PJP5'2004.Vp:Corelventura

Total Page:16

File Type:pdf, Size:1020Kb

PJP5'2004.Vp:Corelventura Copyright © 2004 by Institute of Pharmacology Polish Journal of Pharmacology Polish Academy of Sciences Pol. J. Pharmacol., 2004, 56, 499508 ISSN 1230-6002 “…I’ll tell you all my ideas about Looking Glass House. First, there’s the room you can see through the glass – that’s just the same as our drawing room, only the thing go other way… Well then, the books are something like our books, only the words go the wrong way; …I wonder if they’d give you milk in there? Perhaps Looking-Glass milk isn’t good to drink…” “Through the Looking Glass” Lewis Caroll (1832–1898) REVIEW INFLUENCE OF THE ABSOLUTE CONFIGURATION ON PHARMACOLOGICAL ACTIVITY OF ANTIHYPERTENSIVE AND ANTIARRHYTHMIC DRUGS Katarzyna Kulig, Piotr Nowicki, Barbara Malawska Department of Pharmaceutical Chemistry, Medical College, Jagiellonian University, Medyczna 9, PL 30-688 Kraków, Poland Influence of the absolute configuration on pharmacological activity of antihypertensive and antiarrhythmic drugs. K. KULIG, P. NOWICKI, B. MALAWSKA. Pol. J. Pharmacol., 2004, 56, 499–508. Chirality is a fundamental property of biological systems and reflects the underlying asymmetry of matter. Interactions of drugs with receptors, en- zymes or binding sites have long been known to be stereoselective, and it is increasingly recognized that both pharmacodynamic and pharmacokinetic events contribute to the overall clinically observed stereoselectivity. The pharmacological activity may reside only in one enantiomer, while the second one may be inactive or have desirable or undesirable activity. Two isomers may be nearly identical both in qualitative and quantitative as- pects of pharmacological activity. The activity of particular enantiomers may differ only at the quantitative level. It is also possible that a particular enan- tiomer displays qualitatively different mode of action than the second one. This review describes the influence of the absolute configuration on pharmacological activity of the selected currently used or being under inves- tigation drugs acting on cardiovascular system, especially as the antihyper- tensive and antiarrhythmic agents. Key words: chirality, absolute configuration, antihypertensive drugs, an- tiarrhythmic agents correspondence; e-mail: [email protected] K. Kulig, P. Nowicki, B. Malawska Introduction in potency between enantiomers, whereas weakly active compounds had little difference between Isomers are unique molecular entries composed enantiomers. The enantiomer with the highest ac- of the same molecular constituents with common tivity is termed after Ariëns the eutomer, while the structural characteristics. Among several subtypes one with the lowest is distomer. The eutomer/dis- of isomers, optical isomers are said to possess a “chi- tomer ratio is called the eudismic ratio [10, 21]. ral” or asymmetrical center. Term “chiral” derives Only one enantiomer may be responsible for the from the Greek term chiros meaning hand, and de- pharmacological activity of chiral drug. In this scribes a molecule, which is not superimposable on case, the other enantiomer is regarded as an inac- its mirror image (Fig. 1). The chirality fascinated tive or undesirably active impurity. Two optical scientists since the middle of 19th century, when isomers may have nearly identical both qualitative Louis Pasteur presented optical isomers of tartaric and quantitative pharmacological activity or their acid. By picking the differing crystal types, he re- activity can differ only quantitavely. Additionally, cognized that any of optical isomers polarized light an enantiomer could display adverse pharmacol- differently, and by extending this idea, the concept ogical activity [21, 38]. Differences in the activity of an asymmetrical atom was proposed by van’t of stereoisomers may be also shown in terms of Hoff and Le Bel in 1874 [5, 25]. their bioavailability, distribution, metabolic and Life and chirality are strictly connected. At a mo- elimination behavior, and can be seen everywhere, lecular level, chirality represents an intrinsic pro- where stereochemical parameters have fundamen- perty of the ‘building blocks of life’, such as amino tal significance to their action and disposition in acids, sugars, peptides, proteins and polysaccha- biological systems [17, 28, 48, 50]. rides. As a result, metabolic and regulatory pro- In this review, we present only a brief overview cesses occurring in biological systems are sensitive of different pharmacological response to selected to stereochemistry and different responses may be enantiomeric cardiovascular drugs and compounds observed when comparing the activities of enanti- being under investigation as cardiovascular agents. omers [28]. Taking the above into consideration, Its aim is illustration of potential benefits and/or enantiomeric drugs have became increasingly im- danger of using a single enantiomer in therapy of portant over the last 20–30 years. The advanced hypertension and arrhythmia. technology let synthesize enantiomerically pure Cardiovascular diseases are a reason of about compounds. In parallel, it is of interest to replace 50% of premature death in Western industrialized a drug already approved as racemate by its more countries, and, therefore, an extensive search for active enantiomer, so call ‘chiral switches’. In new and better drugs became a challenge for differ- 2001, of the $ 410 billion in worldwide sales of for- ent pharmaceutical laboratories both industrial and mulated pharmaceutical products $ 147 billion be- academic [47]. longs to single-enantiomer drugs [4, 38, 49]. Theoretical description of interaction between Adrenoceptor antagonists an enantiomer and a biological system was formu- lated by Carl Pfeiffer. He observed that highly po- Adrenoceptor (AR) antagonists are mainly used tent chiral compounds showed a larger difference for treating angina and hypertension. Agents which block the a-ARs act on the a-ARs of blood vessels, causing relaxation of smooth muscles, dilatation of mirror the blood vessels, and drop in blood pressure. A A Agents which block the b -ARs act on the b-ARs in the heart slowing down the heart rate and reducing the force of contractions. b-Blockers also have a range of other effects in other parts of body which D B B D contribute to decrease of blood pressure [14, 39]. C C a-Adrenoceptor antagonists Prazosin, the prototype of quinazoline-bearing compounds, was the first a-AR antagonist used as Fig. 1. Mirror image of a hypothetical chiral molecule an effective agent in the treatment of hypertension. 500 Pol. J. Pharmacol., 2004, 56, 499–508 THE ABSOLUTE CONFIGURATION OF DRUGS Its pharmacological activity depends on peripheral racemic mixture and enantiomers. However, in case vasodilatation mediated by a post-junctional a-AR of a -AR, the binding affinity of (S)-doxazosin was blockade. Additionally, prazosin improves the plasma slightly lower than that of (R) enantiomer. Addi- lipid profile [22, 51, 52]. Being an achiral com- tionally, (S)-doxazosin exhibited a higher a/a -AR pound, prazosin became a very useful and interest- selectivity ratio (480–612) as compared to the (R) ing lead compound in developing new antihyper- isomer (107–140). The racemic mixture showed in- tensive agents (Fig. 2). The replacement of the termediate selectivity between its component enan- piperazine ring with decahydroquinoxaline moiety tiomers [13]. leads to optically active, potent and selective (a/ Also compounds bearing benzodioxane ring a ratio 1800) prazosin analog, cyclazosin (Fig. 2). substituted at the 2-position display affinity for It was shown that (-)-cyclazosin, although more po- a-AR. The model compound of this series WB tent than (+)-cyclazosin at all subtypes of a-AR, 4101 (Fig. 3) is highly potent towards a-AR, and was nearly devoid, like parent compound, of retains significant affinity for other receptor sys- a-AR subtype selectivity, with the exception of tems such as a -AR and 5-HT) receptors. Its enan- a 12-fold higher affinity for native a* vs. a)-AR. tiomers have different affinities for a-AR. The In addition, (+)-cyclazosin displayed high affinity (S)-WB 4101 has been reported to be much more (pKE = 9.16) for cloned a*-AR and a significantly active than the corresponding (R) enantiomer, and lower potency at both a*- and a,-ARs (pKE = their affinities for a)-AR are 0.16 and 39.8 nM, 7.48 and 7.57, respectively). Additionaly, (+)-cycla- respectively [2, 32]. zosin displays selectivities of 1100-, 19000- and Among several analogues of WB 4101, me- 12000-fold in binding to a*-AR vs. a -AR, phendioxan, bearing p-tolyl substituent at 3-position 5-HT) and D -receptors, respectively [32, 33]. is the most potent and selective for a-AR sub- The role of the furan moiety of prazosin was in- types. (-)-Mephendioxan was significantly more vestigated through its replacement by various rings. active at a-AR than the other optic isomer. This The compound bearing 1,4-benzodioxane ring, enantiomer was also 12000-, 2500-, 250-fold more doxazosin (Fig. 2), displayed affinity for a -AR, selective in binding to a-AR relative to a -AR, and is used for treatment of hypertension and be- 5-HT) and D -receptors, respectively [32]. nign prostate hyperplasia (BHP). In the radioligand b binding studies using an isolated human tissue, -Adrenoceptor antagonists doxazosin and its enantiomers showed higher affin- The b-blockers comprise a group of drugs that ity for a-AR than a -AR, but no significant differ- is mostly used to treat cardiovascular disorders, ences in affinity for a-AR were observed between such as hypertension, cardiac arrhythmia or ische- O O N CH O N N 3 N Prazosin CH3O NH2 O O O O N N CH O N N 3 CH O N N O 3 N CH O N 3 CH O (S)-Doxazosin 3 (+)-Cyclazosin NH 2 NH 2 Fig. 2. Prazosin and its chiral analogs ISSN 1230-6002 501 K. Kulig, P. Nowicki, B. Malawska X R H CO 3 Metoprolol is a selective antagonist of b1-AR, and is used as a racemate. Its b-blocking capacity NH has been shown to reside predominantly in the O O (S)-enantiomer, whereas (R)-enantiomer does not WB 4101 X = O,R=H OCH contribute to this effect.
Recommended publications
  • Interactions Medicamenteuses Index Des Classes Pharmaco
    INTERACTIONS MEDICAMENTEUSES INDEX DES CLASSES PHARMACO-THERAPEUTIQUES Mise à jour avril 2006 acides biliaires (acide chenodesoxycholique, acide ursodesoxycholique) acidifiants urinaires adrénaline (voie bucco-dentaire ou sous-cutanée) (adrenaline alcalinisants urinaires (acetazolamide, sodium (bicarbonate de), trometamol) alcaloïdes de l'ergot de seigle dopaminergiques (bromocriptine, cabergoline, lisuride, pergolide) alcaloïdes de l'ergot de seigle vasoconstricteurs (dihydroergotamine, ergotamine, methylergometrine) alginates (acide alginique, sodium et de trolamine (alginate de)) alphabloquants à visée urologique (alfuzosine, doxazosine, prazosine, tamsulosine, terazosine) amidons et gélatines (gelatine, hydroxyethylamidon, polygeline) aminosides (amikacine, dibekacine, gentamicine, isepamicine, kanamycine, netilmicine, streptomycine, tobramycine) amprénavir (et, par extrapolation, fosamprénavir) (amprenavir, fosamprenavir) analgésiques morphiniques agonistes (alfentanil, codeine, dextromoramide, dextropropoxyphene, dihydrocodeine, fentanyl, hydromorphone, morphine, oxycodone, pethidine, phenoperidine, remifentanil, sufentanil, tramadol) analgésiques morphiniques de palier II (codeine, dextropropoxyphene, dihydrocodeine, tramadol) analgésiques morphiniques de palier III (alfentanil, dextromoramide, fentanyl, hydromorphone, morphine, oxycodone, pethidine, phenoperidine, remifentanil, sufentanil) analogues de la somatostatine (lanreotide, octreotide) androgènes (danazol, norethandrolone, testosterone) anesthésiques volatils halogénés
    [Show full text]
  • List of Union Reference Dates A
    Active substance name (INN) EU DLP BfArM / BAH DLP yearly PSUR 6-month-PSUR yearly PSUR bis DLP (List of Union PSUR Submission Reference Dates and Frequency (List of Union Frequency of Reference Dates and submission of Periodic Frequency of submission of Safety Update Reports, Periodic Safety Update 30 Nov. 2012) Reports, 30 Nov.
    [Show full text]
  • Health Reports for Mutual Recognition of Medical Prescriptions: State of Play
    The information and views set out in this report are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein. Executive Agency for Health and Consumers Health Reports for Mutual Recognition of Medical Prescriptions: State of Play 24 January 2012 Final Report Health Reports for Mutual Recognition of Medical Prescriptions: State of Play Acknowledgements Matrix Insight Ltd would like to thank everyone who has contributed to this research. We are especially grateful to the following institutions for their support throughout the study: the Pharmaceutical Group of the European Union (PGEU) including their national member associations in Denmark, France, Germany, Greece, the Netherlands, Poland and the United Kingdom; the European Medical Association (EMANET); the Observatoire Social Européen (OSE); and The Netherlands Institute for Health Service Research (NIVEL). For questions about the report, please contact Dr Gabriele Birnberg ([email protected] ). Matrix Insight | 24 January 2012 2 Health Reports for Mutual Recognition of Medical Prescriptions: State of Play Executive Summary This study has been carried out in the context of Directive 2011/24/EU of the European Parliament and of the Council of 9 March 2011 on the application of patients’ rights in cross- border healthcare (CBHC). The CBHC Directive stipulates that the European Commission shall adopt measures to facilitate the recognition of prescriptions issued in another Member State (Article 11). At the time of submission of this report, the European Commission was preparing an impact assessment with regards to these measures, designed to help implement Article 11.
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
    Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • Ep 0661045 B1
    Europäisches Patentamt *EP000661045B1* (19) European Patent Office Office européen des brevets (11) EP 0 661 045 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: A61K 9/22, A61K 47/34, of the grant of the patent: A61K 47/36, A61K 9/20 03.07.2002 Bulletin 2002/27 (86) International application number: (21) Application number: 93919648.1 PCT/JP93/01297 (22) Date of filing: 10.09.1993 (87) International publication number: WO 94/06414 (31.03.1994 Gazette 1994/08) (54) SUSTAINED-RELEASE HYDROGEL PREPARATION HYDROGELZUBEREITUNG MIT VERZÖGERTER FREISETZUNG PREPARATION D’HYDROGEL A LIBERATION PROLONGEE (84) Designated Contracting States: • SAWADA, Toyohiro AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT 12-14, Koishigawa-cho 3-chome SE Shizuoka 426 (JP) • OKADA, Akira 12-6, Izumi-cho (30) Priority: 18.09.1992 JP 27497992 Shizuoka 426 (JP) 08.06.1993 JP 16526393 • FUKUI, Muneo 13-14, Minamisurugadai 5-chome Shizuoka 426 (JP) (43) Date of publication of application: 05.07.1995 Bulletin 1995/27 (74) Representative: Geering, Keith Edwin REDDIE & GROSE (73) Proprietor: YAMANOUCHI PHARMACEUTICAL 16 Theobalds Road CO. LTD. London WC1X 8PL (GB) Tokyo 103 (JP) (56) References cited: (72) Inventors: EP-A- 0 067 671 JP-A- 3 002 119 • SAKO, Kazuhiro 7-7, Higashikogawa 4-chome JP-A- 3 034 927 JP-A- 4 217 924 Shizuoka 425 (JP) JP-A- 4 501 411 US-A- 4 968 508 • NAKASHIMA, Hiroshi 28-2, Mise Shizuoka 422 (JP) Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • A A–803467, 98 Absorption, Distribution, Metabolism, Elimination
    Index A Anxiety disorders, 55 A–803467, 98 APD. See Action potential duration Absorption, distribution, metabolism, Arrhythmias, 45, 46 elimination and toxicity Aryl sulfonamido indanes, 126–128, 130 (ADMET), 193 ATP-sensitive potassium channels (KATP Absorption, distribution, metabolism, channels), 61 excretion, and toxicity Atrial effective refractory period (AERP), 122, (ADMET), 68 124–126, 128, 129, 132, 138 Acetylcholine binding protein (AChBP), Autoimmune diseases, 254 61, 62, 64 AZD7009, 101 Acetylcholine receptor (AChR), 57, 64 Azimilide, 139 Action potential duration (APD), 120, 122, 123, 128, 132 B Action potentials, 243, 256, 259 Basis set, 69–70 ADME/T, 299, 304 b-Barrel membrane proteins AERP. See Atrial effective refractory period genome-wide annotation, 13 Agitoxin (AgTX), 60 machine-learning techniques Agonists, 59–61, 64 residue pair preference, 11 Alinidine, 40–42 TMBs, 10 ALS. See Amyotrophic lateral sclerosis pipeline, genomic sequences, 14 Alzheimer, 55, 61 statistical method, 9–10 AMBER, 61, 65 Bending hinge, 64 2-Amino–2-imidazolidinone, 123, 125 Benzanilide, 256–257 Ammi visnaga, 254 Benzimidazolone, 256–257 b-Amyloid peptide (Ab), 62–63, 65 Benzocaine, 140 Amyotrophic lateral sclerosis (ALS), 90, 94, Benzodiazepines, 245 101 Benzopyrane, 127–128 Anionic channel blockers Benzopyrans, 61, 246–251, 261 mechanism of action of, 329–330 Benzothiadiazine 1,1-dioxide, 252–254 Antagonists, 59, 60 Benzothiadiazines, 253 Antiarrhythmic, 65–66, 68, 99, 101 Benzothiazepine, 70 Antiarrhythmic agents Benzothiazine derivatives, 251–252 class I, 245 Benzotriazole, 256–257 class II, 245 Bestrophins, 321, 322, 330, 331 class III, 245 Big potassium channels (BK channels), Antidepressant, 65–67 256, 257 Antiepileptic, 46 Bupivacaine, 56, 58, 59, 64, 69, 140 S.P.
    [Show full text]
  • Reversal Effects of Ca2+ Antagonists on Multidrug Resistance Via Down-Regulation of MDR1 Mrna
    Kobe J. Med. Sci., Vol. 53, No. 6, pp. 355-363, 2007 Reversal Effects of Ca2+ Antagonists on Multidrug Resistance via Down-regulation of MDR1 mRNA CHIHO KOMOTO1, TSUTOMU NAKAMURA1, 2, MOTOHIRO YAMAMORI1, NOBUKO OHMOTO1, HIRONAO KOBAYASHI3, AKIKO KUWAHARA1, KOHSHI NISHIGUCHI1, KOHJI TAKARA4, YUSUKE TANIGAWARA5, NOBORU OKAMURA2, KATSUHIKO OKUMURA1, 2 and TOSHIYUKI SAKAEDA1, 6 1 Department of Hospital Pharmacy, School of Medicine, Kobe University, Kobe 650-0017, Japan, 2 Department of Clinical Evaluation of Pharmacotherapy, Graduate School of Medicine, Kobe University, Kobe 650-0047, Japan, 3 Shionogi Research Laboratories, Shionogi & Co., Ltd., Osaka 553-0002, Japan, 4 Department of Hospital Pharmacy, Faculty of Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan, 5 Department of Hospital Pharmacy, School of Medicine, Keio University, Tokyo 160-8582, Japan, 6 Center for Integrative Education of Pharmacy Frontier (Frontier Education Center), Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan Received 21 June 2007 /Accepted 10 September 2007 Key words: MDR1/P-glycoprotein, Ca2+ antagonist, multidrug resistance, down-regulation, mRNA expression In previous reports, the effects of 12 Ca2+ antagonists on a multidrug resistant transporter, P-glycoprotein/MDR1, were evaluated in terms of those on MDR1-mediated transport of [3H]digoxin and the sensitivity of vinblastine sulfate or paclitaxel, and they were able to be classified into 4 subgroups based on their actions, as those with transport inhibition and sensitivity recovery, those with or without transport inhibition but marginal sensitivity recovery, and those without both. In this study, our previous findings were confirmed by the resistance against doxorubicin hydrochloride and daunorubicin hydrochloride, and by the recovery of [3H] vinblastine sulfate accumulation.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • Ep 0681833 B1
    Europäisches Patentamt *EP000681833B1* (19) European Patent Office Office européen des brevets (11) EP 0 681 833 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: A61K 9/14, A61K 9/18 of the grant of the patent: 13.06.2001 Bulletin 2001/24 (21) Application number: 95106396.5 (22) Date of filing: 28.04.1995 (54) Nasally administrable compositions Nasal verabreichbare Mittel Compositions administrables par voie intranasale (84) Designated Contracting States: (74) Representative: Kraus, Walter, Dr. et al AT BE CH DE DK ES FR GB IT LI LU NL PT SE Patentanwälte Kraus, Weisert & Partner Thomas-Wimmer-Ring 15 (30) Priority: 11.05.1994 JP 12077894 80539 München (DE) 02.03.1995 JP 6664095 (56) References cited: (43) Date of publication of application: EP-A- 0 588 255 EP-A- 0 648 498 15.11.1995 Bulletin 1995/46 • DATABASE WPI Week 9344, Derwent (73) Proprietor: DOTT RESEARCH LABORATORY Publications Ltd., London, GB; AN 93-348353 Yokohama-shi, Kanagawa 224 (JP) ’Pharmaceutical compsn. for admin. via blood vessels - contains microcrystalline calcium (72) Inventor: Yanagawa, Akira, Med. Dr. phosphate powder as carrier for e.g. insulin’ & Yokohama-shi, Kanagawa, 224 (JP) JP-A-05 255 095 (ADVANCE K.K.) 5 October 1993 Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid.
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]
  • Neuroprotective Effects of Cromakalim on Cerebral Ischemia-Reperfusion (Ir) Injury and Aluminium Induced Toxicity in Rat Brain
    Innovare International Journal of Pharmacy and Pharmaceutical Sciences Academic Sciences ISSN- 0975-1491 Vol 6, Issue 6, 2014 Original Article NEUROPROTECTIVE EFFECTS OF CROMAKALIM ON CEREBRAL ISCHEMIA-REPERFUSION (IR) INJURY AND ALUMINIUM INDUCED TOXICITY IN RAT BRAIN *1PITHADIA ANAND BHARAT KUMAR, 2SHITAL PANCHAL *1Department of Pharmacology, Parul Institute of Pharmacy, Vadodara,2 Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India. Email: [email protected] Received: 29 Apr 2014 Revised and Accepted: 28 May 2014 ABSTRACT Objective: Preclinical studies have demonstrated that potassium channel openers show a neuroprotective effect on cerebral ischemia-reperfusion (IR) injury in rats. However, their mechanism of action and effects in brain stroke related disorders such as Alzheimer’s disease (AD) remain poorly understood. Hence present study was done to investigate the prophylactic use of the adenosine triphosphate-sensitive (ATP) potassium channel opener cromakalim on neurological function in rats with cerebral IR injury and its related disorders AD. Methods: Male Wistar rats were randomly assigned to 6 groups (n = 36): Normal control, aluminium chloride(AlCl3) control, AlCl3 Sham operated, ischemia reperfusion (IR) control, AlCl3-IR control and AlCl3-IR with cromakalim treatment. Cromakalim10 mg/kg intra peritonially (i.p.) was administered daily for 42 days in middle cerebral artery occluded rats treated with AlCl3. At 24 hours post-surgery, neurological score, brain hemisphere weight difference, brain acetylcholinestarase level, lipid peroxidation, Na+/K+ ATPase pump activity and super oxide dismutase level were measured. Results: Following cerebral ischemia-reperfusion injury along with aluminium chloride, neurological score,brain hemisphere weight difference, brain acetylcholinestarase level, malondialdehyde levels were significantly high while Na+/K+ ATPase pump activity and super oxide dismutase(SOD) levels were significantly lower in diseased animals (P < 0.05).
    [Show full text]
  • Drugs for Primary Prevention of Atherosclerotic Cardiovascular Disease: an Overview of Systematic Reviews
    Supplementary Online Content Karmali KN, Lloyd-Jones DM, Berendsen MA, et al. Drugs for primary prevention of atherosclerotic cardiovascular disease: an overview of systematic reviews. JAMA Cardiol. Published online April 27, 2016. doi:10.1001/jamacardio.2016.0218. eAppendix 1. Search Documentation Details eAppendix 2. Background, Methods, and Results of Systematic Review of Combination Drug Therapy to Evaluate for Potential Interaction of Effects eAppendix 3. PRISMA Flow Charts for Each Drug Class and Detailed Systematic Review Characteristics and Summary of Included Systematic Reviews and Meta-analyses eAppendix 4. List of Excluded Studies and Reasons for Exclusion This supplementary material has been provided by the authors to give readers additional information about their work. © 2016 American Medical Association. All rights reserved. 1 Downloaded From: https://jamanetwork.com/ on 09/28/2021 eAppendix 1. Search Documentation Details. Database Organizing body Purpose Pros Cons Cochrane Cochrane Library in Database of all available -Curated by the Cochrane -Content is limited to Database of the United Kingdom systematic reviews and Collaboration reviews completed Systematic (UK) protocols published by by the Cochrane Reviews the Cochrane -Only systematic reviews Collaboration Collaboration and systematic review protocols Database of National Health Collection of structured -Curated by Centre for -Only provides Abstracts of Services (NHS) abstracts and Reviews and Dissemination structured abstracts Reviews of Centre for Reviews bibliographic
    [Show full text]