Iguana B&W Text

Total Page:16

File Type:pdf, Size:1020Kb

Iguana B&W Text Iguana 15.3 b&w text 9/10/08 5:43 AM Page 130 130 IGUANA • VOLUME 15, NUMBER 3 • SEPTEMBER 2008 DANIELLS ET AL. NATALIE N. WYSZYNSKI N. NATALIE Populations of Lesser Antillean Iguanas (Iguana delicatissima) have declined or disappeared on many islands. Those on Dominica are doing well and may serve as a model for developing management strategies for other islands (see IGUANA 14(4), p. 222). Iguana 15.3 b&w text 9/10/08 5:43 AM Page 131 AMPHIBIANS AND REPTILES OF DOMINICA IGUANA • VOLUME 15, NUMBER 3 • SEPTEMBER 2008 131 An Annotated Checklist of the Amphibians and Reptiles of Dominica, West Indies Esther A. Daniells1, Jeffrey W. Ackley2, Ruth E. Carter3, Peter J. Muelleman4, Seth M. Rudman5, Patrick A. Turk6, Nelson J. Vélez Espinet7, Lauren A. White8, and Natalie N. Wyszynski9 1Department of Biology, Colorado State University, Fort Collins, CO 80523 ([email protected]) 2Department of Biology, Eckerd College, St. Petersburg, FL 33711 ([email protected]) 3Department of Biology, Earlham College, Richmond, IN 47374 ([email protected]) 4Department of Biology, Truman State University, Kirksville, MO 63501 ([email protected]) 5Department of Biology, University of Rochester, Rochester, NY 14627 ([email protected]) 6Department of Biology, Avila University, Kansas City, MO 64145 ([email protected]) 7Department of Biology, University of Puerto Rico, Río Piedras, PR 00931 ([email protected]) 8Environmental Science Program, Oklahoma State University, Stillwater, OK 74078 [email protected]) 9Department of Psychology, University of Tennessee, Knoxville, TN 37996 ([email protected]) ! ravel writers have suggested that if Christopher Columbus Twere to take a Caribbean cruise today, Dominica might be the only West Indian island he would recognize. In an age when an ideal tropical paradise must include golf courses, five-star restaurants, towering hotels, cruise-ship berths, manicured white beaches, and swimming pools adjacent to the ocean, the drastic changes to which other destination islands have been subjected are understandable. However, an accident of geology spared Dominica from that fate. The island is a complex of volcanic peaks, the highest of which (Morne Diablotin) reaches 1,446 m above sea level, resulting in an intimidating terrain that has slowed the seemingly inevitable march of “progress.” Because level lowlands suitable for sugarcane plantations during the colo- nial era do not exist and tourism-oriented development is min- imal, the inevitable consequences of deforestation and declining biodiversity are largely absent. In sharp contrast, the potential for effective conservation is considerable, and Dominican authorities have taken steps to pre- serve two unique natural treasures: The forests, which still cover more than 60% of the island, and the animals that live in the largely natural habitats that remain. The amphibians and reptiles in particular comprise what may well be the most “natural” her- petofaunal community in the entire Lesser Antillean archipelago. Although conserving forests and their inhabitants might not be a selling point for the vacationers to whose interests devel- opers cater, Dominica benefits by promoting ecotourism, and markets itself as the “Nature Island.” By not competing for vis- itors whose sole interest is reclining in the lap of luxury, Dominica provides the chance to experience natural habitats, increasingly rare commodities that more intensely developed islands are about to lose entirely. However, in order to place a value on natural resources such as the herpetofauna, authorities must have access to reliable information about its distribution, JOHN S. PARMERLEE, JR. 2 natural history, and conservation status. Herein we present a Dominica (754 km ) is one of the volcanic Windward Islands in the Lesser Antilles. The rugged topography and lack of flat lowlands spared summary of our observations on Dominica’s diverse herpetofau- the island from the alterations (typically associated with sugar planta- nal communities with the hope that it will remain relevant to tions) to which most other West Indian islands were subjected during coming generations. the colonial period. Iguana 15.3 b&w text 9/10/08 5:43 AM Page 132 132 IGUANA • VOLUME 15, NUMBER 3 • SEPTEMBER 2008 DANIELLS ET AL. Frogs (Amphibia: Anura) Eleutherodactylus amplinympha (Kaiser, Green, and Schmid 1994). Anura: Eleutherodactylidae. Local name: Dominican Gounouj. English common names: Dominican Frog, Dominican Rain Frog, Dominican Whistling Frog. Endemic. These relatively small frogs (maximum male SVL 26 mm, max- imum female SVL 50 mm) occur at elevations >300 m in mon- tane rain forest, where they perch on trees, palm brakes, moss mats, epiphytes, and ferns. This species has a pointed snout and relatively large toepads. Males have bi-lobed glandular vocal sacs and produce a three-note call. Dorsal color varies from brown- ish to greenish to reddish, and, as in other frogs in the genus, ROBERT POWELL pattern elements are highly variable. These largely nocturnal The Lesser Antillean Frog (Eleutherodactylus johnstonei) has been frogs are known to call by day in wet forests during or after recorded from Dominica. Although it has successfully colonized other heavy rains. The species is included on the IUCN Red List as islands, where it has displaced native species, it has not been found dur- “endangered,” primarily due to its restricted range, high likeli- ing recent surveys, suggesting that the colonization of Dominica has hood of habitat loss attributable to human expansion, volcan- failed. This frog was photographed on St. Vincent. ism, or hurricanes, and the potential threat posed by chytrid- iomycosis, a fungal infection to which upland amphibians in the tropics appear to be particularly vulnerable. to document the presence of this species on Dominica and it is no longer included in the list of Dominican amphibians. This species is included on the IUCN Red List as being of “least con- cern,” largely attributable to its colonizing ability, which is unusual among amphibians, which generally have little tolerance for exposure to saltwater. Introduced populations on some islands compete successfully with native species, and often dis- place them, especially from altered habitats. Eleutherodactylus martinicensis (Tschudi 1838). Anura: Eleutherodactylidae. Local name: Tink Frog. English common names: Martinique Frog, Martinique Robber Frog. This Lesser Antillean endemic is presumably native on Dominica, although ROBERT POWELL it may have been imported inadvertently by early European set- The endangered Dominican Frog (Eleutherodactylus amplinympha) is tlers. These small frogs (maximum male SVL 32 mm, maximum restricted to moist forests at higher elevations. female SVL 47 mm) occur from sea level to at least 1,250 m in varied natural and altered habitats that include rain forests, dry woodlands, banana and coconut plantations, and gardens. This Eleutherodactylus johnstonei (Barbour 1914). Anura: species has a pointed snout and relatively small toepads. Males Eleutherodactylidae. No local name. English common names: have a bi-lobed glandular vocal sac and produce a two-note call. Lesser Antillean Frog, Johnstone’s Whistling Frog, Johnstone’s Dorsal color is brownish to reddish; other markings are highly Robber Frog. Lesser Antillean endemic, introduced on variable. These nocturnal frogs may call by day during or after Dominica, other West Indian islands, and the South American mainland. These frogs are thought to have been introduced on Dominica after Hurricane David in 1979, probably with relief supplies from neighboring islands. Throughout their extended range, these small frogs (maximum male SVL 25 mm, maxi- mum female SVL 35 mm) thrive in artificial sites such as resi- dential gardens, agricultural areas, roadsides, and buildings from sea level to elevations of ~1300 m. This species has a rounded snout and relatively small toepads. Males have a single-lobed glandular vocal sac and produce a two-note call. Dorsal ground color usually is some shade of brown; other markings are highly variable. Where the two species occur together, E. johnstonei often is confused with closely related E. martinicensis. ROBERT POWELL Eleutherodactylus johnstonei is a nocturnally active sit-and-wait Like many relatives, patterns of Martinique Frogs (Eleutherodactylus predator with a diet composed primarily of small arthropods. martinincensis) are highly variable. This individual has a faint middor- Documented predators include Turnip-tailed Geckos sal line, but others may be unicolored, blotched, or have very distinct (Thecadactylus rapicauda) and snakes. Recent surveys have failed dorsal “racing” stripes. Iguana 15.3 b&w text 9/10/08 5:43 AM Page 133 AMPHIBIANS AND REPTILES OF DOMINICA IGUANA • VOLUME 15, NUMBER 3 • SEPTEMBER 2008 133 heavy rains. They feed on a variety of small arthropods, and have turnal, although some foraging and calling may occur on rainy been observed foraging at night for insects attracted to lights. days. The species is included on the IUCN Red List as “critically Predators include snakes and larger frogs. Fungal infections endangered,” largely due to excessive exploitation as a delicacy. (chytridiomycosis) have been documented. This species is Other factors that have contributed to population declines are included on the IUCN Red List as “near threatened,” due to a invasive predators (pigs, cats, rats, and dogs), habitat loss by known range of less than 5000 km2 and potential habitat loss
Recommended publications
  • (2007) a Photographic Field Guide to the Reptiles and Amphibians Of
    A Photographic Field Guide to the Reptiles and Amphibians of Dominica, West Indies Kristen Alexander Texas A&M University Dominica Study Abroad 2007 Dr. James Woolley Dr. Robert Wharton Abstract: A photographic reference is provided to the 21 reptiles and 4 amphibians reported from the island of Dominica. Descriptions and distribution data are provided for each species observed during this study. For those species that were not captured, a brief description compiled from various sources is included. Introduction: The island of Dominica is located in the Lesser Antilles and is one of the largest Eastern Caribbean islands at 45 km long and 16 km at its widest point (Malhotra and Thorpe, 1999). It is very mountainous which results in extremely varied distribution of habitats on the island ranging from elfin forest in the highest elevations, to rainforest in the mountains, to dry forest near the coast. The greatest density of reptiles is known to occur in these dry coastal areas (Evans and James, 1997). Dominica is home to 4 amphibian species and 21 (previously 20) reptile species. Five of these are endemic to the Lesser Antilles and 4 are endemic to the island of Dominica itself (Evans and James, 1997). The addition of Anolis cristatellus to species lists of Dominica has made many guides and species lists outdated. Evans and James (1997) provides a brief description of many of the species and their habitats, but this booklet is inadequate for easy, accurate identification. Previous student projects have documented the reptiles and amphibians of Dominica (Quick, 2001), but there is no good source for students to refer to for identification of these species.
    [Show full text]
  • Anolis Cybotes Group)
    Evolution, 57(10), 2003, pp. 2383±2397 PHYLOGENETIC ANALYSIS OF ECOLOGICAL AND MORPHOLOGICAL DIVERSIFICATION IN HISPANIOLAN TRUNK-GROUND ANOLES (ANOLIS CYBOTES GROUP) RICHARD E. GLOR,1,2 JASON J. KOLBE,1,3 ROBERT POWELL,4,5 ALLAN LARSON,1,6 AND JONATHAN B. LOSOS1,7 1Department of Biology, Campus Box 1137, Washington University, St. Louis, Missouri 63130-4899 2E-mail: [email protected] 3E-mail: [email protected] 4Department of Biology, Avila University, 11901 Wornall Road, Kansas City, Missouri 64145-1698 5E-mail: [email protected] 6E-mail: [email protected] 7E-mail: [email protected] Abstract. Anolis lizards in the Greater Antilles partition the structural microhabitats available at a given site into four to six distinct categories. Most microhabitat specialists, or ecomorphs, have evolved only once on each island, yet closely related species of the same ecomorph occur in different geographic macrohabitats across the island. The extent to which closely related species of the same ecomorph have diverged to adapt to different geographic macro- habitats is largely undocumented. On the island of Hispaniola, members of the Anolis cybotes species group belong to the trunk-ground ecomorph category. Despite evolutionary stability of their trunk-ground microhabitat, populations of the A. cybotes group have undergone an evolutionary radiation associated with geographically distinct macrohabitats. A combined phylogeographic and morphometric study of this group reveals a strong association between macrohabitat type and morphology independent of phylogeny. This association results from long-term morphological evolutionary stasis in populations associated with mesic-forest environments (A. c. cybotes and A. marcanoi) and predictable morphometric changes associated with entry into new macrohabitat types (i.e., xeric forests, high-altitude pine forest, rock outcrops).
    [Show full text]
  • Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee
    Biodiversity: the UK Overseas Territories Compiled by S. Oldfield Edited by D. Procter and L.V. Fleming ISBN: 1 86107 502 2 © Copyright Joint Nature Conservation Committee 1999 Illustrations and layout by Barry Larking Cover design Tracey Weeks Printed by CLE Citation. Procter, D., & Fleming, L.V., eds. 1999. Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee. Disclaimer: reference to legislation and convention texts in this document are correct to the best of our knowledge but must not be taken to infer definitive legal obligation. Cover photographs Front cover: Top right: Southern rockhopper penguin Eudyptes chrysocome chrysocome (Richard White/JNCC). The world’s largest concentrations of southern rockhopper penguin are found on the Falkland Islands. Centre left: Down Rope, Pitcairn Island, South Pacific (Deborah Procter/JNCC). The introduced rat population of Pitcairn Island has successfully been eradicated in a programme funded by the UK Government. Centre right: Male Anegada rock iguana Cyclura pinguis (Glen Gerber/FFI). The Anegada rock iguana has been the subject of a successful breeding and re-introduction programme funded by FCO and FFI in collaboration with the National Parks Trust of the British Virgin Islands. Back cover: Black-browed albatross Diomedea melanophris (Richard White/JNCC). Of the global breeding population of black-browed albatross, 80 % is found on the Falkland Islands and 10% on South Georgia. Background image on front and back cover: Shoal of fish (Charles Sheppard/Warwick
    [Show full text]
  • State-Of-The-Art on Use of Insects As Animal Feed
    State-of-the-art on use of insects as animal feed Harinder P.S. Makkar1, Gilles Tran2, Valérie Heuzé2 and Philippe Ankers1 1 Animal Production and Health Division, FAO, Rome 2 Association Française de Zootechnie, Paris, France Full reference of the paper: Animal Feed Science and Technology, Volume 197, November 2014, pages 1-33 Link: http://www.animalfeedscience.com/article/S0377-8401(14)00232-6/abstract http://dx.doi.org/10.1016/j.anifeedsci.2014.07.008 Abstract A 60-70% increase in consumption of animal products is expected by 2050. This increase in the consumption will demand enormous resources, the feed being the most challenging because of the limited availability of natural resources, ongoing climatic changes and food-feed-fuel competition. The costs of conventional feed resources such as soymeal and fishmeal are very high and moreover their availability in the future will be limited. Insect rearing could be a part of the solutions. Although some studies have been conducted on evaluation of insects, insect larvae or insect meals as an ingredient in the diets of some animal species, this field is in infancy. Here we collate, synthesize and discuss the available information on five major insect species studied with respect to evaluation of their products as animal feed. The nutritional quality of black soldier fly larvae, the house fly maggots, mealworm, locusts- grasshoppers-crickets, and silkworm meal and their use as a replacement of soymeal and fishmeal in the diets of poultry, pigs, fish species and ruminants are discussed. The crude protein contents of these alternate resources are high: 42 to 63% and so are the lipid contents (up to 36% oil), which could possibly be extracted and used for various applications including biodiesel production.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Saving the Mountain Chicken
    Saving the mountain chicken Long-Term Recovery Strategy for the Critically Endangered mountain chicken 2014-2034 Adams, S L, Morton, M N, Terry, A, Young, R P, Dawson, J, Martin, L, Sulton, M, Hudson, M, Cunningham, A, Garcia, G, Goetz, M, Lopez, J, Tapley, B, Burton, M and Gray, G. Front cover photograph Male mountain chicken. Matthew Morton / Durrell (2012) Back cover photograph Credits All photographs in this plan are the copyright of the people credited; they must not be reproduced without prior permission. Recommended citation Adams, S L, Morton, M N, Terry, A, Young, R P, Dawson, J, Martin, L, Sulton, M, Cunningham, A, Garcia, G, Goetz, M, Lopez, J, Tapley, B, Burton, M, and Gray, G. (2014). Long-Term Recovery Strategy for the Critically Endangered mountain chicken 2014-2034. Mountain Chicken Recovery Programme. New Information To provide new information to update this Action Plan, or correct any errors, e-mail: Jeff Dawson, Amphibian Programme Coordinator, Durrell Wildlife Conservation Trust, [email protected] Gerard Gray, Director, Department of Environment, Ministry of Agriculture, Land, Housing and Environment, Government of Montserrat. [email protected] i Saving the mountain chicken A Long-Term Recovery Strategy for the Critically Endangered mountain chicken 2014-2034 Mountain Chicken Recovery Programme ii Forewords There are many mysteries about life and survival on Much and varied research and work needs continue however Montserrat for animals, plants and amphibians. In every case before our rescue mission is achieved. The chytrid fungus survival has been a common thread in the challenges to life remains on Montserrat and currently there is no known cure.
    [Show full text]
  • A Taxonomic Framework for Typhlopid Snakes from the Caribbean and Other Regions (Reptilia, Squamata)
    caribbean herpetology article A taxonomic framework for typhlopid snakes from the Caribbean and other regions (Reptilia, Squamata) S. Blair Hedges1,*, Angela B. Marion1, Kelly M. Lipp1,2, Julie Marin3,4, and Nicolas Vidal3 1Department of Biology, Pennsylvania State University, University Park, PA 16802-5301, USA. 2Current address: School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7450, USA. 3Département Systématique et Evolution, UMR 7138, C.P. 26, Muséum National d’Histoire Naturelle, 57 rue Cuvier, F-75231 Paris cedex 05, France. 4Current address: Department of Biology, Pennsylvania State University, University Park, PA 16802-5301 USA. *Corresponding author ([email protected]) Article registration: http://zoobank.org/urn:lsid:zoobank.org:pub:47191405-862B-4FB6-8A28-29AB7E25FBDD Edited by: Robert W. Henderson. Date of publication: 17 January 2014. Citation: Hedges SB, Marion AB, Lipp KM, Marin J, Vidal N. 2014. A taxonomic framework for typhlopid snakes from the Caribbean and other regions (Reptilia, Squamata). Caribbean Herpetology 49:1–61. Abstract The evolutionary history and taxonomy of worm-like snakes (scolecophidians) continues to be refined as new molec- ular data are gathered and analyzed. Here we present additional evidence on the phylogeny of these snakes, from morphological data and 489 new DNA sequences, and propose a new taxonomic framework for the family Typhlopi- dae. Of 257 named species of typhlopid snakes, 92 are now placed in molecular phylogenies along with 60 addition- al species yet to be described. Afrotyphlopinae subfam. nov. is distributed almost exclusively in sub-Saharan Africa and contains three genera: Afrotyphlops, Letheobia, and Rhinotyphlops. Asiatyphlopinae subfam. nov. is distributed in Asia, Australasia, and islands of the western and southern Pacific, and includes ten genera:Acutotyphlops, Anilios, Asiatyphlops gen.
    [Show full text]
  • Some Endoparasites of the Herpetofauna of Dominica, West Indies, and Their Use As Clues to Host Zoogeography
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1968 Some Endoparasites of the Herpetofauna of Dominica, West Indies, and their Use as Clues to Host Zoogeography Eugene William Nicholls College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Parasitology Commons Recommended Citation Nicholls, Eugene William, "Some Endoparasites of the Herpetofauna of Dominica, West Indies, and their Use as Clues to Host Zoogeography" (1968). Dissertations, Theses, and Masters Projects. Paper 1539624641. https://dx.doi.org/doi:10.21220/s2-tmmv-rj62 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. SOME ENDOPARASITES OF THE HERPETOFAUNA OF DOMINICA, '! WEST INDIES, AND THEIR USE AS CLUES TO HOST ZOOGEOGRAPHY A Thesis Presented to The Faculty of the Department of Biology The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Arts By Eugene William Nicholls August 1968 APPROVAL SHEET This thesis is submitted in partial fulfillm ent the requirements for the degree of Master of Arts Eiraene William Nicholls Approved, August 1968 SXh- 6arnett RT Brooks, J r., Pn.D Mi tchel l A, Byrd , (JPhTD C. Richard Terman, Ph.D ACKNOWLEDGEMENTS The writer wishes to express his appreciation to j Professor Garnett R. Brooks, Jr.. and the Smithsonian Biological Survey of Dominica, W.
    [Show full text]
  • Alsophis Rijgersmaei Cope, 1869 (Squamata: Dipsadidae) Sur L'île De
    Questel K. (2021). Alsophis rijgersmaei Cope, 1869 (Squamata: Dipsadidae) sur l’île de Saint-Barthélemy. Mise à jour : janvier 2021. Bulletin de l’ATE numéro 7. 8p. 1 Karl Questel Le Bulletin de l’ATE numéro 7 Mise à jour : Janvier 2021 Alsophis rijgersmaei Cope, 1869 (Squamata: Dipsadidae) sur l’île de Saint-Barthélemy Ceci est la version basse définition pour le web. Si vous souhaitez une version haute définition pour l'impression, veuillez demander à : [email protected] This is the low definition version for the web. If you want a high definition version for printing, please request to : [email protected] 2 Questel K. (2021). Alsophis rijgersmaei Cope, 1869 (Squamata: Dipsadidae) sur l’île de Saint-Barthélemy. Mise à jour : janvier 2021. Bulletin de l’ATE numéro 7. 8p. Alsophis rijgersmaei en bref / Alsophis rijgersmaei in short. La plus grande taille documentée. - 108 cm (du museau au cloaque (LV) - Snout to vent (SVL)) Largest documented size. - 138 cm (du museau au bout de la queue (LT) - Snout to the end of the tail (TL)). Une femelle. A female. Nombre d’écailles ventrales et ♀ -Ventrales, ventral : 197-206. sous-caudales par sexes identifiés (Min-Max). -Sous-caudales, sub-caudal : 93-102. Number of ventral and sub-caudal scales ♂ -Ventrales, ventral : 201-208. by identified sexes (Min-Max). -Sous-caudales, sub-caudal : 109-117. Moyennes générales de toutes les données ♀+♂+? -Ventrales, ventral : 197-208. disponibles: mâles, femelles et non sexés -Sous-caudales, sub-caudal : 93-122. (Min-Max). (Saint-Barthélemy, Saint-Martin, Anguilla) General averages of all available data: males, females and not sexed (Min-Max).
    [Show full text]
  • Introduced Amphibians and Reptiles in the Cuban Archipelago
    Herpetological Conservation and Biology 10(3):985–1012. Submitted: 3 December 2014; Accepted: 14 October 2015; Published: 16 December 2015. INTRODUCED AMPHIBIANS AND REPTILES IN THE CUBAN ARCHIPELAGO 1,5 2 3 RAFAEL BORROTO-PÁEZ , ROBERTO ALONSO BOSCH , BORIS A. FABRES , AND OSMANY 4 ALVAREZ GARCÍA 1Sociedad Cubana de Zoología, Carretera de Varona km 3.5, Boyeros, La Habana, Cuba 2Museo de Historia Natural ”Felipe Poey.” Facultad de Biología, Universidad de La Habana, La Habana, Cuba 3Environmental Protection in the Caribbean (EPIC), Green Cove Springs, Florida, USA 4Centro de Investigaciones de Mejoramiento Animal de la Ganadería Tropical, MINAGRI, Cotorro, La Habana, Cuba 5Corresponding author, email: [email protected] Abstract.—The number of introductions and resulting established populations of amphibians and reptiles in Caribbean islands is alarming. Through an extensive review of information on Cuban herpetofauna, including protected area management plans, we present the first comprehensive inventory of introduced amphibians and reptiles in the Cuban archipelago. We classify species as Invasive, Established Non-invasive, Not Established, and Transported. We document the arrival of 26 species, five amphibians and 21 reptiles, in more than 35 different introduction events. Of the 26 species, we identify 11 species (42.3%), one amphibian and 10 reptiles, as established, with nine of them being invasive: Lithobates catesbeianus, Caiman crocodilus, Hemidactylus mabouia, H. angulatus, H. frenatus, Gonatodes albogularis, Sphaerodactylus argus, Gymnophthalmus underwoodi, and Indotyphlops braminus. We present the introduced range of each of the 26 species in the Cuban archipelago as well as the other Caribbean islands and document historical records, the population sources, dispersal pathways, introduction events, current status of distribution, and impacts.
    [Show full text]
  • Male Courtship Display in Two Populations of Anolis Heterodermus (Squamata: Dactyloidae) from the Eastern Cordillera of Colombia
    Herpetology Notes, volume 12: 881-884 (2019) (published online on 15 August 2019) Male courtship display in two populations of Anolis heterodermus (Squamata: Dactyloidae) from the Eastern Cordillera of Colombia Iván Beltrán1,2,* and Leidy Alejandra Barragán-Contreras3 Animal displays are generally associated with Anolis heterodermus (Duméril, 1851) is a medium-size territoriality, predator avoidance and courtship arboreal lizard that inhabits shrubs and small trees of high behaviour, in which visual cues transmit a large amount Andean forests in Colombia and Ecuador (Moreno-Arias of information (Alcock and Rubenstein, 1989). Visual and Urbina-Cardona, 2013). Their aggressive and sexual cues can vary in type and frequency depending on behaviour have been described mainly as occasional several factors such as habitat structure, environmental observations in the field and laboratory (Jenssen, 1975; temperature and density of conspecifics (Endler, 1992; Guzmán, 1989; Beltrán, 2019). This species belongs to Candolin, 2003). Visual displays usually convey the heterodermus complex of species from which its information about species identity and/or physiological phylogenetic relations are not well established (Lazell, status of the signaller. Moreover, since an effective 1969; Castañeda and de Queiroz, 2013). Recently, it communication will determine the reproductive was suggested that there are at least three genetically success of the individual and ultimately its fitness, the distinct clades within the complex (Vargas-Ramírez and information must be quickly comprehended by the Moreno-Arias, 2014). However, there is no evidence receiver (Sullivan and Kwiatkowski, 2007). Variations that these genetic differences are backed by behavioural in the signalling pathway constitute a prezygotic changes that could act as a prezygotic barrier.
    [Show full text]
  • Fossil Dipsadid Snakes from the Guadeloupe Islands (French West-Indies) and Their Interactions with Past Human Populations
    geodiversitas 2019 ● 41 ● 12 e of lif pal A eo – - e h g e r a p R e t e o d l o u g a l i s C - t – n a M e J e l m a i r o DIRECTEUR DE LA PUBLICATION : Bruno David, Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Didier Merle ASSISTANTS DE RÉDACTION / ASSISTANT EDITORS : Emmanuel Côtez ([email protected]) ; Anne Mabille MISE EN PAGE / PAGE LAYOUT : Emmanuel Côtez COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : Christine Argot (MNHN, Paris) Beatrix Azanza (Museo Nacional de Ciencias Naturales, Madrid) Raymond L. Bernor (Howard University, Washington DC) Alain Blieck (chercheur CNRS retraité, Haubourdin) Henning Blom (Uppsala University) Jean Broutin (UPMC, Paris) Gaël Clément (MNHN, Paris) Ted Daeschler (Academy of Natural Sciences, Philadelphie) Bruno David (MNHN, Paris) Gregory D. Edgecombe (The Natural History Museum, Londres) Ursula Göhlich (Natural History Museum Vienna) Jin Meng (American Museum of Natural History, New York) Brigitte Meyer-Berthaud (CIRAD, Montpellier) Zhu Min (Chinese Academy of Sciences, Pékin) Isabelle Rouget (UPMC, Paris) Sevket Sen (MNHN, Paris) Stanislav Štamberg (Museum of Eastern Bohemia, Hradec Králové) Paul Taylor (The Natural History Museum, Londres) COUVERTURE / COVER : Background: made from the Figures of the article; medallion: Jean-Claude Rage, to whom this issue is dedicated. Geodiversitas est indexé dans / Geodiversitas is indexed in: – Science Citation Index Expanded (SciSearch®) – ISI Alerting Services® – Current Contents® / Physical, Chemical, and Earth Sciences®
    [Show full text]