather poorly explored region at the a source in a low cost imaging system under development boundary between the microwaves and the infrared. This at RPI-Troy for security applications [3]. situation has changed during the past ten years with the rapid development of coherent THz sources, such as solid state oscillators, quantum cascade lasers, optically pumped solid state devices and novel free electron devices, which have in turn stimulated a wide variety of applications from material science to telecommunications, from biology to biomedicine. For a comprehensive review of THz technology the reader is addressed to a recent paper by P. Siegel [1]. In this paper we focus on the development and perspectives of THz radiation sources. INTRODUCTION Throughout this paper we will use a definition of the THz region that extends over two decades in frequency, covering the spectral range from 100 GHz to 10 THz.
    [Show full text]
  • Emerging Transistor Technologies Capable of Terahertz Amplification: a Way to Re-Engineer Terahertz Radar Sensors
    sensors Review Emerging Transistor Technologies Capable of Terahertz Amplification: A Way to Re-Engineer Terahertz Radar Sensors Mladen Božani´c 1,* and Saurabh Sinha 2 1 Department of Electrical and Electronic Engineering Science, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa 2 Deputy Vice-Chancellor: Research and Internationalization, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; [email protected] or [email protected] * Correspondence: [email protected] Received: 23 March 2019; Accepted: 20 May 2019; Published: 29 May 2019 Abstract: This paper reviews the state of emerging transistor technologies capable of terahertz amplification, as well as the state of transistor modeling as required in terahertz electronic circuit research. Commercial terahertz radar sensors of today are being built using bulky and expensive technologies such as Schottky diode detectors and lasers, as well as using some emerging detection methods. Meanwhile, a considerable amount of research effort has recently been invested in process development and modeling of transistor technologies capable of amplifying in the terahertz band. Indium phosphide (InP) transistors have been able to reach maximum oscillation frequency (fmax) values of over 1 THz for around a decade already, while silicon-germanium bipolar complementary metal-oxide semiconductor (BiCMOS) compatible heterojunction bipolar transistors have only recently crossed the fmax = 0.7 THz mark. While it seems that the InP technology could be the ultimate terahertz technology, according to the fmax and related metrics, the BiCMOS technology has the added advantage of lower cost and supporting a wider set of integrated component types. BiCMOS can thus be seen as an enabling factor for re-engineering of complete terahertz radar systems, for the first time fabricated as miniaturized monolithic integrated circuits.
    [Show full text]
  • Attempt to Generate Narrow Linewidth, CW Terahertz Radiation by Using Optical Frequency Comb
    Attempt to Generate Narrow Linewidth, CW Terahertz Radiation by Using Optical Frequency Comb S. M. Iftiquar, Kiyomi Sakai, Masahiko Tani, Bambang Widiyatmoko, Motonobu Kourogi, Motoichi Otsu Abstract- We report on an attempt to generate highly stable continuous terahertz (THz) wave by using optical frequency comb (OFC). About 10-nm wide OFC has been generated through a deep phase modulation of a 852 nm laser line in lithium niobate crystal cavity. The multiple optical modes (side bands) of the OFC, which are equally separated from each other by the modulation frequency (=6 GHz) are taken as the frequency reference. When another semiconductor laser is frequency locked, the stability of the difference frequency between the master laser and the second laser is improved on the same order of the RF modulator. An ultra-narrow line and tunable THz radiation source can be achieved by photomixing of this stable difference-frequency optical beat in a photoconductive antenna. I. INTRODUCTION of 4 THz (mode separation=5.8 GHz) and a mode stability about 30 Hz at 1.55 µm line from a diode laser Generation of submillimeter wavelength (THz) radiation by using a LiNbO3 crystal cavity as the phase modulator through photomixing, or optical-heterodyne conversion [5]. In this work we have tried to stabilize two diode of two single mode laser beams in a photoconductive lasers by using an optical frequency comb (OFC). antenna [1] is a promising approach in realizing a stable and tunable THz radiation source. The stability The OFC is a result of a deep phase modulation of a laser (linewidth) and tunability of this kind of radiation source beam and consists of many sidebands around the carrier is mostly determined by those of the optical pump source.
    [Show full text]
  • Terahertz Nde for Under Paint Corrosion Detection and Evaluation
    TERAHERTZ NDE FOR UNDER PAINT CORROSION DETECTION AND EVALUATION Robert F. Anastasi 1 and Eric I. Madaras 2 1U.S. Army Research Laboratory, Vehicle Technology Directorate, AMSRD-ARL- VT-SM, Nondestructive Evaluation Sciences Branch, NASA Langley Research Center, Hampton, VA 23681 2NASA Langley Research Center, Nondestructive Evaluation Sciences Branch, Hampton, VA 23681 ABSTRACT . Corrosion under paint is not visible until it has caused paint to blister, crack, or chip. If corrosion is allowed to continue then structural problems may develop. Identifying corrosion before it becomes visible would minimize repairs and costs and potential structural problems. Terahertz NDE imaging under paint for corrosion is being examined as a method to inspect for corrosion by examining the terahertz response to paint thickness and to surface roughness. Keywords: Terahertz NDE, Corrosion, Paint, Surface Roughness PACS: 81.70.–q INTRODUCTION Corrosion is a dissolving and wearing away of metal caused by a chemical reaction. In this electrochemical process, electrons in a system move from the anode to the cathode. The electron loss at the anode is called oxidation and metal loss occurs. At the cathode, electrons are captured and damage such as hydrogen embitterment can occur [1]. Since these corrosion byproducts may have nearly the same dielectric properties as the base material [2], inspecting for corrosion directly may not be feasible. However, the corrosion process generally affects a metallic surface with corrosion pits, cracking, or thinning. When this occurs under a layer of paint, the paint appears to swell and increase in thickness, and eventually crack and chip. In these cases, the corrosion changes a nominally smooth surface to an uneven and irregular surface that can be measured.
    [Show full text]
  • Powerful Terahertz Waves from Long-Wavelength Infrared Laser filaments Vladimir Yu
    Fedorov and Tzortzakis Light: Science & Applications (2020) 9:186 Official journal of the CIOMP 2047-7538 https://doi.org/10.1038/s41377-020-00423-3 www.nature.com/lsa REVIEW Open Access Powerful terahertz waves from long-wavelength infrared laser filaments Vladimir Yu. Fedorov1,2 and Stelios Tzortzakis 1,3,4 Abstract Strong terahertz (THz) electric and magnetic transients open up new horizons in science and applications. We review the most promising way of achieving sub-cycle THz pulses with extreme field strengths. During the nonlinear propagation of two-color mid-infrared and far-infrared ultrashort laser pulses, long, and thick plasma strings are produced, where strong photocurrents result in intense THz transients. The corresponding THz electric and magnetic field strengths can potentially reach the gigavolt per centimeter and kilotesla levels, respectively. The intensities of these THz fields enable extreme nonlinear optics and relativistic physics. We offer a comprehensive review, starting from the microscopic physical processes of light-matter interactions with mid-infrared and far-infrared ultrashort laser pulses, the theoretical and numerical advances in the nonlinear propagation of these laser fields, and the most important experimental demonstrations to date. Introduction chemical bonds or cause electronic transitions in a med- The terahertz (THz) frequency range is the last lacuna ium and thereby damage it. As a result, THz radiation fi 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; in the electromagnetic spectrum, where we have no ef - becomes very attractive for various applications related to cient sources of radiation. Being usually understood as the imaging and diagnostics in areas such as medicine, region of frequencies from 0.1 to 10 THz or, equivalently, industrial quality control, food inspection, or artwork – of wavelengths from 3 mm to 30 μm, the THz part of the examination1 4.
    [Show full text]
  • A Terahertz-Vibration to Terahertz-Radiation Converter Based on Gold Nanoobjects: a Feasibility Study
    A terahertz-vibration to terahertz-radiation converter based on gold nanoobjects: a feasibility study Kamil Moldosanov*1 and Andrei Postnikov*2 Full Research Paper Open Access Address: Beilstein J. Nanotechnol. 2016, 7, 983–989. 1Kyrgyz-Russian Slavic University, 44 Kiyevskaya St., Bishkek doi:10.3762/bjnano.7.90 720000, Kyrgyzstan and 2Université de Lorraine, Institut Jean Barriol, LCP-A2MC, 1 Bd Arago, F-57078 Metz, France Received: 22 January 2016 Accepted: 21 June 2016 Email: Published: 06 July 2016 Kamil Moldosanov* - [email protected]; Andrei Postnikov* - [email protected] This article is part of the Thematic Series "Physics, chemistry and biology of functional nanostructures III". * Corresponding author Guest Editor: A. S. Sidorenko Keywords: longitudinal acoustic phonon; microwave photon; nanobar; nanoring; © 2016 Moldosanov and Postnikov; licensee Beilstein-Institut. terahertz emitter License and terms: see end of document. Abstract Background: The need for practical and adaptable terahertz sources is apparent in the areas of application such as early cancer diagnostics, nondestructive inspection of pharmaceutical tablets, visualization of concealed objects. We outline the operation prin- ciple and suggest the design of a simple appliance for generating terahertz radiation by a system of nanoobjects – gold nanobars (GNBs) or nanorings (GNRs) – irradiated by microwaves. Results: Our estimations confirm a feasibility of the idea that GNBs and GNRs irradiated by microwaves could become terahertz emitters with photon energies within the full width at half maximum of the longitudinal acoustic phononic DOS of gold (ca. 16–19 meV, i.e., 3.9–4.6 THz). A scheme of the terahertz radiation source is suggested based on the domestic microwave oven irradiating a substrate with multiple deposited GNBs or GNRs.
    [Show full text]