A Natural User Interface for Immersive Design Review Anastacia Macallister Iowa State University, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

A Natural User Interface for Immersive Design Review Anastacia Macallister Iowa State University, Anastac@Iastate.Edu Mechanical Engineering Conference Presentations, Mechanical Engineering Papers, and Proceedings 2014 A Natural User Interface for Immersive Design Review Anastacia MacAllister Iowa State University, [email protected] Eliot H. Winer Iowa State University, [email protected] Siemens PLM Software The Boeing Company Follow this and additional works at: https://lib.dr.iastate.edu/me_conf Part of the Computer-Aided Engineering and Design Commons, Ergonomics Commons, and the Operational Research Commons Recommended Citation MacAllister, Anastacia; Winer, Eliot H.; Siemens PLM Software; and The Boeing Company, "A Natural User Interface for Immersive Design Review" (2014). Mechanical Engineering Conference Presentations, Papers, and Proceedings. 180. https://lib.dr.iastate.edu/me_conf/180 This Conference Proceeding is brought to you for free and open access by the Mechanical Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Mechanical Engineering Conference Presentations, Papers, and Proceedings by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A Natural User Interface for Immersive Design Review Abstract As markets demand engineered products faster, waiting on the cyclical design processes of the past is not an option. Instead, industry is turning to concurrent design and interdisciplinary teams. When these teams collaborate, engineering CAD tools play a vital role in conceptualizing and validating designs. These tools require significant user investment to master, due to challenging interfaces and an overabundance of features. These challenges often prohibit team members from using these tools for exploring alternatives. This paper presents a method allowing users to interact with a design using intuitive gestures and head tracking, all while keeping the model in a CAD format. Specifically, Siemens’ Teamcenter® Lifecycle Visualization Mockup (Mockup) was used to display the design geometry while modifications were made through a set of gestures captured by a Microsoft Kinect™ in real time. This proof of concept program allowed a user to rotate the scene, activate Mockup’s immersive menu, move the immersive wand, and manipulate the view based on head position. The er sult is an immersive user-friendly low cost platform for interdisciplinary design review. Disciplines Computer-Aided Engineering and Design | Ergonomics | Operational Research Comments This proceeding is published as MacAllister, Anastacia, Eliot Winer, Tsung-Pin Yeh, Daniel Seal, and Grant Degenhardt. "A Natural User Interface for Immersive Design Review." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. DOI: 10.1115/DETC2014-34633. Posted with permission. This conference proceeding is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/me_conf/180 Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2014 August 17-20, 2014, Buffalo, New York, USA DETC2014-34633 A NATURAL USER INTERFACE FOR IMMERSIVE DESIGN REVIEW Anastacia MacAllister Dr. Eliot Winer Research Assistant Associate Professor Iowa State University Iowa State University Virtual Reality Applications Center Virtual Reality Applications Center Dept. of Mechanical Engineering Dept. of Mechanical Engineering Ames, Iowa, USA Ames, Iowa, USA Tsung-Pin Yeh Daniel Seal Software Engineer - Principal Program Manager Siemens PLM Software The Boeing Company Ames, Iowa, USA Immersive Development Environment St. Louis, Missouri, USA Grant Degenhardt Senior Engineer The Boeing Company St. Louis, Missouri, USA ABSTRACT INTRODUCTION As markets demand engineered products faster, waiting on Designing and validating new products like aircraft and the cyclical design processes of the past is not an option. machinery rely heavily on engineering tools. While these tools Instead, industry is turning to concurrent design and are very effective at creating, modifying, and evaluating interdisciplinary teams. When these teams collaborate, designs, they can be very cumbersome to learn for all except engineering CAD tools play a vital role in conceptualizing and practiced experts. CAD packages in general are dominated by validating designs. These tools require significant user a hierarchical approach for creating model representations [1]. investment to master, due to challenging interfaces and an This approach is often confusing to inexperienced or casual overabundance of features. These challenges often prohibit CAD users. team members from using these tools for exploring alternatives. With the recent emphasis on interdisciplinary design teams This paper presents a method allowing users to interact with a [2], those unaccustomed to CAD interfaces are forced to deal design using intuitive gestures and head tracking, all while with engineering tools to help evaluate designs. The significant keeping the model in a CAD format. Specifically, Siemens’ learning curve and stigma of difficulty associated with Teamcenter® Lifecycle Visualization Mockup (Mockup) was navigating engineering software creates a significant hurdle for used to display the design geometry while modifications were reviewing designs thoroughly. In addition, even if non- made through a set of gestures captured by a Microsoft engineering users wanted to familiarize themselves with CAD KinectTM in real time. This proof of concept program allowed a technology, they most likely do not have time, resources, or user to rotate the scene, activate Mockup’s immersive menu, access to these types of software tools. In light of this, a design move the immersive wand, and manipulate the view based on team often becomes reliant on a subset of its members to drive head position. The result is an immersive user-friendly low changes. This limits other group members’ ability to explore cost platform for interdisciplinary design review. and review these changes. Limits on the members lead to a sub-optimal functioning team as well as design output. Due to the lack of user centered design principles in many CAD interfaces, user navigation challenges do not come as a 1 Copyright © 2014 by ASME Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 12/28/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use surprise [3, 4]. A way to deal with the deficiencies in CAD head tracking. These principles allow the user to develop a interfaces is to incorporate user-centered design principles seen better mental model of the design, thus helping them in many VR applications [5, 6, 7]. In addition, VR aids understand and identify possible issues early on in the design immersion through head tracking and provides more intuitive process. interaction modes [8, 9]. This immersion gives the user a more complete mental model of the design, improving understanding BACKGROUND and evaluation ability. VR systems though are often expensive Previous research relating to the work in this paper is and require considerable preparation work to load models and scattered into three main areas; research on team use of maintain the system, not to mention the space and setup technology, the benefits of VR, and natural user interfaces requirements. Large-scale VR systems are custom solutions (NUIs). Work in each of these areas influenced the building of tailored to the installations specific physical space and not the immersive low cost user-friendly design review prototype easily moved or repurposed. The custom nature of each presented in this paper. system, the space requirements, and cost make deploying traditional large VR systems challenging. As a result, many Teams and Technology companies that invest in VR have limited facilities. These Design teams today are increasingly made up of limited resources cannot support numerous dispersed teams that interdisciplinary backgrounds. Swink et al. points out in could benefit from more user-friendly evaluation tools. today’s world concurrent design is needed to meet customer Even though VR is becoming more affordable and easy to demands and to keep a company profitable in the fast paced implement, it is still another tool inserted into a crowded well- international market [10]. As a result, companies are favoring established workflow. VR programs for design review add concurrent design, leading to interdisciplinary teams. These additional expensive software/hardware to purchase and teams need effective tools that allow them to communicate and maintain to already budget conscientious departments. understand each aspect of the design process [11, 12]; helping In addition, VR does not often use the same file formats as them review designs and assemble strategies to pinpoint CAD programs. CAD program file types contain boundary potential roadblocks. representation (b-rep) data. B-rep based files contain The necessity for tools of this nature has not escaped information on the topology and exact geometry of the model. researchers. There exist numerous examples of past research Exact dimensions and surface relations allow designers to looking for ways to help teams collaborate and communicate. modify and evaluate models in engineering software packages. For example Liveboard, a device developed to display Converting from a CAD format to a VR format produces a information on a larger
Recommended publications
  • Infosys to Demonstrate Next-Generation Natural User Interface Cable TV Concepts at the Cable Show’S “Imagine Park”
    PRESS RELEASE Infosys to Demonstrate Next-Generation Natural User Interface Cable TV Concepts at The Cable Show’s “Imagine Park” Leveraging device sensor capabilities and digital set-top boxes will enable rich, interactive television viewing experiences letting consumers “wave goodbye” to their remote controls BOSTON, MAY 22, 2012 – Infosys will showcase new and innovative ways that consumers may experience television in the future via multi-channel natural user interfaces at “Imagine Park,” an interactive, high-profile platform for introducing and demonstrating innovative new products and services at The Cable Show 2012. Rather than using a remote control, Infosys will show and discuss how digital consumers can use voice, facial-recognition and simple gesture-based movements to access their personalized content and interact with the set-top- box of the future. Natural user interfaces (NUI) – touch, voice, video and gesture interfaces – in devices ranging from smartphones and tablets to peripherals such as videogame consoles provide an opportunity for cable companies to deliver personalized interactive customer experiences. “Cable television innovation is crucial to serve the growing number of digital consumers who expect rich, interactive, personalized viewing experiences, and natural user interfaces are the next step in the evolution of TV entertainment,” said Mit Majumdar, head of U.S. cable practice at Infosys. “With our breadth and depth of expertise, Infosys provides cable operators the ability to capture the imagination of their customers by helping them quickly launch new technologies like NUI that allow consumers to access personalized TV with the wave of a hand or voice command.” From the perspective of cable multiple services operators, multi-channel user interfaces will enable service providers to increase customer loyalty, emphasize personalization and help add interactive revenue-generating channels to differentiate their television service offerings.
    [Show full text]
  • P15083: Virtual Visualization for Anatomy Teaching, Training and Surgery Simulation Applications
    P15083: Virtual Visualization for Anatomy Teaching, Training and Surgery Simulation Applications Problem Definition Preamble ● Thank you for attending our review! We are looking for: ● constructive criticisms ● outside perspective Team Member Introduction Member Role Alex Dawson-Elli Team Lead - Biomedical Engineer Nate Burrell Biomedical Engineer Jascha Wilcox Biomedical Engineer Kenny LaMarca Computer Engineer Kevin Alexandre Computer Engineer context context volume rendering stereo visualization technology Background ● Anatomy is inherently a 3D problem ● conventional teaching techniques: ○ book -> 2D ○ dissection -> may discourage some students ● Modern technology is underutilized in the classroom Problem Statement Current State:Students learning anatomy from a textbook, at a low level of excitement, and a low level of exposure to modern imaging modalities Desired State: Students learning in a stereoscopic anatomy visualization environment, with a high level of excitement, and a high level of exposure to modern imaging modalities Project Goals: create a fully virtual stereo anatomy viewer Constraints: budget, pre-designed hardware, must use existing data set Stakeholders ● Project advisor ○ Dr. Christian Linte ● Teachers ○ Instructor of students (grade 6-12) ● Students ○ Our target age group is middle and high school students (grade 6-12) Use Scenario Customer Needs Customer Rqmt. # Importance Description CR1 9 Easy for a teacher to learn CR2 9 Easy for the Student to use CR3 9 Graphical Interface CR4 9 Stereo Viewing System, in 3D
    [Show full text]
  • Effects of Control Device and Task Complexity on Performance and Task Shedding During a Robotic Arm Task
    Old Dominion University ODU Digital Commons Psychology Theses & Dissertations Psychology Spring 2019 Effects of Control Device and Task Complexity on Performance and Task Shedding During a Robotic Arm Task Shelby K. Long Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/psychology_etds Part of the Applied Behavior Analysis Commons, Human Factors Psychology Commons, and the Robotics Commons Recommended Citation Long, Shelby K.. "Effects of Control Device and Task Complexity on Performance and Task Shedding During a Robotic Arm Task" (2019). Master of Science (MS), Thesis, Psychology, Old Dominion University, DOI: 10.25777/yh1y-0016 https://digitalcommons.odu.edu/psychology_etds/231 This Thesis is brought to you for free and open access by the Psychology at ODU Digital Commons. It has been accepted for inclusion in Psychology Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. EFFECTS OF CONTROL DEVICE AND TASK COMPLEXITY ON PERFORMANCE AND TASK SHEDDING DURING A ROBOTIC ARM TASK by Shelby K. Long B.S. December 2013, Georgia Institute of Technology A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE PSYCHOLOGY OLD DOMINION UNIVERSITY May 2019 Approved by: James P. Bliss (Director) Yusuke Yamani (Member) Xiaoxiao Hu (Member) ABSTRACT EFFECTS OF CONTROL DEVICE AND TASK COMPLEXITY ON PERFORMANCE AND TASK SHEDDING DURING A ROBOTIC ARM TASK Shelby K. Long Old Dominion University, 2019 Director: Dr. James P. Bliss The use of robotic arms across domains is increasing, but the relationship between control features and performance is not fully understood.
    [Show full text]
  • Evaluating Performance Benefits of Head Tracking in Modern Video
    Evaluating Performance Benefits of Head Tracking in Modern Video Games Arun Kulshreshth Joseph J. LaViola Jr. Department of EECS Department of EECS University of Central Florida University of Central Florida 4000 Central Florida Blvd 4000 Central Florida Blvd Orlando, FL 32816, USA Orlando, FL 32816, USA [email protected] [email protected] ABSTRACT PlayStation Move, TrackIR 5) that support 3D spatial in- teraction have been implemented and made available to con- We present a study that investigates user performance ben- sumers. Head tracking is one example of an interaction tech- efits of using head tracking in modern video games. We nique, commonly used in the virtual and augmented reality explored four di↵erent carefully chosen commercial games communities [2, 7, 9], that has potential to be a useful ap- with tasks which can potentially benefit from head tracking. proach for controlling certain gaming tasks. Recent work on For each game, quantitative and qualitative measures were head tracking and video games has shown some potential taken to determine if users performed better and learned for this type of gaming interface. For example, Sko et al. faster in the experimental group (with head tracking) than [10] proposed a taxonomy of head gestures for first person in the control group (without head tracking). A game ex- shooter (FPS) games and showed that some of their tech- pertise pre-questionnaire was used to classify participants niques (peering, zooming, iron-sighting and spinning) are into casual and expert categories to analyze a possible im- useful in games. In addition, previous studies [13, 14] have pact on performance di↵erences.
    [Show full text]
  • Leap Motion Controllertm
    Leap Motion ControllerTM The world’s leading hand tracking technology The Leap Motion Controller from Ultraleap is an optical hand tracking module that captures the movement of users’ hands and fingers so they can interact naturally with digital content. Small, fast, and accurate, the Leap Motion Controller can be used for productivity applications with Windows computers, integrated into enterprise- grade hardware solutions or displays, or attached to virtual/augmented reality headsets for AR/VR/XR prototyping, research, and development. The controller is capable of tracking hands within a 3D interactive zone that extends up to 60cm (24”) or more, extending from the device in a 120×150° field of view. Leap Motion‘s software is able to discern 27 distinct hand elements, including bones and joints, and track them even when they are obscured by other parts of the hand. With a 120Hz refresh rate and low-latency software, the time between motion and photon falls beneath the human perception threshold1. An accessory component, the VR Developer Mount, allows for easy, reliable, and consistent attachment of the device to virtual reality headsets such as the Oculus Rift and HTC Vive. The Leap Motion App Gallery features 75+ legacy desktop applications and a demo suite for virtual reality. Example applications • Entertainment (location-based VR/AR experiences, arcades, amusement parks) • Healthcare (stroke rehabilitation, training, mirror, medical imaging, lazy eye treatment) • Therapy and Education (anatomic visualizations, hands-on learning) • Personnel training (flight simulators, complex computer systems) • Industrial design and engineering (automotive, assembly lines, facilities management) • Robotics (telepresence, robotic controls, AI-assisted teaching) The Leap Motion Controller features a 120×150° • Global team collaboration field of view and an interactive tracking range of more than 2 feet (60cm).
    [Show full text]
  • Téléprésence, Immersion Et Interactions Pour Le Reconstruction
    THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité : Mathématiques et Informatique Arrêté ministériel : 7 août 2006 Présentée par Benjamin PETIT Thèse dirigée par Edmond BOYER et codirigée par Bruno RAFFIN préparée au sein des laboratoires LJK et LIG dans l’école doctorale MSTII Téléprésence, immersion et tel-00584001, version 1 - 7 Apr 2011 tel-00584001, version 1 - 7 interaction pour la reconstruction 3D temps-réel Thèse soutenue publiquement le 21 Février 2011 devant le jury composé de : Mme. Indira, THOUVENIN Enseignant chercheur à l’Université de Technologie de Compiègne, Président Mr. Bruno, ARNALDI Professeur à l’INSA Rennes, Rapporteur Mme. Saida, BOUAKAZ Professeur à l’Université Claude Bernard Lyon 1, Rapporteur Mr. Edmond, BOYER Directeur de recherche à l’INRIA Grenoble, Membre Mr. Bruno, RAFFIN Chargé de recherche à l’INRIA Grenoble, Membre tel-00584001, version 1 - 7 Apr 2011 Remerciements Je voudrais commencer par remercier Edmond et Bruno pour avoir encadrer ma thèse. Ce fut un plaisir de travailler avec vous. Merci également aux membres de mon jury d’avoir accepté de rapporter cette thèse. Merci pour vos commentaires très constructifs. Pendant ma thèse j’ai eu l’occasion de travailler avec différentes personnes. Ces collaborations ont été très enrichissantes. Je voudrais remercier plus spécifiquement Jean-Denis qui m’a aidé à remettre sur pied la plateforme Grimage, Thomas avec qui j’ai passé de longues heures à développer les applications et démonstrations de ma thèse et enfin Hervé pour son excellent support sur la plateforme Grimage. J’aimerais remercier également Clément et Florian pour m’avoir transmis leur savoir sur la plateforme Grimage, Nicolas et Jean-François pour leur aide technique.
    [Show full text]
  • Design, Communication & Collaboration in Immersive Virtual
    International Journal of Design Computing: Vol 4/2002: Special Issue on Designing Virtual Worlds Design, Communication & Collaboration in Immersive Virtual Environments MARC AUREL SCHNABEL & THOMAS KVAN Department of Architecture The University of Hong Kong, Hong Kong, China [email protected], [email protected] Please use IE 5.5+ and Quicktime. http://www.arch.usyd.edu.au/kcdc/journal/vol4/schnabel/index.html 19/07/2005 International Journal of Design Computing: Vol 4/2002: Special Issue on Designing Virtual Worlds Abstract | Introduction | Experiments | Tasks | Results | Discussion | Conclusion | Acknowledgements | References Abstract Virtual Environments (VE) are increasingly offered as environments for design. Using VE to visualize ideas from the initial steps of design, the architect is challenged to deal with perception of space, solid and void, without translations to and from a two dimensional media. From this new ability, we might expect new forms of design expression. The goal of our study was to identify how designers use and communicate early design ideas by using immersive three-dimensional VEs. We set-up a series of experiments including navigation- and perception-tasks, designing in immersive VE, transcription of design, remote communication between design partners and controlled observations. We explored initial intentions of three-dimensional (3D) immersive design schemes, textual descriptions and collaborations within immersive VE. This article describes the outcome of creation, interpretation and communication of architectural design, by using a 3D maze together with text-based communication in a series of collaborative design experiments. We conducted the first successful attempt of a Joint Design Studio, which uses immersive VE as tool of design and communication between remote partners.
    [Show full text]
  • Lmc 6313 Principles of Interaction Design
    Principles of Interaction Design – LMC 6313 Syllabus Course Number: LMC 6313 Location: Skiles 346 Times: T/Th – 3:00p-3:50p F (lab) – 11:15a-2:00p Instructor: Dr. Anne Sullivan Instructor Email: [email protected] Office Hours: By Appointment (Mondays are the best bet) Office Location: TSRB 317C TA: Takeria Blunt TA Email: [email protected] Course Website: http://canvas.gatech.edu Course Description: What is interaction, what is design, where did these notions come from, and where are they going? Through the activities in this course, you will return to questions of what kind of designer you are and wish to be, what you believe in, and how that will extend to your research and practice. You will also develop your own critical take on the material in the class and sharpen your voice and arguments about your perspectives. Interaction design wasn’t invented from scratch as a singular, monolithic practice. It was born out of the intersection of a number of disciplines from within design and human-computer interaction, and also from art, media, architecture, politics, and philosophy, and beyond. There are many different definitions of what it is and where we fit into it, and no two people we meet in this class will likely have the same definition. And that’s the way it should be. Through my suggestions and yours, we will also turn to design questions in digital culture, film, tv, fiction, gaming, music, art and beyond as we together frame our understandings. As you read, The syllabus, dates, times, assignments, and details are subject to change by instructor notification through Canvas or email.
    [Show full text]
  • Natural Menu Interactions in VR with Leap Motion Masterarbeit
    Natural Menu Interactions in VR with Leap Motion Masterarbeit Zur Erlangung des Grades Master of Science (M.Sc.) im Studiengang Informatik vorgelegt von Björn Zeutzheim Erstgutachter: Prof. Dr. Stefan Müller (Institut für Computervisualistik, AG Computergraphik) Zweitgutachter: Nils Höhner, M.Sc. (Institut für Wissensmedien, IWM) Koblenz, der 6. September 2019 Erklärung Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ja Nein Mit der Einstellung dieser Arbeit in die Bibliothek bin ich einverstanden. □ □ . (Ort, Datum) (Unterschrift) Abstract With the appearance of modern virtual reality (VR) headsets on the consumer market, there has been the biggest boom in the history of VR technology. Naturally, this was accompanied by an increasing focus on the problems of current VR hardware. Especially the control in VR has always been a complex topic. One possible solution is the Leap Motion, a hand tracking device that was initially developed for desktop use, but with the last major software update it can be attached to standard VR headsets. This device allows very precise tracking of the user’s hands and fingers and their replication in the virtual world. The aim of this work is to design virtual user interfaces that can be operated with the Leap Motion to provide a natural method of interaction between the user and the VR environment. After that, subject tests are performed to evaluate their performance and compare them to traditional VR controllers. Zusammenfassung Mit dem Erscheinen moderner Virtual Reality (VR) Headsets auf dem Verbrauchermarkt, gab es den bisher größten Aufschwung in der Geschichte der VR Technologie.
    [Show full text]
  • Natural Interaction in Augmented Reality Context
    Natural Interaction in Augmented Reality Context John Aliprantis1, Markos Konstantakis1, Rozalia Nikopoulou2, Phivos Mylonas2 and George Caridakis1 1 University of the Aegean, 81100 Mytilene, Greece {jalip, mkonstadakis, gcari}@aegean.gr 2 Ionian University 49100 Corfu, Greece [email protected], [email protected] Abstract. In recent years, immersive technologies like Virtual and Augmented Reality have been accelerating at an incredible pace, building innovative experiences and developing new interaction paradigms. Current research has widely explored gesture interaction with Augmented Reality interfaces, but usually requires users to manipulate input devices that could be cumbersome and obtrusive, thus preventing them from interacting efficiently with the 3D environment. Therefore, Natural User Interfaces and freehand gesture interaction are becoming more and more popular, improving the user’s engagement and sense of presence, providing more stimulating, user-friendly and non-obtrusive interaction methods. However, researchers argue about the impact of the interaction fidelity in usability and user satisfaction, questioning the level of naturalness that should characterize the interaction metaphors. Current paper proposes different gesture recognition techniques for three basic interaction categories (translation, rotation and scaling) in a Leap Motion Controller - Augmented Reality framework. A prototype is implemented in order to evaluate efficiency and usability of the proposed architecture. Finally, experimental results are discussed. Keywords: Natural interactionAugmented realityLeap motion controller Gesture recognition. 1 Introduction Over the last few years, Augmented Reality (AR) has developed into a cutting edge technology, providing new ways to interact with computer – generated information. By removing the boundaries between physical and virtual, AR has been able to create more engaging experiences, enhancing user’s enjoyment and satisfaction.
    [Show full text]
  • The Application of Virtual Reality in Art Design
    International Conference on Education Technology, Management and Humanities Science (ETMHS 2015) The Application of Virtual Reality in Art Design: A New Approach 1, a CHEN Dalei 1 School of Art, Henan Institute of Education, Zhengzhou 450046,China a [email protected] Keywords: Virtual Reality; Art Design; 3D Modeling Abstract. As virtual reality technology matures and popular, it is gradually applied in art design. Virtual reality is constructed by high-tech means of the artificial environment. How best to achieve the user in the virtual world of realistic experience, has become a new research hotspot. In view of the present virtual reality technology and virtual aesthetics can improve the effect of the simulation are faced with the problem, in this paper, the study of virtual reality in art and design. Put forward the integration of technology and art technique can improve the virtual reality visual properties and the degree of match user requirements, improve the effect of the simulation. Introduction In recent years, along with the development of network and multimedia technology, virtual reality technology matures and popularization, the virtual reality technology is gradually applied in art design [1]. Virtual reality, art design is accompanied by virtual reality technology and the popularization of computer application technology and related form of audio-visual design new topic, it used the computer virtual reality technology and integrate images, sound, animation, video and other multimedia means, through the creation and performance of virtual objects with virtual space, information is a new way to display and form, make the information more intuitive, efficient delivery. As people gradually understand and attention to this kind of art and design, its application and development are also more and more widely and rapidly [2-3].
    [Show full text]
  • General Video Brainstorming for Workshops
    Standard Brainstorming Brainstorming, also known as the Delphi technique, is used to generate innovative ideas. Osborn (1957) introduced brainstorming to create synergy within the members of a group: ideas suggested by one participant would spark ideas in other participants. Subsequent studies (Collaros and Anderson, 1969, Diehl and Stroebe, 1987) challenged the effectiveness of group brainstorming, finding that aggregates of individuals could produce the same number of ideas as groups. They found that production blocking, free-riding and evaluation apprehension were sufficient to outweigh the benefits of synergy in brainstorming groups. Since then, many researchers have explored different strategies for addressing these limitations. For our purposes, the quantity of ideas is not the only important measure. We are also interested in the relationship among the members of the group. As de Vreede et al. (2000) point out, one should also consider elaboration of ideas, as group members react to each other's ideas. Brainstorming sessions have two phases: the first for generating ideas and the second for reflecting upon them. A small group (three to seven people) agree on a specific topic and a limited period of time. The goal is to generate as many ideas as possible, maximizing quantity over quality: Twenty different ideas are better than three indepth ideas. Phase 1 usually lasts from half-an-hour to an hour, depending upon the topic and the group. Sessions longer than an hour are not recommended. Even if ideas are still flowing, the group should stop when time is up. It is better that everyone leaves feeling energized and excited by the ideas rather than tired and bored.
    [Show full text]