A High Torque Density, Direct Drive In-Wheel Motor for Electric Vehicles

Total Page:16

File Type:pdf, Size:1020Kb

A High Torque Density, Direct Drive In-Wheel Motor for Electric Vehicles A HIGH TORQUE DENSITY, DIRECT DRIVE IN-WHEEL MOTOR FOR ELECTRIC VEHICLES Chukwuma Junior Ifedi School of Electrical and Electronic Engineering Newcastle University A thesis submitted for the degree of Doctor of Philosophy June, 2013 Abstract The use of in-wheel motors, often referred to as hub motors as a source of propulsion for pure electric or hybrid electric vehicles has recently received a lot of attention. Since the motor is housed in the limited space within the wheel rim it must have a high torque density and efficiency, whilst being able to survive the rigours of being in-wheel in terms of environmental cycling, ingress, shock, vibration and driver abuse. Part of the work of this PhD involved an investigation into different slot and pole combinations in order determine a superior machine design, within given constraints based upon an existing in-wheel motor drive built by Protean Electric. Finite element analysis and optimisation have been applied in order to investigate the machine designs and achieve the optimum combination. The main work of this PhD, presents a high torque dense machine employing a new method of construction, which improves the torque capability with a smaller diameter, compared to that of the existing Protean in-wheel drive system. The machine is designed with an open slot stator and using magnetic slot wedges to close the slots. Having an open slot stator design means the coils can be pre-pressed before being inserted onto the stator teeth, this improves the electrical loading of the machine as the fill factor in the slot is increased. The electromagnetic impact of the slot wedges on the machine design has been studied, also a method of coil pressing has been studied and the impact upon coil insulation integrity verified. To ensure adequate levels of functional safety are met it is essential that failures do not lead to loss of control of the vehicle. Studies on a fault tolerant concept which can be applied to the design of in-wheel motors are presented. The study focuses on the ability to sustain an adequate level of performance following a failure, while achieving a high torque density. A series of failures have been simulated and compared with experimental tests conducted on a Protean motor. Finally a prototype is constructed and tested to determine the true level of performance. The prototype is compared to a new motor built in-house by Protean and achieves an improved level of performance. i Acknowledgements First and foremost I would like to thank my supervisor Prof. Barrie Mecrow for his guidance throughout the course of this research, he not only assisted in getting me a scholarship from the Power Electronic Drives and Machine group and provided me the opportunity to work with Protean Electric, he was also able to impart a lot of knowledge and critical thinking. I appreciate the input from my second supervisor Dr. Glynn Atkinson, who helped me during the early stages of building my finite element models and solving some problems I encountered during my work. This work would not have been possible without support from Protean Electric, they provided me with sponsorship and the research idea, which became the outcome of this work. I would like to specially thank Simon Brockway, Gerry Boast, Chris Hilton, Dragica Kostic-Perovic, Al Fraser and Gunaratnam Sooriyakumar who provided me with the industrial supervision and help with undertaking the test on my prototype machine. I thank Chris Manning for helping me with the mechanical aspect of my work such as coil winding and pressing, stator assembly and coil testing, just to mention a few. Also I will like to thank Jack Noble, Graham Ewart, Allan Wheatley, Luke Coates and Stuart Baker for when they had to step in and assist in some activities at the mechanical workshop. I also will like to acknowledge Daniel Smith and Jamie Washington for how much I made their lives miserable, as they never turned me down every time I went to them with questions. Also to acknowledge Min Zhang, Christopher Spargo, Andrew Wechsler, Bassim Jassim, Alamoudi Yasser and Maher Algreer for the times we had discussions when trying to solve certain problems. To save the best for last, I give huge thanks to my mother, brother and sisters for their support during my studies, and most especially my father, words are not profound enough to express how grateful I am for his financial support to see me through my educational life, my endeavours in life to date have been possible due to his presence. ii Contents Abstract ............................................................................................................................................. i Acknowledgements ......................................................................................................................... ii Contents .......................................................................................................................................... iii List of figures ................................................................................................................................ viii List of tables ................................................................................................................................. xiii Acronyms and symbols ................................................................................................................ xiv Chapter 1 Introduction ................................................................................................................ - 1 - 1.1 Background ................................................................................................................. - 1 - 1.2 Electrical machine design study ................................................................................. - 2 - 1.2.1 Machine losses .................................................................................................... - 2 - 1.2.2 Winding configuration ........................................................................................ - 2 - 1.2.3 Machine field weakening .................................................................................... - 4 - 1.2.4 Cooling methods ................................................................................................. - 5 - 1.4 Methodology ............................................................................................................... - 6 - 1.5 Thesis overview .......................................................................................................... - 6 - Chapter 2 Electric Vehicles and their Associated Drive Train Design ....................................... - 8 - 2.1 Background ................................................................................................................. - 9 - 2.2 Electric vehicles, past and present ............................................................................ - 10 - 2.3 Overview and topologies for EV drive train ............................................................. - 11 - 2.3.1 Hybrid electric vehicles .................................................................................... - 13 - 2.3.2 Pure electric vehicles ........................................................................................ - 14 - 2.3.3 In-wheel electric vehicles ................................................................................. - 15 - 2.4 Designing an electric motor for EV .......................................................................... - 16 - 2.4.1 Vehicle and road load equations ....................................................................... - 17 - 2.4.1.1 Vehicle weight .............................................................................................. - 17 - 2.4.1.2 Aerodynamic drag force ............................................................................... - 17 - 2.4.1.3 Rolling resistance force ................................................................................ - 18 - 2.4.1.4 Gradient force ............................................................................................... - 18 - 2.4.2 Electric motor ................................................................................................... - 18 - 2.5 Survey of motor types suitable for EV ..................................................................... - 21 - iii 2.5.1 Permanent magnet machine .............................................................................. - 22 - 2.5.1.1 Radial flux machine ...................................................................................... - 23 - 2.5.1.2 Axial flux machines ...................................................................................... - 24 - 2.5.1.3 Transverse flux machines ................................................................................. - 24 - 2.5.1.4 Flux switching machines .............................................................................. - 26 - 2.5.2 Induction machine ............................................................................................ - 26 - 2.5.3 Switched reluctance machine ........................................................................... - 27 - 2.6 Un-sprung mass ........................................................................................................ - 29 - 2.7 Drive cycle ................................................................................................................ - 31 - 2.8 Summary ..................................................................................................................
Recommended publications
  • (SAARC) Energy Centre (SEC) Islamabad, Pakistan
    December 2019 South Asian Association of Regional Cooperation (SAARC) Energy Centre (SEC) Islamabad, Pakistan Table of Contents TABLE OF FIGURES ................................................................................................................................ iv LIST OF TABLES ...................................................................................................................................... v LIST OF ACRONYMS............................................................................................................................... vi ACKNOWLEDGEMENTS ....................................................................................................................... viii FOREWORD ........................................................................................................................................... ix EXECUTIVE SUMMARY ...........................................................................................................................x 1 Introduction ....................................................................................................................................... 1 1.1 Objectives and Scope of the study .............................................................................................. 1 1.2 Battery Electric Vehicles .............................................................................................................. 1 1.2.1 Electric Vehicles – Types .....................................................................................................
    [Show full text]
  • Boletin Vigilancia Tecnologica Coche
    Boletín VT COCHE ELÉCTRICO er 3 trimestre 2011 7 Vigilancia Tecnológica Noticias La Oficina Española de Patentes y Marcas Coche Eléctrico y el del Coche Inteligente. (OEPM) estuvo presente en el III Salón del Vehículo y Combustible Alternativos, Por otra parte, el Grupo de Trabajo de celebrado del 6 al 8 de octubre en la Feria Automoción del FEDIT presentó el trabajo de Valladolid. El certamen fue inaugurado del Observatorio Industrial del Sector de por la vice consejera de Economía de la Fabricantes de Equipos y Componentes de Junta de Castilla y León, Begoña Automoción en una jornada de difusión Hernández, y el director general de celebrada en el MITyC el pasado 21 de Industria del Ministerio de Industria, septiembre. En dicha jornada se pudo Turismo y Comercio (MITyC), Jesús Candil. apreciar el incremento en los últimos años en las solicitudes de patentes relacionadas El Salón combina jornadas técnicas con con vehículos propulsados eléctricamente, zona de exposición y prueba de vehículos. confirmando el creciente interés de las Las jornadas técnicas abordaron el coche empresas de automoción en este tipo de eléctrico desde varios frentes, tratando tecnologías. aspectos propios de la tecnología vehicular, aspectos relacionados con los gestores de Por último, destacar las campañas carga y aspectos normativos e destinadas a acercar el vehículo eléctrico al instrumentos de apoyo. En la zona de público en general. Por ejemplo, NISSAN pruebas se pusieron a disposición del realiza una exposición itinerante, la público modelos de Nissan, Renault, NISSAN LEAF TOUR, que estuvo presente Mercedes, Citroën y Piaggio entre otros. en Barcelona y actualmente está en Madrid, y RENAULT realiza un evento de En el stand de la OEPM se atendieron presentación de su gama de vehículos dudas relacionadas con la Propiedad eléctricos en Sevilla, enfocada a Industrial en general, además de poner a comerciales y representantes de la marca disposición del público diversos Boletines procedentes de más de treinta países.
    [Show full text]
  • Optimising Automotive Battery Technology Design
    7 – 9 May 2019 // Stuttgart, Germany 3 3 35+ 120+ 750+ 8,000+ days tracks sessions speakers delegates show attendees Join key Holger Opfer Roland Biberger Andreas Hintennach Maja Bakran Marcich Manager, players across System Architect Senior Manager Deputy Director General, E-Traction Technology Electronics HV-Battery Daimler AG Mobility & Transport the supply chain Volkswagen Audi European Commission as they come together to solve the issues of driving down costs to achieve eventual parity with fossil fuels and electrification Yuan Li Christian Rosenkranz PhD. Bob Galyen in Europe. Director of Powertrain, VP Start-Stop CTO, BAIC Motor Engineering & EMEA, CATL Company Johnson Controls Get the latest battery and Battery Group, Inc. H/EV industry updates on: • The emergence of a European battery value chain • Creating material feedstock through recycling • The reduction of cobalt in the PLUS manufacturing process PRE-CONFERENCE • OEM performance targets and WORKSHOPS technology roadmap (MONDAY 6 MAY) • Driving efficiency, enabling the next generation of electric autonomous vehicles and delivering MAAS • Different hybridization models for the immediate and long term • Latest powertrain and electric motor technology innovations • Hybrid, battery and fuel cell developments for buses and commercial vehicles www.thebatteryshow.eu www.evtechexpo.eu What will you learn from attending? Who attends? • Learn about next-generation battery and H/EV • OEMs development to drive down manufacturing costs • Battery / Cell Manufacturers • Grow your business
    [Show full text]
  • Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles
    U.S. Department of Energy FreedomCAR and Vehicle Technologies, EE-2G 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2011 Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles Subcontract No. 4000080341 Prepared for: Oak Ridge National Laboratory Mitch Olszewski, Program Manager Submitted to: Energy Efficiency and Renewable Energy Vehicle Technologies Program Susan A. Rogers, Technology Development Manager March 2011 ORNL/TM-2011/73 Energy and Transportation Science Division Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles Subcontract No. 4000080341 Raymond R. Fessler BIZTEK Consulting, Inc. Publication Date: March 2011 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: [email protected] Web site: http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source: Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone: 865-576-8401 Fax: 865-576-5728 E-mail: [email protected] Web site: http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government.
    [Show full text]