An Introduction to Wetland Seed Banks
Total Page:16
File Type:pdf, Size:1020Kb
W&M ScholarWorks Reports Spring 2000 An Introduction to Wetland Seed Banks Douglas A. DeBerry Virginia Institute of Marine Science James E. Perry Virginia Institute of Marine Science Virginia Institute of Marine Science, Wetlands Program Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Botany Commons, and the Natural Resources and Conservation Commons Recommended Citation DeBerry, D. A., Perry, J. E., & Virginia Institute of Marine Science, Wetlands Program. (2000) An Introduction to Wetland Seed Banks. Wetlands Program Technical Report no. 00-2. Virginia Institute of Marine Science, College of William and Mary. http://dx.doi.org/doi:10.21220/m2-qhfc-d458 This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. An Introduction to Wetland Seed Banks By Douglas A. DeBerry and James E. Perry Introduction One of the most important structural compo- ture on wetland seed banks in natural and cre- nents of wetland ecosystems is the seed bank. ated or restored systems, and defines the role Seed banks are present in nearly all ecosystems, seed banks play in created and restored wetland and can be defined as “[an] aggregation of management. ungerminated seed potentially capable of replac- ing adult plants that may be annuals, dying a natural or unnatural death, or perennials, sus- Seeds and Seed Ecology ceptible to death by disease, disturbance, or con- Regeneration of wetland plant communities oc- sumption by animals including man” (Baker curs by sexual reproduction through either the 1989). They are a critical component in the es- development of seeds, or by asexual reproduc- tablishment and development of vegetation tion through clonal propagation by rhizomes or communities in wetlands (van der Valk 1981). other vegetative organs. A plant may employ the Practical principles concerning the “behavior” of former (e.g. annuals), the latter (e.g. submerged seeds in the soil in different wetland types may aquatics), or both (e.g. herbaceous perennials) be derived from past as a principal reproduc- research. The pur- tive strategy (Fenner pose of this and tech- 1985). Much of the lit- nical report number erature on seed bank re- 00-4 is to present to search deals with the reader a general sexually produced overview of seed bank propagules in an- ecology and the role giosperms (flowering seed banks play in plants) (Leck 1989). wetland succession processes. In this re- Seeds port we introduce the concepts of seed Seeds of angiosperms physiology and ecol- develop from a fertilized ogy as applied to seed ovule and consist of the Figure 1. Diagram of a dicot and monocot seeds. The storage in the soil. following: 1) the embryo embryos in these seeds consist of epicotyl, hypocotyl, We conclude with a (includes the epicotyl, radicle, and cotyledon. Left: A dicot seed (bean) in which short introduction to hypocotyl, radicle, and one cotyledon has been removed to reveal remaining parts our current under- cotyledon) which even- of embryo. Right: A monocot seed (corn) has only one standing of wetland tually grows into the cotyledon, but a large endosperm. Modified from Keeton seed banks. Report young plant; 2) the en- and Gould (1993). Endosperm of mature dicot is indistin- number 00-4 dis- dosperm (internal food guishable from cotyledon. cusses recent litera- source for developing 1 seed); and 3) the seed coat (Raven et al. 1992, ploit a particular dispersal vector, such as high figure 1). Although all mature seeds contain an surface to volume ratio in small seeds (e.g. many embryo, even if only poorly developed, and most grasses and sedges), or the presence of append- are surrounded by a seed coat, the extent to ages such as plumes, hairs, or wings to increase which the endosperm and perisperm persist air resistance for wind dispersal (e.g. sea side varies among species. In some cases, the seed goldenrod). Adaptations that facilitate dispersal coat is in rudimentary form and the seed is con- by animals include burrs, hooks, or adhesive tained within the pericarp (fruit coat) derived substances, which increase the opportunities for from the ovary wall. In this condition, the pri- a seed to cling to an animal (ectozoochory, e.g. mary dispersal unit is not a seed, but a fruit marsh beggar ticks). Certain seeds develop spe- (Fenner 1985, Bewley and Black 1994). In ma- cial seed coats that increase buoyancy for water ture dicots (e.g. beans) the endosperm is stored transport (e.g. arrow arum). Special oil bodies in the cotyledon and is indistinguishable. (elaiosomes) are also present on some seeds as an attractant for insects, such as ants, which are exploited in dispersal (myrmecochory). Many Dispersal mechanism plant species have developed large, nutritious fruits (e.g. persimmons) which attract frugivores Growth of the seed embryo is usually delayed (fruit-eating animals). The seeds within the fruit while the seed matures and is dispersed (Baskin are not susceptible to the digestive acids of an and Baskin 1989). Several dispersal mecha- animal’s stomach and are, therefore, viable when nisms are available to seed plants, including eliminated from the animal that ingests the fruit wind (anemonochory), water (hydrochory), and (endozoochory). In some species, the foliage of animals (zoochory - birds in particular) (Fenner the plant may serve as an attractant, alleviating 1985). Wind dispersed seeds of various species the necessity for fruit development (e.g. flower- have morphological adaptations designed to ex- ing and silky dogwoods) (Willson 1992, Raven et al. 1992, Fenner 1985). Wetlands Program Germination requirements School of Marine Science Virginia Institute of Marine Science Seed germination depends on both internal and College of William and Mary external factors (Bewley and Black 1994). The Gloucester Point, Virginia 23062 three most important external (environmental) (804) 684-7380 factors include the proper amounts of water and oxygen and appropriate temperature range. Too Dr. Carl Hershner, Program Director little or too much water, too little oxygen, and Dr. Kirk Havens, Editor temperatures that stay too low may lead to de- Published by: VIMS Publication Center lay or lack of germination. Some seeds from the temperate climate zone may require freezing tem- This technical report was funded, in part, by the peratures for several consecutive days to sclarify Virginia Coastal Resources Management Program (see discussion on stratification below). In ad- of the Dept. of Environmental Quality dition, some seeds have a light requirement for through Grant #NA97O20181-01 of the germination (Leck 1989). National Oceanic and Atmospheric Ad- ministration, Office of Ocean and Coastal Most mature seeds have low moisture content, Resources Management, under the containing only about 5-20% water by weight Coastal Zone Management Act of 1972, as (Fenner 1985), and must imbibe (absorb) wa- amended. ter in order to activate enzymes and initiate me- tabolism. During the early stages of germination, The views expressed herein are those of the authors respiration may be entirely anaerobic (i.e. car- and do not necessarily reflect the views of NOAA or ried out in the lack of oxygen), but as soon as any of its subagencies or DEQ. the seed coat is ruptured, the seed switches to aerobic respiration (Bewley and Black 1994). Commonwealth’s Declared Policy: “to preserve the wet- Too much water may also be a problem since if lands and to prevent their despoliation and destruction...” the seed becomes waterlogged, the amount of oxygen available will be limited and can be inad- Printed on recycled paper. equate for seedling establishment (Karssen and 2 Hilhorst 1992). In wetlands, seeds must there- often referred to as early colonizers or volunteer fore maintain adaptations to overcome the low species (Pickett and McDonnell 1989). There- oxygen levels associated with saturated soil con- fore, certain annual species may be perennially ditions. represented in the seed bank, and will become established when disturbance or some other fac- tor removes the competitive influence of existing Dormancy as an adaptation for vegetation (Fenner 1985). seedling survival Even in favorable conditions some viable seeds Seed Bank Dynamics will fail to germinate and are said to be dormant. Common causes of dormancy include physiologi- The mobility of seeds in the soil is poorly under- cal immaturity of the embryo and impermeabil- stood, but appears to follow some disturbance ity of the seed coat to water and oxygen (Baskin mechanism which may be facilitated by the ac- and Baskin 1989). Seeds with a physiological tivity of burrowing animals or shrink-swell fis- dormancy will sometimes require a complex se- suring of the soil during alternating wet and dry ries of enzymatic and biochemical changes, re- periods. Some seed migration may occur by ferred to as “after-ripening,” in order to ground water percolation, with smaller seeds germinate. In temperate climates, after-ripen- moving more rapidly than larger ones (Leck ing is triggered by the low temperatures of win- 1989). By far, human disturbance through till- ter (stratification). The after-ripening ing and other practices provides the most im- requirement, therefore, is seen as an adaptation mediate mechanism for vertical transport of that delays germination through the stressful seeds within the soil (Simpson et al 1989). For winter climate until warmer temperatures when many soil seed banks, a physical disturbance conditions are more conducive to seedling sur- mechanism must be present in order to bring vival (Raven et al. 1992). Seed dormancy may buried seeds to the surface where germination also be induced by burial in the soil, underde- may occur (Fenner 1985). velopment of the embryo, and chemical inhibi- tion, among other factors (Fenner 1985).