Two Regimes of the Arctic's Circulation from Ocean Models with Ice and Contaminants

Total Page:16

File Type:pdf, Size:1020Kb

Two Regimes of the Arctic's Circulation from Ocean Models with Ice and Contaminants Marine Pollution Bulletin Vol. 43, Nos. 1±6, pp. 61±70, 2001 Ó 2001 Elsevier Science Ltd. All rights reserved Printed in Great Britain PII: S0025-326X400)00234-4 0025-326X/01 $ - see front matter Two Regimes of the Arctic's Circulation from Ocean Models with Ice and Contaminants A. Y. PROSHUTINSKY* and MARK JOHNSON 1 Institute of Marine Science, University of Alaska, Fairbanks, AK 99775-7220, USA A two-dimensional barotropic, coupled, ocean±ice model Ocean. Shokal'skii /1940), Gordienko and Karelin with a space resolution of 55.5 km and driven by atmo- /1945), and Buinitskii /1951, 1958) assumed that the spheric forces, river run-o, and sea-level slope between the surface circulation in the Arctic Ocean was mainly Paci®c and the Arctic Oceans, has been used to simulate driven by the in¯ow of Atlantic water through Fram the vertically averaged currents and ice drift in the Arctic Strait, producingan excess of water in the basin and Ocean.Results from 43 years of numerical simulations of causingan out¯ow of surface water and ice alongthe water and ice motions demonstrate that two wind-driven shorter routes to the Greenland Sea. Data from vessel circulation regimes are possible in the Arctic, a cyclonic drifts in the Eurasian subbasin indicated a movement and an anti-cyclonic circulation.These two regimes appear of surface water from the Eurasin subbasin to Fram to alternate at 5±7 year intervals with the 10±15 year pe- Strait. Nansen /1902), who discovered waters of At- riod.It is important to pollution studies to understand lantic origin in the Arctic Ocean, mentioned that water which circulation regime prevails at any time.It is antici- exchange between the Arctic Ocean and the Greenland pated that 1995 is a year with a cyclonic regime, and during and Norwegian Seas was caused by dierences of water this cyclonic phase and possibly during past cyclonic re- temperature and salinity, e.g., he assumed a thermoh- gimes as well, pollutants may reach the Alaskan shelf.The aline circulation. These scientists believed the Arctic regime shifts demonstrated in this paper are fundamentally Ocean water and ice circulation was mainly thermoh- important to understanding the Arctic's general circulation aline in nature and closely related to the world's ocean and particularly important for estimating pollution trans- circulation. port. Ó 2001 Elsevier Science Ltd.All rights reserved. Subsequently, some authorities /Zubov and Somov, 1940; Shuleikin, 1941; Shirshov, 1944; Treshnikov, 1959) adopted a dierent view on the nature of the water circulation, namely, that the in¯ow of Atlantic waters Introduction into the Arctic Basin was caused principally by the The variability of the general circulation of the Arctic is out¯ow of surface water to the Greenland Sea under the not as well known as it is in many other oceans. in¯uence of the existingwind system. This point of view Knowledge of the circulation is important to under- was con®rmed by experiments undertaken by Gudko- standingthe potential for pollutants and radionuclides vich and Nikiforov /1965) with a hydraulic model sim- to be carried to locations distant from a source. The ulatingthe system of wind-driven currents in the Arctic thrust of the present work is to examine the major Ocean. The experiments showed winds to be a principal forcingmechanisms that drive the Arctic's circulation, factor in formingthe system of permanent currents in and with the use of a basin scale model, identify the the Arctic Basin. The winds of the Arctic anti-cyclone relative strengths of each forcing mechanism, and the generate anti-cyclonic currents in the Amerasian sub- Arctic's response. The potential for pollutants to be basin. The wind system in the Eurasian subbasin and at dispersed depends on the total circulation comprised of the periphery of the Arctic anti-cyclone induces a wide the ¯ow resultingfrom each forcingmechanism. Trans-Arctic current originating in the Chukchi Sea and Two dierent historical views describe factors de- emerging through Fram Strait. Simulating the in¯ow of terminingthe movement of water and ice in the Arctic water as the only factor drivingthe circulation did not produce a circulation pattern similar to that actually *Correspondingauthor /now at the Woods Hole Oceanographic observed. In accordance with this concept, Gudkovich Institute, USA). Tel.: +1-508-289-2796; fax: +1-508-457-2181. /1961a,b) explained the seasonal and year-to-year vari- E-mail addresses: [email protected] /A.Y. Proshutinsky), [email protected] /M. Johnson). ation in the circulation of surface water and ice by a 1 Tel.: +1-907-474-6933. suitable rearrangement of the baric ®elds. 61 Marine Pollution Bulletin To con®rm Gudkovich's conclusions, a series of two- Arctic is at least the same order of magnitude or larger, dimensional numerical models were run /Fel'zenbaum, in terms of maximum observed current speeds, as the 1958; Campbell, 1965; Galt, 1973; Ponomarev and thermohaline forcing. Thus, the circulation regimes Fel'zenbaum, 1975; Proshutinsky, 1988, 1993), where presented in this study may be observable in the ocean, wind ®elds were the major factor drivingcirculation in dependingon the Arctic's linearity. the Arctic Ocean. It is interestingthat Galt /1973) found For this paper we have examined the way the circu- that in¯ow/out¯ow forcingand bottom topography lation in the Arctic responds due to the sea-level slope, both play a more important role in the circulation than the winds /derived from pressure), and the input from does wind forcing. However, in the research of Tres- rivers. We identify two wind-driven regimes, a cyclonic hnikov and Baranov /1972), it was demonstrated that and an anti-cyclonic regime, which alternate over a ten the major features of the water circulation may be ob- to ®fteen year period. When estimatingpathways that tained by means of diagnostic calculations according to pollutants may follow, it is important to distinguish density ®elds. These authors stated that `we could not between these two regimes, and identify which phase is evaluate the role of individual factors in the formation present. of currents because the observed ®eld of masses already That the position of the sea surface may serve as an contains the combined /and still indistinguishable) ef- integral index of processes of interaction between the fects of wind, baroclinicity, and bottom relief'. A similar atmosphere and the ocean was an idea ®rst stated by conclusion could be made accordingto the results of the Duvanin /1951). This result was con®rmed later by dif- diagnostic model by Ponomarev /1977). Prognostic ferent authors dependingon the problem they solved, models /Semtner, 1976) testify to the signi®cant role of e.g., `the position of the sea surface is an integral indi- the irregularity of the ®eld of mass in the formation of cator of most processes and phenomena related to the the three-dimensional water circulation. formation of the hydrological regime' /Galerkin, 1961), A series of dierent model runs was presented by or `the only indicator of synoptic variability of hydro- Semtner /1987), Flemingand Semtner /1991), H akkinen logical conditions in arctic seas, for which correspond- and Mellor /1992), Hibler and Bryan /1986), Riedlinger ing®eld data exist, consists of the sea-level heights' and Preller /1991), Piacsek et al. /1991). All of these /Krutskikh, 1978) Year-to-year and seasonal ¯uctua- models and numerical experiments were directed to de- tions of the ocean level in this sense may be viewed as an velopingnew models and to describingbetter observed indicator of large-scale interaction between the atmo- features of water and ice dynamics without special at- sphere and ocean. In particular, the sea surface can ev- tention to the variability of the oceanographic regime of idently be used as an indicator of large-scale circulation the Arctic Ocean. Recent papers by Hakkinen /1993, of water and ice of the Arctic Ocean and as an indicator 1995) were dedicated to modelingand explain such of the regime driving pollution transport. We use sea phenomena as deep convection in the Greenland Sea level in our paper as an integral index to describe vari- and the Great Salinity anomaly. Her investigations ability of the Arctic Ocean circulation. demonstrated again the signi®cance of atmospheric cir- This paper is organized in the following manner. culation in the coupled ice±ocean system in the Arctic. Basic equations and boundary conditions are described In this paper we assume that the general circulation of in Model Equations and Boundary Conditions. The the Arctic can be characterized by four broad responses data base is discussed in Data Base. The model results to dierent forcings. The response from the observed are given in Results and the ®nal section contains a sea-level slope between the North Paci®c ocean and the summary and discussion. Arctic is northward ¯ow through Bering Strait and out through Fram Strait, with the interior response yet to be clearly described. A second response is due to forcingby Model Equations and Boundary Conditions the atmospheric winds and pressure ®elds that drive We shall use a system of equations of motion and both a baroclinic and a barotropic response. In this continuity written in the vector notation and in the paper we treat the Arctic as a barotropic ¯uid. A third stereographic polar coordinate system response is due to the in¯ow from rivers. Associated dU with river in¯ow is a fourth response, the total ther- f k  U ÀgDmrf N m2r2U mohaline ¯ow, due to the introduction of ¯uid at a dt h boundary. cT 1 À cT À T i s b ; 1 We have modeled the response due to sea-level slope, q winds and river input.
Recommended publications
  • Turning the Tide on Trash: Great Lakes
    Turning the Tide On Trash A LEARNING GUIDE ON MARINE DEBRIS Turning the Tide On Trash A LEARNING GUIDE ON MARINE DEBRIS Floating marine debris in Hawaii NOAA PIFSC CRED Educators, parents, students, and Unfortunately, the ocean is currently researchers can use Turning the Tide under considerable pressure. The on Trash as they explore the serious seeming vastness of the ocean has impacts that marine debris can have on prompted people to overestimate its wildlife, the environment, our well being, ability to safely absorb our wastes. For and our economy. too long, we have used these waters as a receptacle for our trash and other Covering nearly three-quarters of the wastes. Integrating the following lessons Earth, the ocean is an extraordinary and background chapters into your resource. The ocean supports fishing curriculum can help to teach students industries and coastal economies, that they can be an important part of the provides recreational opportunities, solution. Many of the lessons can also and serves as a nurturing home for a be modified for science fair projects and multitude of marine plants and wildlife. other learning extensions. C ON T EN T S 1 Acknowledgments & History of Turning the Tide on Trash 2 For Educators and Parents: How to Use This Learning Guide UNIT ONE 5 The Definition, Characteristics, and Sources of Marine Debris 17 Lesson One: Coming to Terms with Marine Debris 20 Lesson Two: Trash Traits 23 Lesson Three: A Degrading Experience 30 Lesson Four: Marine Debris – Data Mining 34 Lesson Five: Waste Inventory 38 Lesson
    [Show full text]
  • Marine Snow Storms: Assessing the Environmental Risks of Ocean Fertilization
    University of Wollongong Research Online Faculty of Law - Papers (Archive) Faculty of Business and Law 1-1-2009 Marine snow storms: Assessing the environmental risks of ocean fertilization Robin M. Warner University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/lawpapers Part of the Law Commons Recommended Citation Warner, Robin M.: Marine snow storms: Assessing the environmental risks of ocean fertilization 2009, 426-436. https://ro.uow.edu.au/lawpapers/192 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Marine snow storms: Assessing the environmental risks of ocean fertilization Abstract The threats posed by climate change to the global environment have fostered heightened scientific interest in marine geo-engineering schemes designed to boost the capacity of the oceans to absorb atmospheric carbon dioxide. This is the primary goal of a process known as ocean fertilization which seeks to increase the production of organic material in the surface ocean in order to promote further draw down of photosynthesized carbon to the deep ocean. This article describes the process of ocean fertilization, its objectives and potential impacts on the marine environment and some examples of ocean fertilization experiments. It analyses the applicability of international law principles on marine environmental protection to this process and the regulatory gaps and ambiguities in the existing international law framework for such activities. Finally it examines the emerging regulatory for legitimate scientific experiments involving ocean fertilization being developed by the London Convention and London Protocol Scientific Groups and its potential implications for the proponents of ocean fertilization trials.
    [Show full text]
  • A Newly Discovered Glacial Trough on the East Siberian Continental Margin
    Clim. Past Discuss., doi:10.5194/cp-2017-56, 2017 Manuscript under review for journal Clim. Past Discussion started: 20 April 2017 c Author(s) 2017. CC-BY 3.0 License. De Long Trough: A newly discovered glacial trough on the East Siberian Continental Margin Matt O’Regan1,2, Jan Backman1,2, Natalia Barrientos1,2, Thomas M. Cronin3, Laura Gemery3, Nina 2,4 5 2,6 7 1,2,8 9,10 5 Kirchner , Larry A. Mayer , Johan Nilsson , Riko Noormets , Christof Pearce , Igor Semilietov , Christian Stranne1,2,5, Martin Jakobsson1,2. 1 Department of Geological Sciences, Stockholm University, Stockholm, 106 91, Sweden 2 Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden 10 3 US Geological Survey MS926A, Reston, Virginia, 20192, USA 4 Department of Physical Geography (NG), Stockholm University, SE-106 91 Stockholm, Sweden 5 Center for Coastal and Ocean Mapping, University of New Hampshire, New Hampshire 03824, USA 6 Department of Meteorology, Stockholm University, Stockholm, 106 91, Sweden 7 University Centre in Svalbard (UNIS), P O Box 156, N-9171 Longyearbyen, Svalbard 15 8 Department of Geoscience, Aarhus University, Aarhus, 8000, Denmark 9 Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia 10 Tomsk National Research Polytechnic University, Tomsk, Russia Correspondence to: Matt O’Regan ([email protected]) 20 Abstract. Ice sheets extending over parts of the East Siberian continental shelf have been proposed during the last glacial period, and during the larger Pleistocene glaciations. The sparse data available over this sector of the Arctic Ocean has left the timing, extent and even existence of these ice sheets largely unresolved.
    [Show full text]
  • Flow of Pacific Water in the Western Chukchi
    Deep-Sea Research I 105 (2015) 53–73 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri Flow of pacific water in the western Chukchi Sea: Results from the 2009 RUSALCA expedition Maria N. Pisareva a,n, Robert S. Pickart b, M.A. Spall b, C. Nobre b, D.J. Torres b, G.W.K. Moore c, Terry E. Whitledge d a P.P. Shirshov Institute of Oceanology, 36, Nakhimovski Prospect, Moscow 117997, Russia b Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA c Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada d University of Alaska Fairbanks, 505 South Chandalar Drive, Fairbanks, AK 99775, USA article info abstract Article history: The distribution of water masses and their circulation on the western Chukchi Sea shelf are investigated Received 10 March 2015 using shipboard data from the 2009 Russian-American Long Term Census of the Arctic (RUSALCA) pro- Received in revised form gram. Eleven hydrographic/velocity transects were occupied during September of that year, including a 25 August 2015 number of sections in the vicinity of Wrangel Island and Herald canyon, an area with historically few Accepted 25 August 2015 measurements. We focus on four water masses: Alaskan coastal water (ACW), summer Bering Sea water Available online 31 August 2015 (BSW), Siberian coastal water (SCW), and remnant Pacific winter water (RWW). In some respects the Keywords: spatial distributions of these water masses were similar to the patterns found in the historical World Arctic Ocean Ocean Database, but there were significant differences.
    [Show full text]
  • Marine Pollution: a Critique of Present and Proposed International Agreements and Institutions--A Suggested Global Oceans' Environmental Regime Lawrence R
    Hastings Law Journal Volume 24 | Issue 1 Article 5 1-1972 Marine Pollution: A Critique of Present and Proposed International Agreements and Institutions--A Suggested Global Oceans' Environmental Regime Lawrence R. Lanctot Follow this and additional works at: https://repository.uchastings.edu/hastings_law_journal Part of the Law Commons Recommended Citation Lawrence R. Lanctot, Marine Pollution: A Critique of Present and Proposed International Agreements and Institutions--A Suggested Global Oceans' Environmental Regime, 24 Hastings L.J. 67 (1972). Available at: https://repository.uchastings.edu/hastings_law_journal/vol24/iss1/5 This Article is brought to you for free and open access by the Law Journals at UC Hastings Scholarship Repository. It has been accepted for inclusion in Hastings Law Journal by an authorized editor of UC Hastings Scholarship Repository. Marine Pollution: A Critique of Present and Proposed International Agreements and Institutions-A Suggested Global Oceans' Environmental Regime By LAWRENCE R. LANCTOT* THE oceans are earth's last significant frontier for man's utiliza- tion. Advances in marine technology are opening previously unreach- able depths to permit the study of the oceans' mysteries and the extrac- tion of valuable natural resources.' Because these vast resources were inaccessible in the past, international law does not provide any certain rules governing the ownership and development of marine resources which lie beyond the limits of national jurisdiction.2 In response to this legal uncertainty and in the face of accelerating technology, the United Nations General Assembly has called a General Conference on the Law of the Sea in 1973 to formulate international conventions gov- erning the development of the seabed and ocean floor., Great interest * J.D., University of San Francisco, 1968; LL.M., Columbia University, 1969; Adjunct Professor of Law, University of San Francisco.
    [Show full text]
  • Toxic Tide: the Threat of Marine Plastic Pollution in Australia
    The Senate Environment and Communications References Committee Toxic tide: the threat of marine plastic pollution in Australia April 2016 © Commonwealth of Australia 2016 ISBN 978-1-76010-400-9 Committee contact details PO Box 6100 Parliament House Canberra ACT 2600 Tel: 02 6277 3526 Fax: 02 6277 5818 Email: [email protected] Internet: www.aph.gov.au/senate_ec This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Australia License. The details of this licence are available on the Creative Commons website: http://creativecommons.org/licenses/by-nc-nd/3.0/au/. This document was printed by the Senate Printing Unit, Parliament House, Canberra Committee membership Committee members Senator Anne Urquhart, Chair ALP, TAS Senator Linda Reynolds CSC, Deputy Chair (from 12 October 2015) LP, WA Senator Anne McEwen (from 18 April 2016) ALP, WA Senator Chris Back (from 12 October 2015) LP, WA Senator the Hon Lisa Singh ALP, TAS Senator Larissa Waters AG, QLD Substitute member for this inquiry Senator Peter Whish-Wilson (AG, TAS) for Senator Larissa Waters (AG, QLD) Former members Senator the Hon Anne Ruston, Deputy Chair (to 12 October 2015) LP, SA Senator the Hon James McGrath (to 12 October 2015) LP, QLD Senator Joe Bullock (to 13 April 2016) ALP, WA Committee secretariat Ms Christine McDonald, Committee Secretary Mr Colby Hannan, Principal Research Officer Ms Fattimah Imtoual, Senior Research Officer Ms Kirsty Cattanach, Research Officer iii iv Table of Contents List of recommendations ..................................................................................vii List of abbreviations ....................................................................................... xiii Chapter 1: Introduction ..................................................................................... 1 Conduct of the inquiry ............................................................................................ 1 Acknowledgement .................................................................................................
    [Show full text]
  • Marine Pollution in the Caribbean: Not a Minute to Waste
    Public Disclosure Authorized Public Disclosure Authorized Marine Public Disclosure Authorized Pollution in the Caribbean: Not a Minute to Waste Public Disclosure Authorized Standard Disclaimer: This volume is a product of the staff of the International Bank for Reconstruction and Development/the World Bank. The findings, interpreta- tions, and conclusions expressed in this paper do not necessarily reflect the views of the Executive Directors of the World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of the World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Copyright Statement: The material in this publication is copyrighted. Copying and/or transmitting portions or all of this work without permission may be a violation of applicable law. The International Bank for Reconstruction and Development/ The World Bank encourages dissemination of its work and will normally grant per- mission to reproduce portions of the work promptly. For permission to photocopy or reprint any part of this work, please send a request with complete information to the Copyright Clearance Center, Inc., 222 Rose- wood Drive, Danvers, MA 01923, USA, telephone 978-750-8400, fax 978-750-4470, http://www.copyright.com/. All other queries on rights and licenses, including subsidiary rights, should be addressed to the Office of the Publisher, The World Bank, 1818 H Street NW, Washington, DC 20433, USA, fax 202-522-2422, e-mail [email protected].
    [Show full text]
  • Sea-Based Sources of Marine Litter – a Review of Current Knowledge and Assessment of Data Gaps (Second Interim Report of Gesamp Working Group 43, 4 June 2020)
    August 2020 COFI/2020/SBD.8 8 E COMMITTEE ON FISHERIES Thirty-Fourth Session Rome, 1-5 February 2021 (TBC) SEA-BASED SOURCES OF MARINE LITTER – A REVIEW OF CURRENT KNOWLEDGE AND ASSESSMENT OF DATA GAPS (SECOND INTERIM REPORT OF GESAMP WORKING GROUP 43, 4 JUNE 2020) SEA-BASED SOURCES OF MARINE LITTER – A REVIEW OF CURRENT KNOWLEDGE AND ASSESSMENT OF DATA GAPS Second Interim Report of GESAMP Working Group 43 4 June 2020 GESAMP WG 43 Second Interim Report, June 4, 2020 COFI/2021/SBD.8 Notes: GESAMP is an advisory body consisting of specialized experts nominated by the Sponsoring Agencies (IMO, FAO, UNESCO-IOC, UNIDO, WMO, IAEA, UN, UNEP, UNDP and ISA). Its principal task is to provide scientific advice concerning the prevention, reduction and control of the degradation of the marine environment to the Sponsoring Organizations. The report contains views expressed or endorsed by members of GESAMP who act in their individual capacities; their views may not necessarily correspond with those of the Sponsoring Organizations. Permission may be granted by any of the Sponsoring Organizations for the report to be wholly or partially reproduced in publication by any individual who is not a staff member of a Sponsoring Organizations of GESAMP, provided that the source of the extract and the condition mentioned above are indicated. Information about GESAMP and its reports and studies can be found at: http://gesamp.org Copyright © IMO, FAO, UNESCO-IOC, UNIDO, WMO, IAEA, UN, UNEP, UNDP, ISA 2020 ii Authors: Kirsten V.K. Gilardi (WG 43 Chair), Kyle Antonelis, Francois Galgani, Emily Grilly, Pingguo He, Olof Linden, Rafaella Piermarini, Kelsey Richardson, David Santillo, Saly N.
    [Show full text]
  • Deep-Sea Life Issue 14, January 2020 Cruise News E/V Nautilus Telepresence Exploration of the U.S
    Deep-Sea Life Issue 14, January 2020 Welcome to the 14th edition of Deep-Sea Life (a little later than anticipated… such is life). As always there is bound to be something in here for everyone. Illustrated by stunning photography throughout, learn about the deep-water canyons of Lebanon, remote Pacific Island seamounts, deep coral habitats of the Caribbean Sea, Gulf of Mexico, Southeast USA and the North Atlantic (with good, bad and ugly news), first trials of BioCam 3D imaging technology (very clever stuff), new deep pelagic and benthic discoveries from the Bahamas, high-risk explorations under ice in the Arctic (with a spot of astrobiology thrown in), deep-sea fauna sensitivity assessments happening in the UK and a new photo ID guide for mesopelagic fish. Read about new projects to study unexplored areas of the Mid-Atlantic Ridge and Azores Plateau, plans to develop a water-column exploration programme, and assessment of effects of ice shelf collapse on faunal assemblages in the Antarctic. You may also be interested in ongoing projects to address and respond to governance issues and marine conservation. It’s all here folks! There are also reports from past meetings and workshops related to deep seabed mining, deep-water corals, deep-water sharks and rays and information about upcoming events in 2020. Glance over the many interesting new papers for 2019 you may have missed, the scientist profiles, job and publishing opportunities and the wanted section – please help your colleagues if you can. There are brief updates from the Deep- Ocean Stewardship Initiative and for the deep-sea ecologists amongst you, do browse the Deep-Sea Biology Society president’s letter.
    [Show full text]
  • Conflicting Narratives of Deep Sea Mining
    sustainability Review Conflicting Narratives of Deep Sea Mining Axel Hallgren 1 and Anders Hansson 1,2,* 1 Department of Thematic Studies: Environmental Change, Linköping University, S-581 83 Linköping, Sweden; [email protected] 2 Centre for Climate Science and Policy Research (CSPR), Linköping University, S-581 83 Linköping, Sweden * Correspondence: [email protected] Abstract: As land-based mining industries face increasing complexities, e.g., diminishing return on investments, environmental degradation, and geopolitical tensions, governments are searching for alternatives. Following decades of anticipation, technological innovation, and exploration, deep seabed mining (DSM) in the oceans has, according to the mining industry and other proponents, moved closer to implementation. The DSM industry is currently waiting for international regulations that will guide future exploitation. This paper aims to provide an overview of the current status of DSM and structure ongoing key discussions and tensions prevalent in scientific literature. A narrative review method is applied, and the analysis inductively structures four narratives in the results section: (1) a green economy in a blue world, (2) the sharing of DSM profits, (3) the depths of the unknown, and (4) let the minerals be. The paper concludes that some narratives are conflicting, but the policy path that currently dominates has a preponderance towards Narrative 1—encouraging industrial mining in the near future based on current knowledge—and does not reflect current wider discussions in the literature. The paper suggests that the regulatory process and discussions should be opened up and more perspectives, such as if DSM is morally appropriate (Narrative 4), should be taken into consideration.
    [Show full text]
  • Marine Pollution and Human Health Many of Our Waste Products End up in the Sea
    3 Marine Pollution and Human Health Many of our waste products end up in the sea. This includes visible litter as well as invisible waste such as chemicals from personal care products and pharmaceuticals that we flush down our toilets and drains. Once in the sea, these pollutants can move through the ocean, endangering marine life through entanglement, ingestion and intoxication. When we visit coastal areas, engage in activities in the sea and eat seafood, we too can be exposed to marine pollution that harms our health. We can all help to reduce marine pollution by changing our consumption patterns and reducing, reusing and recycling our waste. » SOURCES OF MARINE POLLUTION • The sea is the final resting place for much of our litter. Common items of marine litter include cigarette butts, crisp/sweet packets, cotton bud sticks, bags and bottles. • Man-made items of debris are found in marine habitats throughout the world, from the poles to the equator, from shorelines and estuaries to remote areas of the high seas, and from the sea surface to the ocean floor. • Approximately 80% of marine litter comes from land-based sources (eg. through drains, sewage outfalls, industrial outfalls, direct littering) while 20% comes from marine-based activities such as illegal dumping and » THE CONNECTION TO HUMAN HEALTH shipping for transport, tourism and fishing. • Plastics are estimated to represent between 60 and 80% of the total • Human health can be directly influenced by marine litter in the form of marine debris. Manufactured in abundance since the mid-20th century, physical damage, e.g.
    [Show full text]
  • The Perils of Sea Level Rise and Ocean Pollution
    Analytical Brief on Climate Ambition and Sustainability Action February 2020 Session Brief for WSDF 2020 The Perils of Sea Level Rise and Ocean Pollution Are current responses sufficient to address this local, transboundary and global problem? Rajendra Kumar Pachauri and Shailly Kedia Key Questions >>> What measures are needed to upscale nature-based solutions as well as technological solutions for preserving marine areas and for climate change mitigation? What adaptation measures are required in the wake of sea level rise and rising vulnerability to coastal regions? Given that marine pollution is a trans-boundary, complex, social, economic and environmental problem, what pathways are needed to address the issue? How can countries cooperate for addressing the issue of marine pollution? country of Bangladesh which has a high population Introduction density living on a very low lying area of land, for Goal 14 of the sustainable development goals instance, will face not only the problem of sea level focuses on ‘Life Below Water’. The oceans of the rise but also coastal area related extreme events. The world are facing a serious threat not only from sea Fifth Assessment Report (AR5) of the IPCC clearly level rise due to melting of ice on land and the Arctic stated “Global mean sea level rise will continue ice cover, thermal expansion of the ocean and the during the 21st century, very likely at a faster rate rapid increase in ocean pollution from human than observed from 1971 to 2010. For the period activities, including plastic waste. The session will 2081–2100 relative to 1986–2005, the rise will likely focus on the nature of the problem and solutions by be in the ranges of 0.26 to 0.55 m for RCP2.6, and of which human society has to implement rapid 0.45 to 0.82 m for RCP8.5.
    [Show full text]