Diabetes Mellitus and Hyperkalemic Renal Tubular Acidosis

Total Page:16

File Type:pdf, Size:1020Kb

Diabetes Mellitus and Hyperkalemic Renal Tubular Acidosis CASE REPORT | RELATO DE CASO Diabetes mellitus and hyperkalemic renal tubular acidosis: case reports and literature review Diabetes mellitus e acidose tubular renal hipercalêmica: relatos de caso e revisão da literatura Authors ABSTRACT RESUMO Carlos Henrique Pires Ratto Tavares Bello 1 Hyporeninemic hypoaldosteronism, de- Apesar de comum, o hipoaldosteronismo hi- João Sequeira Duarte 1 spite being common, remains an underdi- poreninêmico continua a ser uma entidade Carlos Vasconcelos 1 agnosed entity that is more prevalent in sub-diagnosticada, com maior prevalência patients with diabetes mellitus. It presents em pacientes com diabetes mellitus. A do- with asymptomatic hyperkalemia along ença cursa com hipercalemia assintomática 1 Hospital de Egas Moniz, with hyperchloraemic metabolic acidosis acompanhada de acidose metabólica hiper- Centro Hospitalar de Lisboa without significant renal function impair- clorêmica sem disfunção renal significativa. Ocidental, Lisboa, Portugal. ment. The underlying pathophysiological O mecanismo fisiopatológico subjacente mechanism is not fully understood, but não é entendido em sua totalidade, mas it is postulated that either aldosterone postula-se que a deficiência de aldosterona deficiency (hyporeninemic hypoaldoste- (hipoaldosteronismo hiporeninêmico) e/ou ronism) and/or target organ aldosterone a resistência à aldosterona no órgão-alvo resistance (pseudohypoaldosteronism) (pseudo-hipoaldosteronismo) possam ser may be responsible. Diagnosis is based on responsáveis. O diagnóstico é fundamentado laboratory parameters. Treatment strat- em parâmetros laboratoriais. A estratégia te- egy varies according to the underlying rapêutica varia de acordo com o mecanismo pathophysiological mechanism and etiol- fisiopatológico subjacente e a etiologia, mas ogy and aims to normalize serum potas- seu objetivo é normalizar o potássio sérico. sium. Two clínical cases are reported and O presente artigo relata dois casos e analisa the relevant literature is revisited. a literatura relevante sobre o assunto. Keywords: acidosis; acidosis, renal tubu- Palavras-chave: acidose; acidose tubular lar; diabetes mellitus; hyperkalemia; hy- renal; diabetes mellitus; hiperpotassemia; poaldosteronism. hipoaldosteronismo. INTRODUCTION • Type 1 RTA (distal RTA) - impaired distal hydrogen ion secretion. Renal tubular acidosis (RTA) comprises • Type 2 RTA (proximal RTA) - im- relatively frequent forms of hyperchlo- paired proximal reabsorption of remic metabolic acidosis. This medical filtered bicarbonate. condition is underdiagnosed and poorly • Hyperkalemic RTA - aldosterone understood due to the complexity of the deficiency or resistance (Type 4 involved pathophysiological mechanisms. RTA or hypoaldosteronism); or It is characterized by the occurrence of impaired distal sodium reabsorp- hyperchloremic metabolic acidosis, fluid tion (voltage-dependent distal and electrolyte balance disorders (involv- Submitted on: 01/18/2017. RTA). Approved on: 03/20/2017. ing potassium in particular), and absence of significant renal impairment. The glo- In RTA, impaired hydrogen ion secre- merular filtration rate (GFR) of affected Correspondence to: tion and/or bicarbonate reabsorption at a Carlos Henrique Pires Ratto individuals is relatively preserved, while Tavares Bello. tubular level are the bases for the onset of E-mail: bello.carlos04@gmail. tubular impairment is the main element acidosis.1 Potassium serum levels vary de- com responsible for the observed alterations. pending on the subtype of RTA, but high DOI: 10.5935/0101-2800.20170086 Renal tubular acidosis is divided into potassium levels are observed only in hy- three forms of involvement: perkalemic (or Type 4) RTA. 481 Diabetes Mellitus and renal tubular acidosis Though relatively common, hyperkalemic RTA is potassium gradient (TTKG) was decreased - 3.93. an underdiagnosed condition. It has been estimated Renin levels were within reference values (renin = 2.4 to affect 3.8% of hospitalized individuals with hyper- uU/mL, reference values (RV) 1.1-16.5; and aldoste- kalemia.2 The clinical manifestations of the disease rone = 6.9 ng/dL, RV 1-16). An electrocardiogram are mild, and usually revolve around various degrees did not reveal de novo relevant alterations and, given of hyperkalemia and hyperchloremic metabolic aci- that he was clinically stable and probably had hypoal- dosis without significant glomerular filtration rate dosteronism, treatment with calcium polystyrene sul- drops. Hyperkalemia secondary to renal involve- fonate twice a day, oral fluids, furosemide 40mg/day, ment requires a GRF below 15mL/min/1.73m2.3 and low-potassium diet was initiated. Hyperkalemia and metabolic acidosis are usually The patient was assessed a week later after having mild (potassium < 6.5mmol/L and bicarbonate > significantly improved his workup - K+ = 5.8mmol/L 17mmol/L), although exacerbation may occur in the - and HCO3 = 20mmol/L. Two years after the initial event of acute kidney injury and/or undesired drug in- assessment the patient was taking an ion exchange teractions.2 The consequences of Type-4 RTA beyond resin twice a day and furosemide 40 mg/day; his po- the electrophysiological risks introduced by hyperka- tassium levels were under control (K+ = 5.6mmol/L lemia are largely unknown. and creatinine = 1.6mg/dL), but the TTKG was still Hypoaldosteronism and distal tubular volt- altered. age defects have been described as the pathophysi- ological mechanisms causing hyperkalemic RTA.3,4 CASE 2 Hypoaldosteronism may stem from decreases in the A 56-year-old male patient diagnosed with DM type stimulus to release aldosterone (hyporeninemic hy- 2 for six years had stage 3aA3 CKD (estimated GFR poaldosteronism), reduced aldosterone synthesis and = 47mL/min/1.73m2, albuminuria = 3300mg/g), high secretion (heparin, congenital adrenal hyperplasia blood pressure, dyslipidemia, a toxic thyroid adeno- or hypoplasia, adrenoleukodystrophy) and/or al- ma, and peripheral artery disease. He was initially dosterone resistance in the target organ (pseudohy- taking insulin glargine once a day (20 units bedtime), poaldosteronism).5 Several studies enrolling diabetic pentoxifylline, clopidogrel, and perindopril. individuals showed they had lower-than-expected al- He was referred to an endocrinologist on ac- dosterone and renin levels, particularly in subgroups count of having primary hyperthyroidism. Workup with diabetic nephropathy and neuropathy. findings indicated the patient had hyperkalemia (K+ 6.1mmol/L), a creatinine level of 1.8mg/dL (GFR = 42; CLINICAL CASES usually 47mL/min/1.73m2); the blood gas test showed CASE 1 a pH of 7.35; paO2 = 90mmHg; paCO2 = 42mmHg; HCO - = 23.2mmol/L; base deficit 2.6; anion gap = A 58-year-old male patient diagnosed with type 2 3 DM for three years had high blood pressure, dys- 10. Perindopril was discontinued and a week later the lipidemia, coronary artery disease (underwent an- patient came in for additional tests, which revealed + gioplasty and bypass surgery), stage 3bA2 chronic he still had hyperkalemia (K 6.21mmol/L), urine pH kidney disease (CKD) (estimated GFR of 40mL/min = 5.5, TTKG = 0.5 and renin and aldosterone levels and occasional albuminuria of 160mg/g), and periph- within the reference range (renin = 2.8 uU/mL, RV = eral artery disease. The patient was taking linagliptin, 1.1-16; aldosterone = 2.2 ng/dL, RV 1-16). isosorbide mononitrate, bisoprolol, acetylsalicylic The therapeutic strategy then prescribed to the pa- acid, allopurinol, and rosuvastatin. He was referred tient included a low potassium diet, chlorthalidone, to an endocrinologist on account of having DM type and calcium polystyrene sulfonate until his workup 2 and CKD. His blood pressure was 136/90 mmHg was normalized. The ACE inhibitor was not reintro- and he was euvolemic, without signs of peripheral duced. Eighteen months after the initial assessment edema. His workup showed HbA1c at 6.8%, creati- the patient had his potassium serum level under con- + nine at 1.8mg/dL (estimated GFR by the CKD-EPI of trol (K 4.73mmol/L) and stable renal function (GFR 2 41mL/min/1.73m2), potassium at 6.5mmol/L, and a 50mL/min/1.73m ). urine pH of 5.5. The arterial blood gas test revealed - DISCUSSION that he had metabolic acidosis - pH 7.36; HCO3 = 18mmol/L; base deficit = 7.2; paCO2 = 32mmHg; paO2 Hyporeninemic hypoaldosteronism (HH) is the most = 100mmHg; and anion gap = 9). His transtubular frequent cause of hyperkalemic RTA.6 It typically Braz. J. Nephrol. (J. Bras. Nefrol.) 2017;39(4):481-485 482 Diabetes Mellitus and renal tubular acidosis appears on the sixth or seventh decade of life and is • Aldosterone deficiency: early normalization (2- more prevalent in females.7 Most patients have dia- 4h) of the TTKG after physiological doses of betes mellitus and mild to moderate involvement of fludrocortisone (0.1mg/day). the glomerular filtration rate - 30-90mL/min/1.73m2). • Aldosterone resistance: late normalization (> HH occurs in conjunction with asymptomatic chron- 24h) of the TTKG after supraphysiological ic hyperkalemia, and with hyperchloremic metabolic doses of fludrocortisone (> 0.1mg/day). acidosis in about 50% of the cases.2 Renin deficit and primary adrenal disorders related to the synthesis of Some authors claimed that the TTKG formula is aldosterone lie on the basis of the workup alterations. based on incorrect assumptions and challenged its va- Hyperkalemia is the finding responsible for generat- lidity. Therefore, additional measures must be taken ing and sustaining metabolic
Recommended publications
  • The Disappearance of IPO in Myocardium of Diabetes Mellitus Rats Is Associated with the Increase of Succinate Dehydrogenase-Flav
    Deng et al. BMC Cardiovasc Disord (2021) 21:142 https://doi.org/10.1186/s12872-021-01949-z RESEARCH ARTICLE Open Access The disappearance of IPO in myocardium of diabetes mellitus rats is associated with the increase of succinate dehydrogenase-favin protein Mengyuan Deng1†, Wei Chen1†, Haiying Wang1*, Yan Wang1, Wenjing Zhou2 and Tian Yu3 Abstract Background: The aim of the present study was to investigate whether the disappearance of ischemic post-process- ing (IPO) in the myocardium of diabetes mellitus (DM) is associated with the increase of succinate dehydrogenase- favin protein (SDHA). Methods: A total of 50 Sprague Dawley rats, weighing 300–400 g, were divided into 5 groups according to the ran- dom number table method, each with 10 rats. After DM rats were fed a high-fat and -sugar diet for 4 weeks, they were injected with Streptozotocin to establish the diabetic rat model. Normal rats were fed the same regular diet for the same number of weeks. Next, the above rats were taken to establish a cardiopulmonary bypass (CPB) model. Intraperi- toneal glucose tolerance test (IPGTT) and oral glucose tolerance test (OGTT) were used to detect whether the DM rat model was established successfully. Taking blood from the femoral artery to collect the blood-gas analysis indicators, and judged whether the CPB model is established. After perfusion was performed according to the experimental strategy, the area of myocardial infarction (MI), and serum creatine kinase isoenzyme (CK-MB) and cardiac troponin (CTnI) levels were measured. Finally, the relative mRNA and protein expression of SDHA was detected. Results: The OGTT and IPGTT suggested that the DM rat model was successfully established.
    [Show full text]
  • Surgeons, Columbia University, New York City) (Received for Publication August 9, 1932)
    THE ADDIS SEDIMENT COUNT IN NORMAL CHILDREN By JOHN D. LYTTLE (From the Babies Hospit and the Department of Pediatrics, Colege of Physicians and Surgeons, Columbia University, New York City) (Received for publication August 9, 1932) THE METHOD In 1925 Addis (1) described a method by which, in a concentrated acid urine, the rate of excretion of protein, casts and red and white cells could be determined. His method, with certain modifications, has been followed here. All of the counts were made on the 12 hour night specimen from 7 or 8 P.M. to 7 or 8 A.M. Addis recommended that fluids be restricted during, and for 12 hours preceding the collection, since in dilute and alkaline urine hyaline casts dissolve and red cells may be completely lysed. With children this rigid restriction of fluid proved impossible. Withholding fluid during the afternoon and night except for 200 cc. at the evening meal, gave urines of such concentration and acidity that they were suitable for a count. Most children had an early supper and col- lections were started at 7 or 8 P.M. Under these conditions, the urinary pH was between 5.0 and 6.0 and the specific gravity usually well above 1.020. The specimens were treated as described by Addis: "the con- centrated night urine is thoroughly mixed by repeated inversion of the rubber-stoppered bottle and a 10 cc. sample is transferred to a special graduated tube, and centrifugalized for five minutes at 1,800 revolutions per minute. The supernatant urine is decanted and pipetted down to a known volume which varies with the amount of sediment as judged by direct observation.
    [Show full text]
  • A Lady with Renal Stones
    A lady with renal stones Dr KC Lo, Dr KY Lo, Dr SK Mak KWH History 53/F NSND, NKDA Good past health Complained of bilateral loin pain for few years No urinary symptoms/UTIs No haematuria Not on regular medications/vitamins No significant family history History Attended private practitioner in Feb, 2006: Blood test : Na/K 143/3.9 Ur/Cr 7.3/101 LFT N Urine test : RBC numerous/HPF WBC 5-8/HPF CXR unremarkable Given analgesics History Still on-and-off bilateral loin and lower chest pain Seek advice from Private Hospital: Blood test: WBC 3.2 Hb 12.9 Plt 139 Na/K 146/ 3.0 Ur/Cr 6.3/108 Ca2+/PO4 2.11/1.39 LFT unremarkable Urine test : RBC 6-8/HPF, WBC 0-1/HPF no cast KUB: bilateral renal stones (as told by patient) History ESWL done to right renal stone in 5/06, planned to have ESWL to left stone later But she then defaulted FU History This time admitted to our surgical ward complaining of similar bilateral lower chest wall pain (for six months) Had vomiting of undigested food 8 times per day for 1 day, no diarrhoea No fever Recent intake of herbs one week ago Physical exam BP 156/77 P 68 afebrile Hydration normal Chest, CVS unremarkable Local tenderness over bilateral lower chest wall Abdomen soft, mild epigastric tenderness, no rebound and guarding KUB Multiple tiny calcific densities projecting in bilateral renal areas with apparent distribution of the renal medulla bilateral medullary nephrocalcinosis CT Scan 1 yr ago in private CT Scan 1 yr ago in private Investigations WBC 3.1 HB 13.1 Plt 137 Na
    [Show full text]
  • Oxygenation and Oxygen Therapy
    Rules on Oxygen Therapy: Physiology: 1. PO2, SaO2, CaO2 are all related but different. 2. PaO2 is a sensitive and non-specific indicator of the lungs’ ability to exchange gases with the atmosphere. 3. FIO2 is the same at all altitudes 4. Normal PaO2 decreases with age 5. The body does not store oxygen Therapy & Diagnosis: 1. Supplemental O2 is an FIO2 > 21% and is a drug. 2. A reduced PaO2 is a non-specific finding. 3. A normal PaO2 and alveolar-arterial PO2 difference (A-a gradient) do NOT rule out pulmonary embolism. 4. High FIO2 doesn’t affect COPD hypoxic drive 5. A given liter flow rate of nasal O2 does not equal any specific FIO2. 6. Face masks cannot deliver 100% oxygen unless there is a tight seal. 7. No need to humidify if flow of 4 LPM or less Indications for Oxygen Therapy: 1. Hypoxemia 2. Increased work of breathing 3. Increased myocardial work 4. Pulmonary hypertension Delivery Devices: 1. Nasal Cannula a. 1 – 6 LPM b. FIO2 0.24 – 0.44 (approx 4% per liter flow) c. FIO2 decreases as Ve increases 2. Simple Mask a. 5 – 8 LPM b. FIO2 0.35 – 0.55 (approx 4% per liter flow) c. Minimum flow 5 LPM to flush CO2 from mask 3. Venturi Mask a. Variable LPM b. FIO2 0.24 – 0.50 c. Flow and corresponding FIO2 varies by manufacturer 4. Partial Rebreather a. 6 – 10 LPM b. FIO2 0.50 – 0.70 c. Flow must be sufficient to keep reservoir bag from deflating upon inspiration 5.
    [Show full text]
  • Arterial Blood Gases: Acid-Base Balance
    EDUCATIONAL COMMENTARY – ARTERIAL BLOOD GASES: ACID-BASE BALANCE Educational commentary is provided through our affiliation with the American Society for Clinical Pathology (ASCP). To obtain FREE CME/CMLE credits click on Earn CE Credits under Continuing Education on the left side of the screen. **Florida licensees, please note: This exercise will appear in CE Broker under the specialty of Blood Gas Analysis. LEARNING OUTCOMES On completion of this exercise, the participant should be able to • identify the important buffering systems in the human body. • explain the Henderson-Hasselbalch equation and its relationship to the bicarbonate/carbonic acid buffer system. • explain the different acid-base disorders, causes associated with them, and compensatory measures. • evaluate acid-base status using patient pH and pCO2 and bicarbonate levels. Introduction Arterial blood gas values are an important tool for assessing oxygenation and ventilation, evaluating acid- base status, and monitoring the effectiveness of therapy. The human body produces a daily net excess of acid through normal metabolic processes: cellular metabolism produces carbonic, sulfuric, and phosphoric acids. Under normal conditions, the body buffers accumulated hydrogen ions (H+) through a variety of buffering systems, the respiratory center, and kidneys to maintain a plasma pH of between 7.35 and 7.45. This tight maintenance of blood pH is essential: even slight changes in pH can alter the functioning of enzymes, the cellular uptake and use of metabolites, and the uptake and release of oxygen. Although diagnoses are made by physicians, laboratory professionals must be able to interpret arterial blood gas values to judge the validity of the laboratory results they report.
    [Show full text]
  • 1 Fluid and Elect. Disorders of Serum Sodium Concentration
    DISORDERS OF SERUM SODIUM CONCENTRATION Bruce M. Tune, M.D. Stanford, California Regulation of Sodium and Water Excretion Sodium: glomerular filtration, aldosterone, atrial natriuretic factors, in response to the following stimuli. 1. Reabsorption: hypovolemia, decreased cardiac output, decreased renal blood flow. 2. Excretion: hypervolemia (Also caused by adrenal insufficiency, renal tubular disease, and diuretic drugs.) Water: antidiuretic honnone (serum osmolality, effective vascular volume), renal solute excretion. 1. Antidiuresis: hyperosmolality, hypovolemia, decreased cardiac output. 2. Diuresis: hypoosmolality, hypervolemia ~ natriuresis. Physiologic changes in renal salt and water excretion are more likely to favor conservation of normal vascular volume than nonnal osmolality, and may therefore lead to abnormalities of serum sodium concentration. Most commonly, 1. Hypovolemia -7 salt and water retention. 2. Hypervolemia -7 salt and water excretion. • HYFERNATREMIA Clinical Senini:: Sodium excess: salt-poisoning, hypertonic saline enemas Primary water deficit: chronic dehydration (as in diabetes insipidus) Mechanism: Dehydration ~ renal sodium retention, even during hypernatremia Rapid correction of hypernatremia can cause brain swelling - Management: Slow correction -- without rapid administration of free water (except in nephrogenic or untreated central diabetes insipidus) HYPONA1REMIAS Isosmolar A. Factitious: hyperlipidemia (lriglyceride-plus-plasma water volume). B. Other solutes: hyperglycemia, radiocontrast agents,. mannitol.
    [Show full text]
  • Evaluation and Treatment of Alkalosis in Children
    Review Article 51 Evaluation and Treatment of Alkalosis in Children Matjaž Kopač1 1 Division of Pediatrics, Department of Nephrology, University Address for correspondence Matjaž Kopač, MD, DSc, Division of Medical Centre Ljubljana, Ljubljana, Slovenia Pediatrics, Department of Nephrology, University Medical Centre Ljubljana, Bohoričeva 20, 1000 Ljubljana, Slovenia J Pediatr Intensive Care 2019;8:51–56. (e-mail: [email protected]). Abstract Alkalosisisadisorderofacid–base balance defined by elevated pH of the arterial blood. Metabolic alkalosis is characterized by primary elevation of the serum bicarbonate. Due to several mechanisms, it is often associated with hypochloremia and hypokalemia and can only persist in the presence of factors causing and maintaining alkalosis. Keywords Respiratory alkalosis is a consequence of dysfunction of respiratory system’s control ► alkalosis center. There are no pathognomonic symptoms. History is important in the evaluation ► children of alkalosis and usually reveals the cause. It is important to evaluate volemia during ► chloride physical examination. Treatment must be causal and prognosis depends on a cause. Introduction hydrogen ion concentration and an alkalosis is a pathologic Alkalosis is a disorder of acid–base balance defined by process that causes a decrease in the hydrogen ion concentra- elevated pH of the arterial blood. According to the origin, it tion. Therefore, acidemia and alkalemia indicate the pH can be metabolic or respiratory. Metabolic alkalosis is char- abnormality while acidosis and alkalosis indicate the patho- acterized by primary elevation of the serum bicarbonate that logic process that is taking place.3 can result from several mechanisms. It is the most common Regulation of hydrogen ion balance is basically similar to form of acid–base balance disorders.
    [Show full text]
  • Inherited Renal Tubulopathies—Challenges and Controversies
    G C A T T A C G G C A T genes Review Inherited Renal Tubulopathies—Challenges and Controversies Daniela Iancu 1,* and Emma Ashton 2 1 UCL-Centre for Nephrology, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK 2 Rare & Inherited Disease Laboratory, London North Genomic Laboratory Hub, Great Ormond Street Hospital for Children National Health Service Foundation Trust, Levels 4-6 Barclay House 37, Queen Square, London WC1N 3BH, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-2381204172; Fax: +44-020-74726476 Received: 11 February 2020; Accepted: 29 February 2020; Published: 5 March 2020 Abstract: Electrolyte homeostasis is maintained by the kidney through a complex transport function mostly performed by specialized proteins distributed along the renal tubules. Pathogenic variants in the genes encoding these proteins impair this function and have consequences on the whole organism. Establishing a genetic diagnosis in patients with renal tubular dysfunction is a challenging task given the genetic and phenotypic heterogeneity, functional characteristics of the genes involved and the number of yet unknown causes. Part of these difficulties can be overcome by gathering large patient cohorts and applying high-throughput sequencing techniques combined with experimental work to prove functional impact. This approach has led to the identification of a number of genes but also generated controversies about proper interpretation of variants. In this article, we will highlight these challenges and controversies. Keywords: inherited tubulopathies; next generation sequencing; genetic heterogeneity; variant classification. 1. Introduction Mutations in genes that encode transporter proteins in the renal tubule alter kidney capacity to maintain homeostasis and cause diseases recognized under the generic name of inherited tubulopathies.
    [Show full text]
  • Electrolyte and Acid-Base
    Special Feature American Society of Nephrology Quiz and Questionnaire 2013: Electrolyte and Acid-Base Biff F. Palmer,* Mark A. Perazella,† and Michael J. Choi‡ Abstract The Nephrology Quiz and Questionnaire (NQ&Q) remains an extremely popular session for attendees of the annual meeting of the American Society of Nephrology. As in past years, the conference hall was overflowing with interested audience members. Topics covered by expert discussants included electrolyte and acid-base disorders, *Department of Internal Medicine, glomerular disease, ESRD/dialysis, and transplantation. Complex cases representing each of these categories University of Texas along with single-best-answer questions were prepared by a panel of experts. Prior to the meeting, program Southwestern Medical directors of United States nephrology training programs answered questions through an Internet-based ques- Center, Dallas, Texas; † tionnaire. A new addition to the NQ&Q was participation in the questionnaire by nephrology fellows. To review Department of Internal Medicine, the process, members of the audience test their knowledge and judgment on a series of case-oriented questions Yale University School prepared and discussed by experts. Their answers are compared in real time using audience response devices with of Medicine, New the answers of nephrology fellows and training program directors. The correct and incorrect answers are then Haven, Connecticut; ‡ briefly discussed after the audience responses, and the results of the questionnaire are displayed. This article and Division of recapitulates the session and reproduces its educational value for the readers of CJASN. Enjoy the clinical cases Nephrology, Department of and expert discussions. Medicine, Johns Clin J Am Soc Nephrol 9: 1132–1137, 2014.
    [Show full text]
  • Managing Hyponatremia in Patients with Syndrome of Inappropriate Antidiuretic Hormone Secretion
    REVIEW Managing Hyponatremia in Patients With Syndrome of Inappropriate Antidiuretic Hormone Secretion Joseph G. Verbalis, MD Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University Medical Center, Washington DC. J.G. Verbalis received an honorarium funded by an unrestricted educational grant from Otsuka America Pharmaceuticals, Inc., for time and expertise spent in the composition of this article. No editorial assistance was provided. No other conflicts exist. This review will address the management of hyponatremia caused by the syndrome of inappropriate antidiuretic hormone secretion (SIADH) in hospitalized patients. To do so requires an understanding of the pathogenesis and diagnosis of SIADH, as well as currently available treatment options. The review will be structured as responses to a series of questions, followed by a presentation of an algorithm for determining the most appropriate treatments for individual patients with SIADH based on their presenting symptoms. Journal of Hospital Medicine 2010;5:S18–S26. VC 2010 Society of Hospital Medicine. Why is SIADH Important to Hospitalists? What Causes Hyponatremia in Patients with SIADH? Disorders of body fluids, and particularly hyponatremia, are Hyponatremia can be caused by 1 of 2 potential disruptions among the most commonly encountered problems in clinical in fluid balance: dilution from retained water, or depletion medicine, affecting up to 30% of hospitalized patients. In a from electrolyte losses in excess of water. Dilutional hypo- study of 303,577 laboratory samples collected from 120,137 natremias are associated with either a normal (euvolemic) patients, the prevalence of hyponatremia (serum [Naþ] <135 or an increased (hypervolemic) extracellular fluid (ECF) vol- mmol/L) on initial presentation to a healthcare provider was ume, whereas depletional hyponatremias generally are asso- 28.2% among those treated in an acute hospital care setting, ciated with a decreased ECF volume (hypovolemic).
    [Show full text]
  • Albuminuria Versus Egfr
    Albuminuria versus GFR as markers of diabetic CKD progression KDIGO Controversies Conference: “Diabetic Kidney Disease” New Delhi, March 2012 Richard J MacIsaac PhD FRACP Director of Endocrinology & Diabetes, St Vincent's Hospital Professorial Fellow, University of Melbourne Evolution of Diabetic CKD Incipient Overt Nephropathy Nephropathy GFR 100 Log AER (ml/min) GFR 10 15 20 yrs Normoalbuminuria Microalbuminuria Macroalbuminuria (AER < 20 µµµg/min) (AER 20-200 µµµg/min) (AER > 200 µµµg/min) Stages of CKD Stage eGFR Description Predominant (ml/min/1.73 m2) AER status 1 > 90 Kidney damage with normal/high GFR Normo- Micro- 2 60-89 Kidney damage with mild reduction in GFR Micro- 3 30-59 Kidney damage with moderate reduction in Micro/Macro- GFR 4 15-29 Kidney damage with severe reduction in Macro- GFR 5 < 15 Kidney failure Albuminuria versus GFR as markers of diabetic CKD progression 1. Albuminuria as a predictor of diabetic CKD 2. GFR as a predictor of diabetic CKD 3. Albuminuria & GFR uncoupling/coupling 4. Summary Albuminuria as a marker of diabetic CKD progression • High Variability M N • Low Specificity • Spontaneous Regression µ • Δ AER ≠ Δ GFR Higher levels of urinary albumin excretion within the normal range predict faster decline in glomerular filtration rate in diabetic patients Babazono T et al. Diabetes Care 2009;32:1518-1520 Albuminuria versus GFR as markers of diabetic CKD progression 1. Albuminuria as a predictor of diabetic CKD 2. GFR as a predictor of diabetic CKD 3. ALbuminuria & GFR uncoupling/coupling 4. Summary GFR as
    [Show full text]
  • Renal Tubular Acidosis in Children: State of the Art, Diagnosis and Treatment
    www.medigraphic.org.mx Bol Med Hosp Infant Mex 2013;70(3):178-193 REVIEW ARTICLE Renal tubular acidosis in children: state of the art, diagnosis and treatment Ricardo Muñoz-Arizpe,1 Laura Escobar,2 Mara Medeiros3 ABSTRACT Overdiagnosis of renal tubular acidosis (RTA) has been recently detected in Mexican children, perhaps due to diagnostic errors as well as due to a lack of knowledge regarding the pathophysiology and molecular biochemistry involved in this illness. The objective of the present study is to facilitate the knowledge and diagnosis of RTA, a clinical condition infrequently seen worldwide. RTA is an alteration of the acid-base equilibrium due to a bicarbonate wasting in the proximal renal tubules [proximal RTA, (pRTA) or type 2 RTA] or due to a distal nephron hy- drogen ion excretion defect [distal RTA (dRTA) or type 1 RTA]. Hyperkalemic, or type 4 RTA, is due to alterations in aldosterone metabolism. RTA may be primary, secondary, acquired or hereditary and frequently presents secondary to an array of systemic diseases, usually accom- panied by multiple renal tubular defects. The main defect occurs in the transmembrane transporters such as carbonic anhydrase (CA I and + - - + - II), H -ATPase, HCO3 /Cl (AE1) exchanger and Na /HCO3 (NBCe1) cotransporter. Diagnosis should include the presence of hyperchloremic metabolic acidosis with normal serum anion gap (done in an arterial or arterialized blood sample), lack of appetite, polyuria, thirst, growth failure, and rickets; nephrocalcinosis and renal stones (in dRTA); abnormal urine anion gap and abnormal urine/serum pCO2 gradient. Diagnosis of a primary systemic disease must be made in cases of secondary RTA.
    [Show full text]